

INSTITUT NATIONAL DE PHYSIQUE NUCLÉAIRE ET DE PHYSIQUE DES PARTICULES

Interplay of LFV and slepton mass splittings at the LHC: probing the SUSY seesaw

Ana M. Teixeira

Laboratoire de Physique Corpusculaire, LPC - Clermont

SUSY 2010 - Bonn, 22-28 August 2010

In collaboration with Abada, Figueiredo and Romão, arXiv:1007.4833 [hep-ph]

Understanding lepton flavour mixing...

► Flavour violated in neutral leptons ($\nu_i \leftrightarrow \nu_j$ oscillations) What about charged lepton flavour violation?? $\ell_i \rightarrow \ell_j \gamma$, $\ell_i \rightarrow 3\ell_j$, ... Huge experimental effort: MEG, PRISM/PRIME, SuperB... ever observable??

 \rightsquigarrow An effective "hint": $BR(\mu \rightarrow e\gamma) = 10^{-11} \times (2 \text{ TeV}/\Lambda)^4 \times (\theta_{\mu e}/0.01)^2$

 $\blacktriangleright \text{ CLFV } \Leftrightarrow \qquad \bigwedge \sim \mathcal{O}(\text{TeV}) \qquad + \qquad \text{Lepton Flavour Mixing} \\ \text{ (testable at LHC)} \qquad \qquad + \qquad \text{Lepton Flavour Mixing} \\ \text{ non-negligible } \theta_{\ell_i \ell_j} \\ \text{ (suggested by neutrino mixing)} \\ \end{array}$

charged LFV: complementary to direct LHC searches and ν -dedicated exps

cLFV: complementary to LHC searches and ν experiments

► Here: use low-energy LFV observables (e.g. $BR(\ell_i \rightarrow \ell_j \gamma)$) and high-energy data (e.g. SUSY kinematical observables at the LHC)

 \Rightarrow Use **cLFV complementarity role** to **disentangle** model of **New Physics**

New Physics (beyond SM_{ν_R})+Lepton Flavour MixingcLFV \Leftrightarrow mSUGRA-like SUSYseesaw mechanism(testable at LHC)(suggested by neutrino mixing)

Probe type-I seesaw as mechanism of lepton flavour violation in the cMSSM

Type-I SUSY seesaw

$$\begin{split} \bullet \quad \mathbf{MSSM} + \mathbf{3} \ \hat{N}_{R} \quad \mathcal{W}_{\mathsf{MSSM}_{R}}^{\mathsf{lepton}} = \hat{N}^{c} Y^{\nu} \ \hat{L} \ \hat{H}_{2} + \hat{E}^{c} Y^{l} \ \hat{L} \ \hat{H}_{1} + \frac{1}{2} \hat{N}^{c} M_{N} \ \hat{N}^{c} \\ Y^{\ell} = Y_{\ell}^{\mathsf{diag}} \ \mathsf{and} \ M_{N} = M_{N}^{\mathsf{diag}} \\ -\mathcal{L}^{\mathsf{slepton}} = -\mathcal{L}_{\mathsf{cMSSM}}^{\mathsf{slepton}} + m_{0}^{2} \tilde{\nu}_{R} \ \tilde{\nu}_{R}^{*} + (A_{0} Y^{\nu} H_{2} \ \tilde{\nu}_{L} \ \tilde{\nu}_{R}^{*} + B_{\nu} \ \tilde{\nu}_{R} \ \tilde{\nu}_{R} + \mathsf{H.c.}) \\ \bullet \quad m_{\nu} = -v_{2}^{2} Y^{\nu} \ \frac{1}{M_{N}} Y^{\nu}^{T} \qquad \mathsf{Seesaw equation} \quad (\mathsf{limit} \ m_{D} = Y^{\nu} v_{2} \ll M_{N}) \\ \bullet \quad v_{2} Y^{\nu} = i \sqrt{M_{N}^{\mathsf{diag}}} R \sqrt{m_{\nu}^{\mathsf{diag}}} U_{\mathsf{MNS}}^{\dagger} \quad (\mathsf{at} \ M_{N}) \\ [\mathsf{Casas-lbarra parameterization]} \quad \left\{ \begin{array}{c} U_{\mathsf{MNS}} (\mathfrak{at} \ M_{N}) \\ \mathbf{M}_{N}^{\mathsf{diag}} \ \mathsf{heavy neutrino masses} \\ R(\theta_{i}) \ \mathsf{3 complex angles} \end{array} \right. \end{aligned}$$

