Search for New Physics in the Dijet Mass Spectrum and Dijet Ratio in *pp* Collisions at $\sqrt{s} = 7$ TeV

James Hirschauer Fermilab (for the CMS Collaboration)

Motivation

 $^{1}_{\bullet}$ We study the inclusive dijet final state using the complementary dijet mass spectrum and dijet centrality ratio.

• These provide a test of QCD and sensitivity to new physics.

	Mass Spectrum	Centrality Ratio
QCD q,g q,g q,g q,g	Test of cross section vs. dijet mass predictions from QCD and PDFs.	Test of QCD predictions for angular part of dynamics.
Dijet Resonance q,g X q,g q,g q,g	Most sensitive "bump" ^⁴ hunt for particles decaying to dijets.	Less sensitive to dijet resonances, but important confirmation that "bump" is real.
Contact Interaction q q q q q q q q q q	Because of experimental uncertainties, mass spectrum is less sensitive to quark compositeness.	Sensitive search for quark compositeness.

The Dijet Centrality Ratio

- Quantifies the centrality of the dijet angular distribution at a given dijet mass.
- Many systematic uncertainties cancel in the ratio.

$$R = \frac{N(|\eta| < 0.7)}{N(0.7 < |\eta| < 1.3)} = \frac{N(\text{inner})^*}{N(\text{outer})}$$

*Both jets inner or outer.

- Roughly flat vs. dijet mass for "t-channel" QCD.
- Rises vs. dijet mass for quark contact interactions.
- Bumps in dijet mass for "s-channel" dijet resonances.

CMS Detector

Jet Reconstruction

 Jets are reconstructed from energy deposits in the hadronic and electromagnetic calorimeters.

- Dijet ratio analysis requires $|\eta| < 1.3$ for both jets.
- Dijet mass analysis requires $|\eta| < 2.5$ for both jets and $|\eta_1 \eta_2| < 1.3$.
- Anti- k_T clustering algorithm with distance parameter = 0.7.
- Jet energy corrections are determined with MC, and verified with data.
 - Preliminary studies of photon+jet and single particle response indicate that uncertainty on jet energy scale is less than 10%.
- Jet energy resolution in data and MC agree.

Dijet Topology

- ~116,000 events in 836 nb⁻¹ for dijet mass analysis;
 ~11,000 events in 120 nb⁻¹ for dijet ratio analysis.
- Events are well balanced, as expected from dijet topology.
- Low MET/ ΣE_T (non-zero due to finite jet resolution) consistent with real jets.
 - unphysical backgrounds would appear at MET/ ΣE_T near 1.
- Jets are back-to-back in Φ .
 - Events with low $\Delta \Phi$ are real multijet events.

Highest Dijet Mass Event

Dijet Mass Spectra in Data

• Spectra extend to 2.1 TeV without requirement on $|\eta_1 - \eta_2|$.

Dijet Centrality Ratio in Data

- Compare data to:
 - NLO
 - NLO + non-perturbative corrections *
 - Pythia
 - Pythia × NLO/LO k-factor.
- Data prefer NLO + nonperturbative corrections (p-value = 0.8).
- The experimental systematic uncertainty is ~0.02 and < the stat. uncertainty on 1st data point.

*Corrections for hadronization & multiple parton interactions.

• "NLO Uncertainty" includes PDF, scale, and non-perturbative correction uncertainties.

Smooth Fit of the Mass Spectrum

Model-Independent Cross Section Limits

- We obtain generic cross section limits on qq, qg, and gg resonances.
- Statistical method is Bayesian-inspired:
 - Likelihood from per bin Poisson probabilities in # of bkg. events and signal cross section σ.
 - Assuming uniform prior for cross section, normalized $L(\sigma) = posterior PDF(\sigma).$
 - Integrate PDF(σ) to obtain limit on σ .

• Compare limits with predicted cross sections for 7 resonance models to obtain 95% C.L. lower mass limits:

Mass Limits [TeV]	String	Excited Quark	Axigluon/ Coloron	E ₆ Diquark
Observed	2.10	1.14	1.06	0.58
Expected	2.10	1.10	0.98	0.54

Resonance Mass Limits

Lower Mass Limits [TeV]	CMS observed (836/nb)	CMS expected (836/nb)	CDF [1] (1.13/fb)	ATLAS [2] observed (315/nb)	ATLAS [2] expected (315/nb)
String	2.10	2.10	1.4^{*}	_	_
Excited Quark	1.14	1.10 [†]	0.87	1.20	0.98
Axigluon/ Coloron	1.06	0.98	1.25	_	_
E ₆ Diquark	0.58	0.54	0.63	_	_

• All results use CTEQ6L1 parton distribution functions.

[†]CMS expected limit with 315 nb⁻¹ is 0.93 TeV.

*CMS evaluation of string resonance cross section.

[1] CDF Collaboration, "Search for new particles decaying into dijets in proton- antiproton collisions at sqrt(s) = 1.96 TeV", Phys. Rev. D79 (2009) 112002; arXiv:0812.4036.

[2] ATLAS Collaboration, "Search for New Particles in Two-Jet Final States in 7 TeV Proton-Proton Collisions with the ATLAS Detector at the LHC", <u>arXiv:1008.2461.</u>

New Physics Search with Dijet Ratio

 Comparison of data, QCD, contact interaction, q* models show no sign of new physics.

- Set limits with CL_S method; test statistic is log likelihood ratio for SM and SM+signal hypotheses.
- We exclude $\Lambda < 1.9$ TeV at 95% C.L.
 - Tevatron exclusion is Λ < 2.8 TeV.

