

First ATLAS searches for supersymmetry with b-tagged jets and missing transverse energy. Mark Hodgkinson

On behalf of the ATLAS Collaboration

18th International Conference on Supersymmetry and Unification of Fundamental Interactions Physikalisches Institut, Bonn, 23 - 28 August, 2010

Contents

- Motivation
- ATLAS Detectors
- Event Selection
- Systematic Uncertainties
- Results for zero-lepton mode
- Results for one-lepton modes
- Conclusions

Motivation

- In many SUSY models third generation squarks are light
- Therefore it is worthwhile for ATLAS to conduct searches for R-parity conserving SUSY signatures including decays to b-quarks
- For illustration purposes, although the analysis is in general sensitive to any signature with b-jets in the final state, we consider the SU4 point :
- $m_0 = 200 GeV, m_{1/2} = 160 GeV, A_0 = -400 GeV, tan\beta = 10, \mu > 0$
- SU4 close to Tevatron bounds

Detectors for Analyses

Topological clusters formed from energy deposits in calorimeters
AntiKt jet algorithm, size = 0.4, runs on topological clusters

Hermetic calorimeter coverage important for reconstructing Missing ET : • Coverage out to $|\eta| < 4.9$

Calorimeters and Inner Detector systems used for electron reconstruction
Muon systems and Inner Detector systems used for muon reconstruction

Electron Reconstruction

- Selected based on shower shape variables and track information.
- Reject events with electron candidate $1.37 < |\eta| < 1.52$.
- Less than 10 GeV transverse energy in cone ($\Delta R = 0.2$) around electron candidate in calorimeter
- Require $P_T > 10$ GeV and $|\eta| < 2.47$.

Muon Reconstruction

- Search for matched track in muon and inner detectors.
- Less than 10 GeV transverse energy in cone ($\Delta R = 0.2$) around muon candidate in calorimeter.
- Require $P_T > 10$ GeV and $|\eta| < 2.4$.

Jet Reconstruction

• Jet reconstruction uses topological clusters at electromagnetic (EM) scale.

• Correction is derived from Monte Carlo to take jet energy from electromagnetic scale to jet energy scale.

• Additional jet cleaning cuts are applied to remove jets due to bursts of coherent noise in the calorimeter and cosmic rays.

Missing ET (ETMiss) Reconstruction

• Calculated from all calorimeter cells, at electromagnetic scale, with $|\eta| < 4.5$.

B-Tagging

- Algorithm reconstructs secondary vertex using tracks associated with jet.
- A cut is placed on L/ σ , where L is the 3D decay length and σ is the vertex resolution.
- Efficiency varies from 40%, at low P_T , to 65%.
- Rejection of light quark jets is at level of 1-2%, and charm jets at 10-20%.
- Require candidate jets to have $P_T > 30$ GeV and also require $|\eta| < 2.5$.

Monte Carlo Datasets

- PYTHIA used for QCD multijet processes.
- ALPGEN used for W + Jets and Z + jets.
 Samples are normalised using NNLO crosssections.
- MC@NLO used for top quark samples, which are normalised to NLO+NLL crosssections.

Datasets Used and Preselection

- 305 nb⁻¹ of data used for analyses.
- Searches with zero leptons and I b-jet.
- Searches with one lepton (electron or muon, not tau) and I b-jet.

- Use lowest unprescaled jet trigger in zero lepton mode 15 GeV level-1 EM threshold.
- Use 5 GeV level-1 EM trigger and 10 GeV level-2 EM trigger for electron mode.
 Use 6 GeV level-1 Muon trigger for muon mode.

Require one primary vertex with at least 5 tracks.

Zero-Lepton Mode

Event Selection

- No lepton with $P_T > 10$ GeV.
- Leading jet $P_T > 70$ GeV, second jet $P_T > 30$ GeV (third jet $P_T > 30$ GeV).
- METSignificance > 2 GeV^{0.5}.
- At least one b-jet (L/ σ > 6 and P_T > 30 GeV).

$$METSig = \frac{E_T^{miss}}{\sqrt{\sum E_T}} \quad E_x^{miss} \equiv -\sum_{i=1}^{N_{cell}} E_i sin\theta_i cos\phi_i \quad E_y^{miss} \equiv -\sum_{i=1}^{N_{cell}} E_i sin\theta_i sin\phi_i$$

• Reduces impact on using two quantities, ETMiss and Jets, at different energy scales.

• Using METSignificance cuts out events with large sumET and moderate ETMiss - improves data and Monte Carlo agreement due to not perfectly simulating pile-up events at this time.

• METSig approximately corresponds to cutting on ETMiss > 30 GeV.