► Even for universal soft-breaking terms RGE running of Y^{ν} ($M_{\text{GUT}} \rightarrow M_N$) induces flavour-violating terms in slepton soft-breaking masses $(\Delta m_{\tilde{L}}^2)_{ij} = -\frac{1}{8\pi^2} \left(3 m_0^2 + A_0^2 \right) (Y^{\nu \dagger} L Y^{\nu})_{ij}$ $L = \log(M_{\text{GUT}}/M_N)$ [Borzumati, Masiero; Hisano; ...]

One source of flavour violation

► mSUGRA-like SUSY seesaw: Y^{ν} unique source of FV (all observables strongly related)

* low-energies: $l_j \rightarrow l_i \gamma$, $l_j \rightarrow 3l_i$, $\mu - e$ in Nuclei

⇒ large rates potentially observable! (MEG, PRISM/PRIME, ...)

* high-energies: study charged slepton from $\chi_2^0 \rightarrow \ell^{\pm} \ell^{\mp} \chi_1^0$ decays \Rightarrow possibily sizable $\tilde{e} - \tilde{\mu}$ mass differences, multiple edges,

direct FV decays $\chi_2^0 \rightarrow \ell_i \, \ell_j \, \chi_1^0$, ...

[also effective LFV - Buras et al, '09]

▶ If LFV indeed observable (large BRs & CR),

expect interesting slepton phenomena at the LHC!

Slepton mass reconstruction at the LHC

► Focus on di-lepton invariant mass distributions from $\chi_2^0 \rightarrow \tilde{\ell}_{L,R} \ell \rightarrow \chi_1^0 \ell \ell$ If on-shell sleptons & isolated leptons with large $p_T > 10$ GeV

 $\Rightarrow m_{\ell\ell} = \frac{1}{m_{\tilde{\ell}}} \sqrt{\left(m_{\chi_2^0}^2 - m_{\tilde{\ell}}^2\right) \left(m_{\tilde{\ell}}^2 - m_{\chi_1^0}^2\right)} \sim 0.1\% \text{ edge precision at LHC}$ $\Rightarrow \text{ infer } \frac{\Delta m_{\tilde{\ell}}}{m_{\tilde{\ell}}} (\tilde{\ell}_i, \tilde{\ell}_j) = \frac{|m_{\tilde{\ell}_i} - m_{\tilde{\ell}_j}|}{\langle m_{\tilde{\ell}_i, j} \rangle} \quad \rightsquigarrow \text{ LHC: } \frac{\Delta m/m_{\tilde{\ell}}(\tilde{e}_L, \tilde{\mu}_L)}{\Delta m/m_{\tilde{\ell}}(\tilde{\mu}_L, \tilde{\tau}_2)} \rightarrow \mathcal{O}(0.1\%)$

► cMSSM viability windows: large χ_2^0 production rates, sizable BR($\chi_2^0 \rightarrow \chi_1^0 \ell \ell$), Ωh^2 ...

Point	m_0	$M_{1/2}$	A_0	aneta
P1	110	528	0	10
P2	110	471	1000	10
P3	137	435	-1000	10
P4	490	1161	0	40
CMS-HM1	180	850	0	10
ATLAS-SU1	70	350	0	10

Proposed cMSSM study points..

