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Motivations

The effective field theory method and vacuum distributions

Including mass scales, results and implications
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Motivations (1)

The SUSY breaking landscape

I One branch of the landscape has tree level SUSY-breaking.

I The vacuum distribution is N(F < F0, 0 < V < Λ0) ∼ F 6
0 Λ0

(Denef & Douglas 2004, Dine & O’Neil & Sun 2005).

Mass scales

I In previous studies from flux compactification, there is only
the string scale. One hope to find enough amount of vacua
with small SUSY breaking.

I Including different mass scales MS , MK , MP . As their ratio
changes, how does the distribution behave?

I What is the limiting behaviour as some ratio of scales goes to
0? e.g. gravity decoupling, nearly canonical K”ahler.
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Motivations (2)

Comparison to the SUSY vacuum distribution

I N ∼ F 6
0 Λ0 favors the highest F . But SUSY vacua live on

other branches. How is the total number of SUSY-breaking
vacua compared to SUSY ones?

I SUSY breaking global minimum is rare compared to SUSY
ones. How about metastable SUSY breaking?

Model building

I R-symmetries are widely used to get SUSY breaking.

I Alternatively, one can tune parameters to get metastable
SUSY breaking vacua. How much tuning in general do we
need?
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The general method (1)

The effective one-field model

I We study the low energy effective SUSY or SUGRA theory.

I One field approximation: There is only one light field (F-term
- goldstino - pseudomodulus).

I More than one light field is possible, but need much more
tuning (or symmetries).

I The model is

W =
∑
n

anz
n, K =

∑
n,m

cnmz̄nzm ,

for SUSY: V =
1

∂̄∂K
∂̄W̄ ∂W ,

for SUGRA: V = eK (
1

∂̄∂K
D̄W̄DW − 3W̄W ) .
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The general method (2)

Constraints on parameters

I Conditions to get SUSY breaking vacua of interest, Each
condition gives some constraint on an’s:

1. Small SUSY breaking scale: Θ(F < F0),
2. Stationary: δ(V ′),
3. Metastable: Θ(V ′′ > 0),
4. Small cosmological constant (for SUGRA): Θ(0 < V < Λ0).

I The total number of vacua is

N(F < F0, 0 < V < Λ0)

=

∫
dµ(an)Θ(F < F0)δ(V ′)Θ(V ′′ > 0)Θ(0 < V < Λ0) .

I In small region dµ(an) ∼ d2a0d
2a1 . . . .
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Distributions (1)

General model calculation

I Take the effective one-field model W =
∑

n anz
n,

K =
∑

n,m cnmz̄nzm, either SUSY or SUGRA. an ∼ cnm ∼ 1.

I Make c11 = 1, c0n = 0, we have

V = a∗1a1 − 3a∗0a0 ,

∂V = 2a∗1a2 − 2c12a
∗
1a1 − 2a∗0a1 ,

∂2V = 6a∗1a3 − 8c12a
∗
1a2 + (8c2

12 − 6c13)a∗1a1+

− 2a∗0a2 − 2c12a
∗
0a1 ,

∂̄∂V = 4a∗2a2 − 4c∗12a
∗
1a2 − 4c12a1a

∗
2+

+ (8c∗12c12 − 4c22)a∗1a1 − 2a∗0a0 .
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Distributions (2)

Counting vacua

I Constraints on an’s:

a1 ∼ a2 ∼ F , a3 . F , a0 ∼ F − Λ

F
.

I Note δ(V ′) should give right counting:

δ(V ′) = δ2(z − z0) ∼ F 2δ2(a2 − a2(0)) .

I The result is

N(F < F0, 0 < V < Λ0) ∼ F 2
0 · F 2

0 · F 2
0 · Λ0 ∼ F 6

0 Λ0 .
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Counting with mass scales (1)

General model with mass scales

I Assume 3 mass scales:
I MS : scale of SUSY dynamics,
I MK : scale of non-minimal corrections to Kähler,
I MP : Planck scale.

I The model is

W =
∑
n

anM
3−n
S zn, K =

∑
n,m

cnmM2−n−m
K z̄nzm ,

for SUSY: V =
1

∂̄∂K
∂̄W̄ ∂W ,

for SUGRA: V = e
K

M2
P (

1

∂̄∂K
D̄W̄DW − 3W̄W

MP
) ,

DW = ∂W +
1

M2
P

W ∂K .
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Counting with mass scales (2)

Counting vacua

I Assume MS < MK , MS < MP , (MK < MP).

I Constraints on an’s:

a1 ∼ F ,

a2 ∼ FMS(
1

MK
+

1

MP
) ,

a3 . FM2
S(

1

M2
K

+
1

M2
P

) ,

a0 ∼
MP

MS
(F − Λ

FM4
S

) .

I δ(V ′) = δ2( 1
MS

(z − z0)) ∼ F 2M4
S( 1

M4
K

+ 1
M4

P
)δ2(a2 − a2(0)).
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Counting with mass scales (3)

The result

I For SUSY:

N(F < F0) ∼ F 6
0

M8
S

M8
K

.

N → 0 as MK →∞.

I For SUGRA:

N(F < F0, 0 < V < Λ0) ∼ F 6
0 Λ0M

2
SM2

P(
1

M8
K

+
1

M8
P

)

∼ F 6
0

Λ0M
2
SM2

P

M8
K

.

MK →∞, N is still finite.
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Comparison to SUSY vacua

Conditions for SUSY vacua

I F = |a1| = 0, a0 ∼
√

ΛMP

M3
S

, no constraint on other an’s.

I Note δ(V ′) = δ2( 1
MS

(z − z0)) ∼ δ2(a1).

The result

I For SUSY:

N(F = 0) ∼ 1 (non-SUSY: F 6
0

M8
S

M8
K

) .

I For SUGRA:

N(F = 0, 0 < V < Λ0) ∼
Λ0M

2
P

M6
S

(non-SUSY: F 6
0

Λ0M
2
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SUSY breaking by parameter tuning

Amount of tuning

I Low energy SUSY breaking is rare even for metastable vacua.

N(F . 1)

N(F = 0)
∼

M8
S

M8
K

.

I Large a0 ∼ F MP
MS

is necessary to cancel the c.c..

I a1 ∼ F , a2 satisfying V ′ = 0, the only tuning appears in

a3 . F
M2

S

M2
K

.

SUSY vacua do not need such tuning.

I (THE END.)
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