Backgrounds

	QCD	W+Jets	Z+Jets	Тор
Di-Jet, 0 Lepton	1181 ± 36	2.18 ± 0.04	0.74 ± 0.03	4.51 ± 0.02

- Uncertainty quoted is statistical only.
- QCD estimated using Monte Carlo, but normalise the rate to data control region because Pythia process is leading order.
- Normalize zero-lepton mode in region with METSig < 2 GeV^{0.5}.

Zero lepton mode, no METSig cut or b-tag requirement, after QCD normalisation.
Yellow band includes systematic uncertainties on Monte Carlo.

Systematic Uncertainties

- Vary Jet Energy Scale by 7 10%, depending on jet P_T and $|\eta|$, for jets and ETMiss. Then recalculate METSig and find affect on event yield 40%.
- 60% uncertainty on W/Z + Jets yield due to uncertainty on PDF, ISR/FSR and normalization.
- 20% uncertainty on tagging performance (see next page).
- 20% uncertainty due to METSig sensitivity to underlying event and energy of calorimeter cells not in jets.
- 11% uncertainty on luminosity on all backgrounds, except QCD.
- 1% uncertainty applied to account for in-time pile-up.

Tagging Performance Uncertainty

- Di-jet selection + METSig < 2 GeV^{0.5}.
- 10% deviation seen between data and monte carlo for L/ σ > 6.
- B-jet content doubled in signal region, compared to control region.
- Assign systematic uncertainty of 20% on tagging efficiency.

Results

- Good agreement between data and Monte Carlo after all cuts, for di-jet channel.
- Yellow band includes systematic uncertainties on Monte Carlo.

$$M_{Eff} \equiv E_T^{miss} + \sum_{i=1}^{njet} |p_T^{(i)}| + \sum_{j=1}^{nlep} |q_T^{(j)}|$$

	Data	SM Expectation	SU4
Jet P _T > (70,30) GeV	474243	$(4.7^{+2.1}_{-1.9}) \times 10^5$	9.95 ± 0.06
METSig > 2 GeV ^{0.5}	11190	$(1.1^{+0.5}_{-0.6}) \times 10^4$	8.71 ± 0.06
At least I b-tagged jet	1253	1190 ± 430	4.23 ± 0.04

Additional Zero-Lepton Di-Jet Results

15

Additional QCD Suppression

 Cutting on the azimuthal distance between the leading jets and the ETMiss vector is known to further suppress QCD backgrounds.

• Find 446 events in data compared with 410 (+150,-180) expected from the Standard Model.

One-Lepton Mode

Event Selection

- At least one lepton (electron OR muon) with $P_T > 20$ GeV.
- Leading and second jet $P_T > 30$ GeV.
- METSignificance > 2 GeV^{0.5}.
- At least one b-jet (L/ σ > 6 and P_T > 30 GeV).

Backgrounds

	QCD	W+Jets	Z+Jets	Тор
Di-Jet, I Electron	0.78 ± 0.31	1.00 ± 0.03	0.10 ± 0.01	2.95 ± 0.01
Di-Jet, I Muon	0.49 ± 0.14	1.09 ± 0.03	0.20 ± 0.01	2.93 ± 0.01

Uncertainty quoted is statistical only.

- Main background is top quark pair production.
- W+Jet, Z+Jet and top quark Monte Carlo normalised to data using theoretical cross-sections.
- QCD rate again normalised to data in control region (see next slide).

Normalisation of QCD Background

- Normalize QCD in region with METSig < 2 and require transverse mass (M_T) < 40 GeV.
- W+Jets, Z+Jets and top quark pair backgrounds estimated from Monte Carlo and subtracted from data before QCD normalization is calculated.

 M_T distributions for electron (left) and muon (right) channels after QCD normalisation. No b-tag requirement is applied.

• Total uncertainty on QCD normalization is increased from 20% to 50%.

Di-Jet Electron Channel

>	10 ³ ⊨· · · · · · · · · · · · · · · · · · ·	ELLLL
б Ю	ATLAS Preliminary Electron	channel
0	$\int dt = 305 \text{ pb}^{-1}$	(√s = 7 TeV) -
		uction
ants	W product	ion –
N N		on
ш		tion
		⁴ =
		-
		Ę
		-
	10'	1
		-
	10 ⁻² 50 100 150 200 250 200 2	
	0 50 100 150 200 250 300 3	50 400
		M _T [GeV]

	Data	SM Expectation	SU4
Jet P _T > (30,30) GeV	557	520^{+360}_{-330}	1.65 ± 0.02
METSig > 2 GeV ^{0.5}	31	39^{+28}_{-20}	1.40 ± 0.02
At least one b- tagged jet	4	$4.8^{+1.7}_{-1.5}$	0.81 ± 0.02