Di-muon invariant mass distributions: cMSSM

[[]SPheno & Prospino]

Point	$m_{\chi^0_2}$	$m_{\chi^0_1}$	$m_{{ ilde\ell}_L}$	$m_{\tilde{\ell}_R}$	$m_{\tilde{\tau}_2}$	$m_{\tilde{\tau}_1}$	$< m_{\tilde{q}} >$	m_h
P1	410	217	374	231	375	224	1064	115.1
P2	356	191	338	212	335	198	963	111.4
P3	342	179	327	218	325	186	877	117.6
ATLAS-SU1	262	140	251	156	254	147	733	111.8

- ► Double-triangular distributions: intermediate $\tilde{\mu}_L$ and $\tilde{\mu}_R$ in $\chi_2^0 \rightarrow \chi_1^0 \mu \mu$
- ► Approximately superimposed $\tilde{\ell}_{L,R}$ edges for $m_{\mu\mu}$ and m_{ee} : "degenerate" $\tilde{\mu}, \tilde{e}$

Slepton mass splittings at the LHC

► cMSSM: nearly degenerate $\tilde{\mu}, \tilde{e} = \frac{\Delta m_{\tilde{\ell}}}{m_{\tilde{\ell}}} (\tilde{e}_L, \tilde{\mu}_L) \lesssim \mathcal{O}(10^{-3})$ (small RGE & *LR*-mixing)

► Under a type-I SUSY seesaw (assuming e.g. large $Y_{23,33}^{\nu}$)

$$\Rightarrow \frac{\Delta m_{\tilde{\ell}}}{m_{\tilde{\ell}}} (\tilde{e}_L, \tilde{\mu}_L) \approx \frac{1}{2} \frac{\Delta m_{\tilde{\ell}}}{m_{\tilde{\ell}}} (\tilde{\mu}_L, \tilde{\tau}_2) \approx \frac{1}{2} \left| \frac{(\Delta m_{\tilde{L}}^2)_{23}}{(m_{\tilde{L}}^2)_{33}} \right| \qquad \frac{\Delta m_{\tilde{\ell}}}{m_{\tilde{\ell}}} (\tilde{e}_L, \tilde{\mu}_L) \sim \mathcal{O}(10\%)$$

Predominantly *LL* effect: $\frac{\Delta m_{\tilde{\ell}}}{m_{\tilde{\ell}}}(\tilde{\ell}_{L}^{i}, \tilde{\ell}_{L}^{j}) \gg \frac{\Delta m_{\tilde{\ell}}}{m_{\tilde{\ell}}}(\tilde{\ell}_{R}^{i}, \tilde{\ell}_{R}^{j})$

 $\Rightarrow \text{Correlation } \mathsf{BR}(\ell_i \to \ell_j \gamma) \leftrightarrow \frac{\Delta m_{\tilde{\ell}}}{m_{\tilde{\ell}}} (\tilde{\ell}_i, \tilde{\ell}_j) \qquad \text{[High- low-energy complementarity]}$ e.g. $\frac{\mathsf{BR}(\tau \to \mu \gamma)}{\mathsf{BR}(\tau \to \nu_\tau \ell \nu_\ell)} \approx f(\mathsf{EW}, \mathsf{mSUGRA}) L_{33} M_{N_3} m_{\nu_3} \sin 2\theta_{23} \times \frac{\Delta m_{\tilde{\ell}}}{m_{\tilde{\ell}}} (\tilde{\mu}_L, \tilde{\tau}_2)$

 \Rightarrow **New edges** in di-lepton mass distributions:

$$\chi_{2}^{0} \rightarrow \left\{ \begin{array}{c} \tilde{\ell}_{L}^{i} \ell_{i} \\ \tilde{\ell}_{R}^{i} \ell_{i} \\ \tilde{\ell}_{X}^{j} \ell_{i} \end{array} \right\} \rightarrow \chi_{1}^{0} \ell_{i} \ell_{i}$$

 \Rightarrow Possible direct FV in neutralino and slepton decays: $\chi_2^0 \rightarrow \ell_i \, \ell_j \, \chi_1^0$

LFV at low- and high-energies: conservative limit

Scan over **mSUGRA**: ensure $\chi_2^0 \rightarrow \ell \ell \chi_1^0$ (real $\tilde{\ell}$, hard ℓ) & $\Omega h^2|_{WMAP}$; Seesaw parameters: hierarchical ν_i, N_i , small $\theta_{13}, R = 1$ $Y^{\nu} = i\sqrt{M_N} R \sqrt{m_{\nu}} U_{MNS}^{\dagger}$

 \Rightarrow example: conservative amount of flavour violation (only from U_{MNS})

