

Early searches for supersymmetry with jets and missing transverse energy with ATLAS

<u>Renaud Brunelière</u> - Uni. Freiburg On behalf of ATLAS Collaboration

Outline

- Motivations
- MC samples
- Object selection
- Systematic uncertainties
- Event selection
- Results
- Prospects & Summary

Motivations

Production at LHC of SUSY particles dominated by squarks and gluinos.

 ✓ Look for an excess of events with high P_T jets and missing transverse momentum
✓ True for any model with

particles decaying semi-

strongly interacting

invisibly

data/MC for this topology

✓ Look at SUSY

discriminating variables

Monte Carlo samples

- QCD jet production: PYTHIA 6.4.21
 - ✓ Normalized to data in 2-jets channel (Pt(jet1)>70 GeV, Pt(jet2)>30 GeV, prior to Missing E_m cut)
 - \checkmark QCD scaling factor = 0.61
 - \checkmark Compared to ALPGEN (2->5 Matrix elements)
- W/Z+jets: ALPGEN + HERWIG + JIMMY
 - ✓ Normalized to integrated luminosity
 - \checkmark Overall W inclusive cross-section taken from NNLO
- Top: MCAtNLO + HERWIG + JIMMY
 - ✓ Normalized to integrated luminosity
 - ✓ Overall cross-section taken from approximate NNLO
- Supersymmetry: SU4 ($m_0=200 \text{ GeV}$, $m_{1/2}=160 \text{ GeV}$, $A_0=-400 \text{ GeV}$, $\tan(\beta)=10$, $\mu>0$), HERWIG++ 2.4.2
 - ✓ Normalized to integrated luminosity
 - ✓ Overall cross-section taken from NLO (prospino)
 - \checkmark x10 in all the following plots

Object selection

- <u>Jets</u>
 - Algorithm: Anti-Kt R=0.4, topological clusters as inputs
 - $P_{\pi}>20 \text{ GeV}, |\eta|<2.5$
- <u>Electrons (used to veto events)</u>
 - $P_{T} > 10 \text{ GeV}$, $|\eta| < 2.47$, excluding $1.37 < |\eta| < 1.52$
 - identification with "medium"-purity cuts
 - Calorimeter isolation $E_{\pi}(\text{cone}, \Delta R < 0.2) < 10 \text{ GeV}$
- <u>Muons (used to veto events)</u>
 - Algorithm combining inner detector and muon spectrometer tracks
 - $P_{T} > 10 \text{ GeV}, |\eta| < 2.5$
 - Calorimeter isolation E_{T} (cone, $\Delta R < 0.2$) <10 GeV
- Missing transverse energy:
 - Cells belonging to topological clusters at electromagnetic-scale

$$E_T^{miss} = \sqrt{(E_x^{miss})^2 + (E_y^{miss})^2}$$

- <u>Overlap removal</u>:
 - $\Delta R(jet, electron) < 0.2 => reject jet$
 - 0.2 < $\Delta R(jet, electron)$ < 0.4 => veto electron
 - $\Delta R(jet, muon) < 0.4 \Rightarrow$ veto muon

Event cleaning cuts

Expect a small fraction of fake jets coming from:

- Calorimeter noise
- Non-collision backgrounds: cosmic rays, beam halo muons

```
=> Reject any event with a jet satisfying:
```

- 1. Noise bursts in hadronic endcap calorimeter (HEC):
 - \checkmark n90 \leq 5 AND HECf>0.8
 - ✓ HECf≥1-|jetQuality|
- 2. Electromagnetic calorimeter (EM) noise:
 - / |jetQuality|>0.8 AND EMf>0.95
- 3. Out-of-time jets (from e.g. cosmics)

```
✓ |time|>50 ns
```

4. Cosmic ray or beam-halo muons energy deposits for monojet channel

✓ n90≤5 AND EMf<0.05

- n90 = number of cells containing 90% of the energy
- HEFf (EMf) = fraction of energy in hadronic endcap (electromagnetic) calorimeters
- jetQuality = how good calorimeter pulse shape is

Main systematic uncertainties

- K
- Jet energy scale uncertainty
 - Dominant uncertainty for this study
 - ~10% is $20 < p_T < 50 \text{ GeV}$, ~7% higher values
 - Propagated to Missing transverse momenta
 - Resulting uncertainty on N_{events}:
 - ~25% for 1 and \geq 2 jets,
 - ~40% for \geq 3 jets,
 - ~50% for \geq 4 jets.
 - Conservative estimate as of summer 2010. Will improve with more data.
- Uncertainty on the integrated luminosity
 - 11% uncertainty propagated to W,Z,top MC samples
 - Not applied to QCD dijets since data-driven
- Other systematic uncertainties are smaller

Event selection

Preselection:

- 1. Calorimeter jet trigger of the first trigger level
- 2. Jet event cleaning
- 3. ≥ 1 primary vertex with N(Tracks)>4
- 4. Reject events with an electron in crack region
- 5. Reject events with ≥ 1 isolated electron or muon

Final selection based on event topology:

N(Jets)	Monojets	≥ 2 jets	≥ 3 jets	\geq 4 jets	
Leading jet P_{T} (GeV)	> 70	> 70	> 70	> 70	
Subsequent jet $P_{_{\mathrm{T}}}$ (GeV)	Veto if > 30	> 30	> 30 (jets 2 and 3)	> 30 (jets 2 to 4)	
E_{T}^{miss} (GeV)	> 40	> 40	> 40	> 40	
$ \Delta \phi(jet, E_{T}^{miss}) $	No cut	[>0.2,>0.2]	[>0.2,>0.2,>0.2]	[>0.2,>0.2,>0.2,>0]	
$E_{T}^{miss} > f * M_{eff}$	No cut	f=0.3	f=0.25	f=0.2	
Physics	Split SUSY, VB+jets	Squark production, QCD dominant	Standard SUSY seaches, Dominated by top,W,Z		