Di-Jet Muon Channel

	Data	SM Expectation	SU4
Jet P _T > (30,30) GeV	138	130^{+70}_{-60}	1.58 ± 0.02
METSig > 2 GeV ^{0.5}	40	37^{+28}_{-19}	1.34 ± 0.02
At least one b- tagged jet	8	$4.7^{+1.7}_{-1.5}$	0.80 ± 0.02

Conclusions

- Comparisons of a data sample of 305 nb⁻¹ with Monte Carlo samples have been presented.
- Good agreement has been seen in zero-lepton, electron and muon channels between data and Standard Model expectations.
- Using larger datasets we plan to use more refined techniques to estimate the Standard Model expectation.

BACKUP

Details of 3 b-jet Event

	Run	158975	
	Event	25441517	
	MEff (GeV)	432	
	ETMiss (GeV,Φ)	(46.1, 1.40)	
	METSig (GeV ^{0.5})	2.0	
	Jet	P _T (GeV), η (rad.), Φ (rac	l.), L/σ
	Leading Jet	182, 0.30, -1.63, 0	
Second Leading Jet		108, 1.15, 1.59, 8.3	athlas thi
Third Leading Jet		54.5, -1.08, 0.58, 19.	5
Fourth Leading Jet		42.2, -1.70, -2.8, 12.9	9
Fifth Leading Jet		21.9, -1.48, -2.34, 0	

Event with one b-tagged candidate and isolated electron candidate.

Details of One-Electron Event

Run	159179
Event	5380694
MEff (GeV)	202.3
ETMiss (GeV,Φ)	(31.3, -2.78)
METSig (GeV ^{0.5})	2.1
Electron (P _T (GeV), η (rad.), Φ (rad.), E _T in isolation cone Δ R=0.2 (GeV))	(42.3, -0.47, 1.58, 1.9)
M _T (GeV)	60.4

Details of One-Electron Event

Jet	P _T (GeV), η (rad.), Φ (rad.), L/σ
Leading Jet	56.3, 1.57, -0.33, 15.4
Second Leading Jet	39.5.2.19, -1.86, 0
Third Leading Jet	32.0, 0.72, 2.02, 0

Additional Zero-Lepton Di-Jet Results

Azimuthal angle between b-tagged jet and ETMiss vector
Ratio of ETMiss and Effective Mass
Both show good agreement between data and Monte Carlo

Additional Zero-Lepton Di-Jet Results

• All cuts, except b-tag requirement

Zero-Lepton Tri-Jet Results

Require third jet P_T > 30 GeV in addition to di-jet cuts
429 data events compared to 400 ± 160 expected
standard model events

31

Additional Results in Di-Jet Electron Channel

Good agreement seen for leading jet candidate and leading b-tagged jet candidate.

Additional Results in Di-Jet Muon Channel

Good agreement seen for leading jet candidate and leading b-tagged jet candidate.

Jet Reconstruction

- Jet reconstruction uses topological clusters at electromagnetic (EM) scale
- Correction is derived from Monte Carlo to take jet energy from electromagnetic scale to jet energy scale.

Select Good Quality Jets

• Fraction of energy in HEC (f_{HEC}) > 0.8 AND number of cells containing more than 90% of jet energy, n_{90} , < 6 - vetoes noise bursts in HEC

• Fraction of energy in HEC > I- Q, where Q is fraction of energy contained in known bad calorimeter cells - vetoes noise bursts in HEC

• Veto jets with more than 95% of energy in electromagnetic calorimeter, f_{EM} , AND quality factor, calculated from cells in EM calorimeter, > 0.8 - vetoes noise bursts in EM calorimeter

• Require jet energy-squared-weighted time to be within 50 ns of collision time - vetoes cosmic rays

Overlap Removal

- If an electron candidate and jet candidate are found within $\Delta R < 0.2$, the object is interpreted as an electron
- If a muon candidate and a jet are found within $\Delta R < 0.4$, the object is interpreted as a jet.

• If an electron candidate and a jet are found within $0.2 < \Delta R < 0.4$, the object is interpreted as a jet

Further Monte Carlo Details

- QCD Multijets Pythia 6.4.21 with ATLAS MC09 tune.
- W/Z+jets ALPGEN + CTEQ6L1 PDFs.
 Cross-section at NNLO taken from FEWZ.
- Top quarks MC@NLO + use HERWIG and JIMMY for FSR and underlying event. CTEQ6.6 NLO PDFs.
- SU4 Herwig++ and mass spectrum from ISAJET. Cross-section at NLO from prospino.