► $\Delta m(\tilde{e}_L, \tilde{\mu}_L) \sim \mathcal{O}(1\%) \Rightarrow CR(\mu - e, Ti) \& BR(\tau \rightarrow \mu \gamma)$ within future sensitivity

 $\blacktriangleright \Delta m(\tilde{e}_L, \tilde{\mu}_L)|_{LHC}$ and compatible $\mathsf{BR}(\mu \to e\gamma)|_{\mathsf{MEG}}$

 \Rightarrow strengthen seesaw hypothesis [for R = 1 limit]

► $\Delta m(\tilde{e}_L, \tilde{\mu}_L)|_{LHC}$ excluded by BRs, CR or observed BRs/CR for negligible Δm ⇒ suggests distinct (or additional) source of flavour violation

LFV at low- and high-energies: general overview

mSUGRA: CMS point HM1 {180, 850, 0, 10, +1} and ATLAS point SU1 {70, 350, 0, 10, +1} Seesaw: general *R* (vary $|\theta_i|$, $\arg \theta_i \in [-\pi, \pi]$), $M_{N_3} = 10^{12,13,14}$ GeV; $\theta_{13} = 0.1^{\circ}$

If type-I seesaw indeed at work and SUSY ~ HM1, SU1 (mSUGRA):

▶ LFV observables within experimental reach; $\Delta m|_{SU1} \lesssim \Delta m|_{HM1}$

 $\blacktriangleright \text{HM1: } \Delta m(\tilde{e}_L, \tilde{\mu}_L)|_{\text{LHC}} \sim 0.1 - 1\% \rightsquigarrow \text{BR}(\mu \to e\gamma)|_{\text{MEG}}$

SU1: $\Delta m(\tilde{e}_L, \tilde{\mu}_L)|_{LHC} \sim 0.1 - 1\% \Rightarrow BR(\tau \rightarrow \mu\gamma) \gtrsim 10^{-9}$ (SuperB)

 \Rightarrow Hint towards scale of new physics ($M_{N_3} \gtrsim 10^{13}$ GeV)

LFV at the LHC: di-lepton distributions in χ_2^0 decays Impact of type-I SUSY seesaw for di-lepton distributions $\chi_2^0 \rightarrow \tilde{\ell}_{L,R}^i \ell_i \rightarrow \chi_1^0 \ell_i \ell_i$ Seesaw: R = 1, $P_{M_N}^{\prime(\prime\prime\prime)} = \{10^{10}, 5 \times 10^{10} (10^{12}), 5 \times 10^{13} (10^{15})\}$ GeV, $\theta_{13} = 0.1^\circ$

- ► Displaced $m_{\mu\mu}$ and m_{ee} edges $(\tilde{\ell}_L) \Leftrightarrow$ sizable $\frac{\Delta m_{\tilde{\ell}}}{m_{\tilde{\ell}}} (\tilde{e}_L, \tilde{\mu}_L)$ [\rightsquigarrow flavour non-universality (?)]
- Appearance of new edge in $m_{\mu\mu}$: intermediate $\tilde{\tau}_2$

→ flavour violation!

LFV at the LHC: $\chi_2^0 \to \tilde{\tau}_2 \mu \to \chi_1^0 \mu \mu$; also $\chi_2^0 \to \tilde{\tau}_2 \mu \to \chi_1^0 \tau \mu$

Interplay of high- and low-energy LFV: what can we learn?

cMSSM: no FV in lepton sector, approximately **degenerate** $\tilde{e} - \tilde{\mu}$

Type-I SUSY seesaw to account for neutrino masses and mixings:

* sizable
$$\frac{\Delta m_{\tilde{\ell}}}{m_{\tilde{\ell}}}(\tilde{e}_L, \tilde{\mu}_L)$$
 (within LHC sensitivity)

*** new edges** in di-lepton distributions

* correlation of high- and low-energy LFV observables [e.g. BR vs $\Delta m_{\tilde{\ell}}$]

Impact of possible scenarios of experimental data

[synergy of BRs, CR|_{low-energy} and $\Delta m(\tilde{e}, \tilde{\mu})|_{LHC}$; large RR splittings|_{LHC}; ...]

