Effects of one-loop correction on the beta decay within R-parity violating MSSM

N. Yamanaka

(Osaka University)

In collaboration with T. Sato (Osaka univ.), T. Kubota (Osaka univ.) 2010/08/27 Bonn, Germany

Introduction

Many candidate of New Physics:

SUSY Left-right sym. Model , Composite Model , Extra dimension , ...

⇒ Neutron beta decay is a good probe of New Physics

General analysis of New physics in neutron beta decay P. Herczeg, Prog. Part. Nucl. Phys. 29, 413 (2001).

Loop level analysis of neutron beta decay within MSSM

M. Drees, M. Rauch, Eur. Phys. J. C**46**, 573 (2003). S. Profumo, M.J. Ramsey-Musolf, S. Tulin, Phys. Rev. D**75**, 075017 (2007).

Tree level analysis of neutron beta decay within RPVMSSM

P. Herczeg, J. Res. Natl. Inst. Stand. Technol. **110**, 453 (2005). NY, T. Sato, T. Kubota, J. Phys. G**37**, 055104 (2010).

⇒ What about analysis of neutron beta decay within RPVMSSM at the loop level?

Previous works

MSSM at loop level:

Contribute to D-correlation $D \frac{\vec{\sigma}_n \cdot \vec{p}_e \times \vec{p}_\nu}{E_e E_\nu}$ and Fierz interference term $b \frac{m_e}{E_e}$ $\Rightarrow - \begin{bmatrix} D < 10^{-7} \\ M. Drees, M. Rauch, Eur. Phys. J. C29, 573 (2003). \\ b < 10^{-3} \\ S. Profumo$ *et al.* $, Phys. Rev. D75, 075017 (2007). \end{bmatrix}$

RPVMSSM at tree level:

P. Herczeg, J. Res. Natl. Inst. Stand. Technol. **110**, 453 (2005). NY, T. Sato, T. Kubota, J. Phys. G**37**, 055104 (2010).

D correlation of the Neutron beta decay

Observable: angular correlations D correlation $\omega(E_e, \Omega_e, \Omega_\nu) \propto 1 + a \frac{\vec{p}_e \cdot \vec{p}_\nu}{E_e E_\nu} + b \frac{m_e}{E_e}$ $+\langle \vec{\sigma}_n \rangle \cdot \left(A \frac{\vec{p}_e}{F_{ee}} + B \frac{\vec{p}_{\nu}}{F_{ev}} + D \frac{\vec{p}_e \times \vec{p}_{\nu}}{F_{ee} F_{ev}} \right) + \cdots$

Properties of *D* **correlation:**

- Sensitive to CP-odd (V+A)x(V-A)
- Small CKM contribution
- FSI: O(10⁻⁵), known to 10⁻⁷

\Rightarrow Sensitive to new physics!!

⇒ Analysis of RPVMSSM at one-loop level is meaningful

Object & outline of calculation

Object:

Investigate the D correlation of the neutron beta decay within the R-parity violating minimal supersymmetric Standard Model (RPVMSSM) at one-loop level.

Outline of calculation:

R-parity violation

R-parity:
$$R = (-1)^{3B-L-2s}$$

R-parity violation \rightarrow lepton/baryon number violation

<u>RPV interactions:</u>

$$\mathcal{L} = -\frac{1}{2} \sum_{ijk} \lambda_{ijk} \left\{ \tilde{e}_{Rk}^{\dagger} \bar{\nu}_{i}^{c} P_{L} e_{j} + \tilde{e}_{Lj} \bar{e}_{k} P_{L} \nu_{i} + \tilde{\nu}_{i} \bar{e}_{k} P_{L} e_{j} + \cdots \right\} - \sum_{ijk} \lambda_{ijk}' \left\{ -\tilde{e}_{Li} \bar{d}_{k} P_{L} u_{j} + \cdots \right\} - \frac{1}{2} \sum_{ijk} \lambda_{ijk}'' \left\{ \tilde{d}_{Rk}^{\dagger} \bar{u}_{i} P_{L} d_{j}^{c} + \cdots \right\} + \text{h.c.}$$

d

u

 \tilde{e}_{L}

Yukawa interaction!!