Looking Forward

 Conservative expectations for 95% C.L. limits as function of integrated luminosity:

 CMS is exploring new territory beyond the Tevatron string and q* resonance mass limits. We expect to surpass Tevatron limit of Λ>2.8 TeV at 95% C.L. with 4 pb⁻¹.

Summary

- The dijet mass spectrum extends to 1.9 TeV with 836 nb⁻¹ for $|\eta_{1,2}| < 2.5$.
- The dijet mass spectrum is in good agreement with QCD from PYTHIA + full CMS simulation.
- The dijet centrality ratio is in good agreement with QCD from NLO calculations + non-perturbative corrections.
- We have used the data to set limits on the presence of new physics from five models:

New Physics Model	95% C.L. Limit [TeV]	Integrated Luminosity [nb ⁻¹]
String Resonance	M > 2.10	836
Excited Quark	M > 1.14	836
Axigluon/Coloron	M > 1.06	836
E ₆ Diquark	M > 0.58	836
Contact Interaction	$\Lambda > 1.9$	120

Extra Slides

CMS References

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults

- CMS Collaboration, "Search for Dijet Resonances in the Dijet Mass Distribution in pp Collisions at \sqrt{s} = 7 TeV"," Physics Analysis Summary EXO-10-010
- CMS Collaboration, "Search for New Physics with the Dijet Centrality Ratio," Physics Analysis Summary EXO-10-002
- CMS Collaboration, "Jet Performance in pp Collisions at $\sqrt{s}=7$ TeV," Physics Analysis Summary JME-10-003
- CMS Collaboration, "Single Particle Response in the CMS Calorimeters," Physics Analysis Summary JME-10-008
- $\bullet\,$ CMS Collaboration, "The CMS physics reach for searches at 7 TeV", CMS NOTE 2010/008

Model-Independent Lineshapes

- Probability 0.25 **Resonance shapes from PYTHIA** CMS Simulation +CMS simulation. gluon-gluon ------ quark-gluon Shape depends on parton ----- quark-quark content mostly because of FSR. 0.15 Gluons radiate more than $M_{Res} = 1.2 \text{ TeV}$ quarks, broadening the shape. $|\eta| < 2.5$, $|\Delta \eta| < 1.3$ 0.1 EXO-10-010 • Gaussian core of dijet mass 0.05 resolution for qg resonances varies from 11% at 0.5 TeV to 6% at 2.5 TeV. 400 800 1000 1200 600
- We search for these 3 generic types of narrow dijet resonances in the data.

1600

1400

Dijet Mass (GeV)

Jet Energy Scale

Anti-k_T Clustering Algorithm

- M. Cacciari, G. P. Salam, and G. Soyez, "The anti-k_T jet clustering algorithm", JHEP 0804:063 (2008); <u>arXiv:0802.1189</u>
- In family of **sequential recombination algorithms**:

 - Algorithm: If smallest *d* is *d_{ij}*, combine entities *i/j*; if smallest *d* is *d_{iB}*, call *i* a jet and remove from list of entities. Repeat until no entities left.
 - $k_T p=1$, Cambridge/Aachen p=0, anti- $k_T p=^{-1}$.
- Infrared and collinear safe.
- Soft-resilient boundaries yielding conical jets.

Systematic Uncertainties : Spectrum

• Posterior probabilities are convolved with Gaussian of width equal to systematic uncertainty -- conservative approach.

Systematic Uncertainties : Dijet Ratio

- Included in limit setting with Cousins-Highland method.
 - Uncertainties are represented by nuisance parameters which affect the number of inner and outer events in pseudodatasets.
- Dominant sources of uncertainty are circled in red.

Source of	NLO QCD		Contact Interactions	
Uncertainty	(Units of Ratio)	(%)	(%)	
Detector Uncertainty				
Absolute JES	0.002 - 0.004	0.3 - 0.8	5 - 30	
Relative JES	0.02 - 0.03	3.9 - 5.3	2	
Other	0.01	2.0		
Jet Energy Resolution	0.003	0.6		
Total Detector	0.02 - 0.03	4.5 - 5.8	5 - 30	
Model Uncertainty				
Scale	+(0.014 - 0.023) -(0.005 - 0.008)	+(2.7 - 4.4) -(0.9 - 1.6)	_	
Offset	0.02	3.9	_	
Fit	0.005	1.0	2 - 5	
PDF	0.002	0.3	_	
Total Model	+(0.024 - 0.030) -(0.021 - 0.022)	+(4.8 - 5.9) -(4.0 - 4.3)	2 - 5	
Total	+(0.034 - 0.042) -(0.031 - 0.037)	+(6.6 - 8.3) -(6.1 - 7.2)	6 - 30	

Previous Highest Dijet Mass Event

- In EXO-10-001, we reported an event with dijet mass = 2.1 TeV.
- In the EXO-10-010 analysis, this event fails the $|\eta_1-\eta_2|<1.3$ requirement.

ATLAS vs. CMS

Mass Limits [TeV]	95% CL Mass Limit on q* (TeV)			
	CMS CTEQ6L1 (836 nb ⁻¹)	CMS CTEQ6L1 (315 nb ⁻¹)	ATLAS CTEQ6L1 (315 nb ⁻¹)	ATLAS MRST07 (315 nb ⁻¹)
Observed	1.14	_	1.20	1.26
Expected	1.10	0.93	0.99	1.06