⇒ substantiate seesaw hypothesis (eventually hinting towards new physics scale)

 \Rightarrow disfavour a type-I seesaw as the (only) source of flavour violation

Additional slides

LFV formulae: slepton masses

$$\begin{split} M_{LL}^{ij\,2} &= m_{\tilde{L},ij}^2 + v_1^2 \left(Y^{l^{\dagger}} Y^{l} \right)_{ij} + M_Z^2 \cos 2\beta \left(-\frac{1}{2} + \sin^2 \theta_W \right) \delta_{ij} \,, \\ M_{RR}^{ij\,2} &= m_{\tilde{E},ij}^2 + v_1^2 \left(Y^{l} Y^{l^{\dagger}} \right)_{ij} - M_Z^2 \cos 2\beta \sin^2 \theta_W \delta_{ij} \,, \\ M_{LR}^{ij\,2} &= v_1 \left(A_l^{\dagger} \right)_{ij} - v_2 \,\mu Y^{l^{\dagger}}_{ij} \,, \quad M_{RL}^{ij\,2} = \left(M_{LR}^{ji\,2} \right)^* \,, \\ &\qquad (M_{\tilde{\nu}}^2)_{ij} = m_{\tilde{L},ij}^2 + \frac{1}{2} \, M_Z^2 \cos 2\beta \, \delta_{ij} \,. \\ (m_{\tilde{L}}^2)_{ij} &= \left(m_0^2 + 0.5 \, M_{1/2}^2 - m_0^2 \, |y| \, (Y^l)_{ij}^2 \right) \, \delta_{ij} + (\Delta m_{\tilde{L}}^2)_{ij} \,, \\ (m_{\tilde{E}}^2)_{ij} &= \left(m_0^2 + 0.15 \, M_{1/2}^2 - 2 \, m_0^2 \, |y| \, (Y^l)_{ij}^2 \right) \, \delta_{ij} + (\Delta m_{\tilde{E}}^2)_{ij} \,, \\ &\qquad |y| \approx \frac{1}{8\pi^2} \left(3 + \frac{A_0^2}{m_0^2} \right) \log(\frac{M_X}{m_{\text{SUSY}}}) \end{split}$$

$$(\Delta m_{\tilde{L}}^2)_{ij} = -\frac{1}{8\pi^2} (3m_0^2 + A_0^2) (Y^{\nu \dagger} L Y^{\nu})_{ij},$$

$$(\Delta A_l)_{ij} = -\frac{3}{16\pi^2} A_0 Y_{ij}^l (Y^{\nu \dagger} L Y^{\nu})_{ij},$$

$$(\Delta m_{\tilde{E}}^2)_{ij} = 0 ; L_{kl} \equiv \log\left(\frac{M_X}{M_{N_k}}\right) \delta_{kl}.$$

Mass splitting formulae

$$\frac{\Delta m_{\tilde{\ell}}}{m_{\tilde{\ell}}}(\tilde{\ell}_i, \tilde{\ell}_j) \approx \frac{1}{2m_{\tilde{\ell}}^2} \left| \frac{m_i^2 (A_0 - \mu \tan \beta)^2}{0.35M_{1/2}^2 + M_Z^2 \cos 2\beta (-1/2 + 2\sin^2 \theta_W) + (\Delta m_{\tilde{L}}^2)_{ii}} \pm 2 \left| (\Delta m_{\tilde{L}}^2)_{ij} \right| \right|,$$

$$\frac{\Delta m_{\tilde{\ell}}}{m_{\tilde{\ell}}}(\tilde{\ell}_i,\tilde{\ell}_j) \approx \left|\frac{(\Delta m_{\tilde{L}}^2)_{ij}}{(m_{\tilde{L}}^2)}\right| \,.$$

$$\frac{\Delta m_{\tilde{\ell}}}{m_{\tilde{\ell}}}(\tilde{\mu}_L, \tilde{\tau}_2) \,\approx\, \frac{1}{8\pi^2} \, \frac{L_{33} \, M_{N_3}}{v^2 \sin^2 \beta} \, \frac{3m_0^2 + A_0^2}{m_0^2 + 0.5 M_{1/2}^2} \, \left| \sum_{ij} U_{2i}^{\text{MNS}} U_{3j}^{\text{MNS}*} R_{3i}^* R_{3j} \sqrt{m_{\nu_i} m_{\nu_j}} \right| \,.$$