Coupling	Current upper bounds	Sources	
λ ₁₂₁	< 0.04 [m _{eR}]	CC universality	
λ ₁₃₁	< 0.05 [m _{eR}]	au decay ratio	
λ' ₂₁₁	< 0.012 [m _{dR}]	K -> πνν decay	
λ' ₃₁₁	< 0.012 [m _{dR}]	K -> πνν decay	
λ″ ₃₁₂	< 2.1 x 10 ⁻³	nn oscillation	
λ″ ₁₂₃	(< 1.25)	RG analysis	

M. Chemtob, Prog. Part. Nucl. Phys. 54, 71 (2005).

Loop level analysis

Considerations:

- Only (V+A) x (V-A) contribute
- Diagrams with RPV couplings constrained by tree level analysis not considered

 $\bar{\nu}_e$

 \tilde{e}_{Lj}

(k1)

• Yukawa couplings with 1st & 2nd generations neglected

(a4)

Contributing diagrams

Charged Higgs contribution not enumerated

Effective interaction:

$$H_{V,A} = V_{ud} \frac{G_F}{\sqrt{2}} \bar{p} \gamma^{\mu} (g_V - g_A \gamma_5) n \, \bar{e} \gamma_{\mu} (1 - \gamma_5) \nu_e$$

$$+a_{LR}\,\bar{p}\gamma^{\mu}(g_V+g_A\gamma_5)n\,\bar{e}\gamma_{\mu}(1-\gamma_5)\nu_e$$

Exotic CP-odd (V+A)x(V-A) interaction

Nucleon matrix element:						
$\int \langle p ar{u}\gamma^{\mu}d n angle$	=	$g_V ar p \gamma^\mu n$	<i>g_v</i> = 1	(CVC)		
$\int \langle p ar{u}\gamma^{\mu}\gamma_{5}d n angle$	=	$g_A ar p \gamma^\mu \gamma_5 n$	<i>g</i> _A = 1.27	(exp. data)		

D correlation:
$$D = \frac{4g_V g_A}{g_V^2 + 3g_A^2} \frac{Im a_{LR}}{V_{ud}G_F/\sqrt{2}}$$

Result & Analysis

Result & Analysis

$$a_{LR} = \sum_{i,I} \lambda_{i11}^{\prime*} \lambda_{1i1} V_{ud} \frac{G_F}{\sqrt{2}} |Z_{-}^{1I}|^2 \frac{m_W^2}{(4\pi)^2} loop(m_{\tilde{d}_L}, m_{\chi_I}, m_{\tilde{e}})$$

$$< \sum_i \lambda_{i11}^{\prime*} \lambda_{1i1} V_{ud} \frac{G_F}{\sqrt{2}} \frac{m_W^2}{(4\pi)^2} \frac{1}{2\min(\tilde{d}_L, m_{\chi_I}, m_{\tilde{e}})}$$

For $m_{SUSY} = 100 \text{GeV}$ (degenerate), $\lambda'^*_{i11} \lambda_{1i1} = 4.8 \times 10^{-4}$, $D = O(10^{-7})$ \Rightarrow Limit to Im ($\lambda'^*_{211} \lambda_{121}$), Im ($\lambda'^*_{311} \lambda_{131}$)

Summary & Future prospects

- We have investigated the *D* correlation of the neutron beta decay at one-loop level within RPVMSSM
- RPVMSSM can contribute up to D = O(10⁻⁶) via baryon number violating interaction
- With further progress in experiment, possibility to obtain information on RPVMSSM from neutron beta decay

Future prospects:

One-loop analysis for other weak processes (EDMs, other particle decays, etc)

Backup slides: final state interaction

Final state interaction:

- Electromagnetic interaction between final state particles
- Contributes to the naïve T-odd observable (on-shell)

NLO:

D_{FSI} = O(10⁻⁵)

C. G. Callan, Jr., S. B. Treiman, Phys. Rev. 162, 1494 (1967).

NNLO: (Heavy baryon EFT)

 $D_{FSI} = (0.228(p_e^{max}/p_e)+1.083(p_e^{max})) \times 10^{-5}$

 \Rightarrow Accurate to 1%

 \Rightarrow Sensitivity of CP violating contribution to O(10⁻⁷)

S. Ando, J. McGovern, T. Sato, Phys. Lett. B677, 109 (2009).

Backup slides: loop integral

$$loop(m_1, m_2, m_3) = \frac{1}{m_1^2 - m_2^2} \left[\frac{m_1^2}{m_3^2 - m_1^2} \log \frac{m_3^2}{m_1^2} - \frac{m_2^2}{m_3^2 - m_2^2} \log \frac{m_3^2}{m_2^2} \right] \\ < \frac{1}{2\min(m_1, m_2, m_3)}$$

Limit from <u>atomic EDM</u>

$$Im \sum_{i=2,3} \lambda_{1i1} \lambda_{i11}^{\prime*} < 6 \times 10^{-6} [m_{\tilde{e}_L}]^2 \cdot \left(1 + \frac{2\pi}{\alpha} \frac{m_{\tilde{e}_{jL}}^2}{m_{\tilde{\nu}_{jL}}^2} \frac{\cos \theta_e \sin \phi_e}{\cos \theta_\nu \sin \phi_B}\right)$$

 \rightarrow loop level analysis

(Herczeg, J. Res. Natl. Ins. Sta. Tech., 110, 2005)

Sakharov's conditions:

- C & CP violations
- Baryon/lepton number violation
- Departure from equilibrium