Reminder: Effective mass = $M_{eff} = E_T^{miss} + \Sigma p_T(jet)$

Cut flow

Reminder: $L=70\pm8$ nb⁻¹

	Monojet		\geq 2 jets		\geq 3 jets		\geq 4 jets	
	Data	Monte Carlo	Data	Monte Carlo	Data	Monte Carlo	Data	Monte Carlo
After jet cuts	21227	23000^{+7000}_{-6000}	108239	108000^{+31000}_{-25000}	28 697	31000^{+10000}_{-8000}	5329	5600^{+2300}_{-1600}
$\cap E_{\mathrm{T}}^{\mathrm{miss}}$ cut	73	46^{+22}_{-14}	650	450^{+190}_{-120}	325	230^{+100}_{-70}	116	84^{+45}_{-30}
$\bigcap \Delta \phi \text{ and } E_{\mathrm{T}}^{\mathrm{miss}} \mathrm{cuts}$	-	-	280	200^{+110}_{-65}	136	100^{+55}_{-30}	54	43^{+26}_{-16}
$ \bigcap E_{\rm T}^{\rm miss}/M_{\rm eff}, \\ \Delta \phi \text{ and } E_{\rm T}^{\rm miss} \\ {\rm cuts} $	_	_	4	6.6±3	0	1.9 ± 0.9	1	1.0 ± 0.6

 $\checkmark E_{T}^{miss} > 40 \text{ GeV}$

 \checkmark Overall very good agreement between data and MC

Monojet channel

- After applying cosmics and beam halo cuts, good agreement seen
- Soon sensitive to Vector Boson(Zvv/Wtv) + Jets !

Dijet channel – QCD control sample region

Entries / 10 GeV

Reminder: MC QCD normalized to data before E_{π}^{miss}

✓ More work needed

cut

Dijet channel – SUSY mass variables

- m_{T2} = generalization of the transverse mass to pair decays
- m_{CT} = variable for pair of identical parents decaying semi-invisibly
- See backup slides for exact formula

Dijet channel – Event shape variables

- QCD, VB+jets : expect back-to-back topology
- SUSY : expect uniform events
- => Look at event shape variables transverse sphericity (S_T) and transverse thrust (T_T)

Dijet channel - Effective mass after SUSY cuts

- ~ 6.6 events expected, 4 events observed !
- QCD jet production reduced by $\Delta \phi$ and E_{T}^{miss}/M_{eff} cuts

Three jet channel

~ 1.9 events expected, 0 event observed !

Four jet channel

Entries / 10 GeV

1.0 events expected, 1 event observed ! ~

Renaud Brunelière – ATLAS Collaboration

2000

M_{eff} [GeV]

Prospects

✓ jet $P_T > [100,40,40,40]$ GeV ✓ $E_T^{miss} > 80$ GeV

 $\checkmark \Delta \phi$ (jet, E_T^{miss}) > [0.2, 0.2, 0.2]

 $\checkmark E_{T}^{miss}/M_{eff}$ cut > 0.2

24/08/2010

Summary

- Performed analysis of first 70 nb⁻¹ of integrated luminosity
- <u>First look</u> within ATLAS at events with jets and missing transverse momentum
- No significant deviations from the SM predictions observed so far
- Now concentrating on data/MC comparison, but with higher statistics, data-driven background estimations will become possible/necessary to reduce dependence on MC
- LHC collider and ATLAS detector are performing very well. Expect very soon to already improve existing exclusion limits !

MANY THANKS TO SUSY10 ORGANIZERS !!!!

- Run 158116
- Evt 5513627
- $M_{eff} = 1.5 \text{ TeV}$
- $E_{T}^{miss}=100 \text{ GeV}$
- discarded from 3jets search by $\Delta \phi(j, E_T^{miss})$ cut

BACKUP

Event shape variables

• Effective mass

$$M_{\rm Eff} \equiv \sum_{i=1}^{n} |\mathbf{p}_T^{(i)}| + E_{\rm T}^{\rm miss}$$

• Stransverse mass

$$m_{T2}\left(j^{(1)}, j^{(2)}, \not{p}_{T}\right) \equiv \min_{\not{q}_{T}^{(1)} + \not{q}_{T}^{(2)} = \vec{E}_{T}^{\text{miss}}} \left\{ \max\left(m_{T}\left(j^{(1)}, \not{q}_{T}^{(1)}\right), m_{T}\left(j^{(2)}, \not{q}_{T}^{(2)}\right)\right) \right\}$$
$$m_{T}^{2}\left(j^{(i)}, \not{q}_{T}^{(i)}\right) \equiv 2E_{T}^{(i)} |\not{q}_{T}^{(i)}| - 2\mathbf{p}_{T}^{(i)} \cdot \not{q}_{T}^{(i)}$$

• Contransverse mass

$$m_{CT}^2\left(j^{(1)}, j^{(2)}\right) \equiv 2E_T^{(1)}E_T^{(2)} + 2\mathbf{p}_T^{(1)}\cdot\mathbf{p}_T^{(2)}$$

Event shape variables

• Transverse thrust

$$T_T = \frac{\max(\sum_i |p_i \cdot n|)}{(\sum_i |p_i|)}$$

- Transverse sphericity. $\lambda_i \text{=} \text{eigenvalues}$ of \textbf{S}_{ij}

$$S_T \equiv \frac{2\lambda_2}{(\lambda_1 + \lambda_2)}$$
 $S_{ij} = \sum_k p_{ki} p^{kj}$