cMSSM parameter space for $\chi_2^0 \rightarrow \ell \ell \chi_1^0$ decays

 $m_0 - M_{1/2}$ plane (in GeV), for $A_0 = -1$ TeV and $\tan \beta = 10$ (left); the same but with $A_0 = 0$ and $\tan \beta = 40$ (right). In both figures, the shaded region on the left is excluded due to the presence of a charged LSP. The full black region corresponds to a WMAP compatible χ_1^0 relic density. Likewise, on the dashed region on the bottom, the spectrum does not fulfil the kinematical requirements described in the text: the solid regions correspond to having $m_{\chi_2^0} < m_{\tilde{\ell}_L} + 10$ GeV (cyan), $m_{\chi_2^0} < m_{\tilde{\tau}_2} + 10$ GeV (blue), $m_{\chi_2^0} < m_{\tilde{\ell}_L, \tau_2}$ (dashed blue), and $m_{\chi_2^0} < m_{\tilde{\tau}_1} + m_{\tau}$ (blue crosses). The centre (white) region denotes the parameter space obeying the "standard window" constraints. The dotted and dashed lines respectively denote isosurfaces for BR($\chi_2^0 \to \chi_1^0 \ell \ell$) and BR($\chi_2^0 \to \chi_1^0 \tau \tau$). Full red lines denote the contours of χ_2^0 production cross sections. Crosses (pink) correspond to benchmark points P3 and P4

Benchmark points: production and decay

Point	$\sigma(pp)$	$ ightarrow ilde{\chi}_2^0)$ (fb)	$\sigma(pp ightarrow ilde{\chi}^0_2 ilde{\chi}^0_2)$ (fb)		
	7 TeV	14 TeV	7 TeV	14 TeV	
P1	17.5	278.7	1.0	19.1	
P2	38.8	513.9	2.2	32.6	
P3	60.6	806.9	3.8	52.1	
P4	0.04	1.87	~ 0.00	0.13	
P5-HM1	0.57	16.50	0.02	1.24	
P6-SU1	239.0	2485.8	15.1	158.0	

$\ell_i \ell_i$	\tilde{l}_X^i	$BR(\chi_2^0 \to \tilde{l}_X^i l_i \to l_i l_i \chi_1^0) \ (\%)$						
		P1	P2	P3	P4	P5-HM1	P6-SU1	
ττ	$\sum_{\tilde{l}}$	15.2	19.2	30.2	1.7	9.4	25.6	
	$ ilde{ au}_2$	7.9	7.6	4.0	1.7	9.4	2.4	
	$ ilde{ au}_1$	7.3	11.6	26.2			23.2	
$\mu\mu$	$\sum_{\tilde{l}}$	12.6	8.7	6.1	3.1	15.2	6.5	
	$ ilde{\mu}_L$	12.2	7.3	5.8	3.0	15.1	4.6	
	$ ilde{\mu}_R$	0.4	1.4	0.3	0.1	6.5×10^{-2}	1.9	
ee	$\sum_{\tilde{l}}$	12.5	8.7	6.0	3.0	15.3	6.5	
	\tilde{e}_L	12.2	7.3	5.8	3.0	15.2	4.6	
	\tilde{e}_R	0.3	1.4	0.2	3.2×10^{-2}	5.7×10^{-2}	1.9	

(i) Production cross sections for at least one χ_2^0 , $\sigma(pp \to \tilde{\chi}_2^0)$ (in fb), and exactly two χ_2^0 , $\sigma(pp \to \tilde{\chi}_2^0 \tilde{\chi}_2^0)$ (in fb), for the benchmark points, with $\sqrt{s} = 7$ TeV and 14 TeV.

(ii) Branching ratios $BR(\chi_2^0 \to \tilde{l}_X^i l_i \to l_i l_i \chi_1^0)$ (in %) for a given di-lepton final state, isolating specific intermediate sleptons and summing over all exchanged (slepton) states.

cMSSM mass splittings: overview

Mass difference $\tilde{\mu}_L - \tilde{\tau}_2$ (normalised to the average $\tilde{\mu}_L, \tilde{\tau}_2$ masses) in the cMSSM as a function of $\tan \beta$, for different values of A_0 (from top to bottom, $A_0 = -1, 0, 1$ TeV). The subplots above each panel denote the corresponding variation of m_h . The different solid regions correspond to hard (blue, gray) or soft (red, black) leptons in the final state. Inset are bands corresponding to different regimes for $m_{\chi_2^0}$ (in TeV).

Quasi-degenerate flavour content: effective mass splitting

On the left, τ/μ flavour ratio in $\tilde{\mu}_L$ mass eigenstate as a function of M_{N_3} (in GeV). R = 1, $\theta_{13} = 0.1^{\circ}$ and take $M_{N_1} = 10^{10}$ GeV, $M_{N_2} = 10^{11}$ GeV. On the upper axis we display the values of Y_{32}^{ν} . The secondary panel illustrates $|R_{5\mu_L}^{\tilde{l}}|^2$ and $|R_{5\tau_L}^{\tilde{l}}|^2$ for the same M_{N_3} interval. On the right we depict the flavour content of the 3 heavier mass eigenstates: red - \tilde{e}_L , green - $\tilde{\mu}_L$, blue (magenta) - $\tilde{\tau}_{L(R)}$, for P5-HM1 and P6-SU1, illustrating both the cMSSM case (on the far left) and the type-I seesaw.

$$m_{i}^{(\text{eff})} \equiv \sum_{X = \tilde{\tau}_{2}, \tilde{\mu}_{L}, \tilde{e}_{L}} m_{\tilde{l}_{X}} \left(|R_{X i_{L}}^{\tilde{l}}|^{2} + |R_{X i_{R}}^{\tilde{l}}|^{2} \right) , \quad \left(\frac{\Delta m}{m} \right)^{(\text{eff})} (\tilde{l}_{i}, \tilde{l}_{j}) \equiv \frac{2 |m_{i}^{(\text{eff})} - m_{j}^{(\text{eff})}|}{m_{i}^{(\text{eff})} + m_{j}^{(\text{eff})}} .$$

Degenerate right-handed neutrinos

First (second) panel: $BR(\mu \to e\gamma)$ ($BR(\tau \to \mu\gamma)$) on the left y-axis as a function of the mass difference $\tilde{e}_L - \tilde{\mu}_L$, normalised to the average \tilde{e}_L , $\tilde{\mu}_L$ mass. We display the corresponding predictions of $CR(\mu - e, Ti)$ on the right y-axis. Leading to the scan, we set $\tan \beta = 10$, and the remaining mSUGRA parameters were randomly varied (with $|A_0| \leq 1$ TeV, satisfying the "standard window" constraint and requiring consistency with the dark matter and Higgs boson mass bounds). For the seesaw parameters we have taken R = 1, $\theta_{13} = 0.1^{\circ}$, 1° , 5° (with $\delta = \varphi_{1,2} = 0$), and $M_{N_1} = M_{N_2} = M_{N_3} = M_R$ being varied as 10^{12} GeV $\leq M_R \leq 10^{15}$ GeV. In the upper left (right) panel colour code denotes different regimes of θ_{13} (M_R). Third panel: comparison of degenerate (region with higher BR) and hierarchical (region with lower BR) spectrum. Same scan as before, but now taking only $\theta_{13} = 0.1^{\circ}$ and 10^{13} GeV $\leq M_R \leq 10^{15}$ GeV.

Flavour violating χ_2^0 decays

Flavour violating BR($\chi_2^0 \rightarrow \mu \tau \chi_1^0$) as a function of the di-lepton invariant mass $m_{\tau\mu}$ (in GeV) for the seesaw benchmark points P1''' (red), P2' (pink), P3' (blue) and P6-SU1''' (black). On the right y-axis, we also display the expected number of events for $\sqrt{s} = 7$ TeV (with $\mathcal{L} = 1$ fb⁻¹) and $\sqrt{s} = 14$ TeV (for $\mathcal{L} = 100$ fb⁻¹).