Aspects of Non-minimal Gauge Mediation

arXiv:1003.3155

Satoshi Shirai (University of Tokyo) shirai@hep-th.phys.s.u-tokyo.ac.jp

Collaborated with

Masahito Yamazaki (IPMU) Kazuya Yonekura (Tokyo U, IPMU)

Plan

1. Minimal and non-Minimal GMSB

2. Cosmology

3. LHC Signal

4. Summary

1. Minimal and non-Minimal GMSB

Origins of Soft Mass

Gravity Mediation

Anomaly Mediation

Gauge Mediation

- •
- •
- •

Origins of Soft Mass

Gravity Mediation

Anomaly Mediation

Feature of Gauge Mediation

No SUSY flavor problems

Gravitino LSP

Not rely on physics at the UV scale (Planck scale)

$$m_{\text{scalar}}^{2} = 2N_{\text{mess}} \left(\frac{\alpha}{4\pi}\right)^{2} \left(\frac{kF}{M_{\text{mess}}}\right)^{2} \left(1 + \mathcal{O}\left(\frac{kF}{M_{\text{mess}}^{2}}\right)\right)$$
$$m_{\text{gaugino}} = N_{\text{mess}} \left(\frac{\alpha}{4\pi}\right) \frac{kF}{M_{\text{mess}}} \left(1 + \mathcal{O}\left(\frac{kF}{M_{\text{mess}}^{2}}\right)\right)$$

 $M^2 > kF, N_{\text{mess}} = \mathcal{O}(1)$

$$m_{\text{scalar}}^{2} = 2N_{\text{mess}} \left(\frac{\alpha}{4\pi}\right)^{2} \left(\frac{kF}{M_{\text{mess}}}\right)^{2} \left(1 + \mathcal{O}\left(\frac{kF}{M_{\text{mess}}^{2}}\right)\right)$$
$$m_{\text{gaugino}} = N_{\text{mess}} \left(\frac{\alpha}{4\pi}\right) \frac{kF}{M_{\text{mess}}} \left(1 + \mathcal{O}\left(\frac{kF}{M_{\text{mess}}^{2}}\right)\right)$$

 $M^2 > kF, N_{\text{mess}} = \mathcal{O}(1)$

$m_{\rm scalar} \approx m_{\rm gaugino}$

There are two types of messengers $(d, \bar{d}), (\ell, \bar{\ell})$

 $W = k_d S d\bar{d} + M_d d\bar{d} + k_\ell S \ell \bar{\ell} + M_\ell \ell \bar{\ell}$

There are two types of messengers $(d, \bar{d}), \ (\ell, \bar{\ell})$

$$W = k_d S d\bar{d} + M_d d\bar{d} + k_\ell S \ell \bar{\ell} + M_\ell \ell \bar{\ell}$$

There are two types of messengers $(d, \overline{d}), (\ell, \overline{\ell})$

There are two types of messengers $(d, \bar{d}), (\ell, \bar{\ell})$

$$W = k_d S d\bar{d} + M_d d\bar{d} + k_\ell S \ell \bar{\ell} + M_\ell \ell \bar{\ell}$$

$$M_{1} = N_{\text{mess}} \frac{\alpha_{1}}{4\pi} \left(\frac{2}{5} \frac{k_{d}F}{M_{d}} + \frac{3}{5} \frac{k_{\ell}F}{M_{\ell}} \right)$$
$$M_{2} = N_{\text{mess}} \frac{\alpha_{2}}{4\pi} \frac{k_{\ell}F}{M_{\ell}}$$
$$M_{3} = N_{\text{mess}} \frac{\alpha_{3}}{4\pi} \frac{k_{d}F}{M_{d}}$$

$$M_{1} = N_{\text{mess}} \frac{\alpha_{1}}{4\pi} \left(\frac{2}{5} \frac{k_{d}F}{M_{d}} + \frac{3}{5} \frac{k_{\ell}F}{M_{\ell}} \right)$$
$$M_{2} = N_{\text{mess}} \frac{\alpha_{2}}{4\pi} \frac{k_{\ell}F}{M_{\ell}}$$
$$M_{3} = N_{\text{mess}} \frac{\alpha_{3}}{4\pi} \frac{k_{d}F}{M_{d}}$$

 $rac{k_d}{M_d} = rac{k_\ell}{M_\ell}$ is maintained at Messenger scale

$$M_{1} = N_{\text{mess}} \frac{\alpha_{1}}{4\pi} \left(\frac{2}{5} \frac{k_{d}F}{M_{d}} + \frac{3}{5} \frac{k_{\ell}F}{M_{\ell}} \right)$$
$$M_{2} = N_{\text{mess}} \frac{\alpha_{2}}{4\pi} \frac{k_{\ell}F}{M_{\ell}}$$
$$M_{3} = N_{\text{mess}} \frac{\alpha_{3}}{4\pi} \frac{k_{d}F}{M_{d}}$$
Same value

$$\frac{k_d}{M_d} = \frac{k_\ell}{M_\ell}$$
 is maintained at Messenger scale

GUT-relation in Minimal GMSB

$$M_{1} = N_{\text{mess}} \frac{\alpha_{1}}{4\pi} \Lambda$$

$$M_{2} = N_{\text{mess}} \frac{\alpha_{2}}{4\pi} \Lambda$$

$$\Lambda \equiv \frac{k_{d}F}{M_{d}} = \frac{k_{\ell}F}{M_{\ell}}$$

$$M_{3} = N_{\text{mess}} \frac{\alpha_{3}}{4\pi} \Lambda$$

 $M_1: M_2: M_3 \approx \alpha_1: \alpha_2: \alpha_3$

GUT relation:

 $M_1: M_2: M_3 \approx \alpha_1: \alpha_2: \alpha_3$

Non-Splitting

 $M_{\rm scalar} \approx M_{\rm gaugino}$

(SUSY breaking vacuum is not stable)

$$m_{\text{scalar}}^{2} \approx \left(\frac{\alpha}{4\pi}\right)^{2} \left(\frac{kF}{M_{\text{mess}}}\right)^{2} \left(1 + \mathcal{O}\left(\frac{kF}{M_{\text{mess}}^{2}}\right)\right)$$
$$m_{\text{gaugino}} \approx \left(\frac{\alpha}{4\pi}\right) \frac{kF}{M_{\text{mess}}} \left(1 + \mathcal{O}\left(\frac{kF}{M_{\text{mess}}^{2}}\right)\right)$$

 $M^2 > kF$

$$m_{\text{scalar}}^{2} \approx \left(\frac{\alpha}{4\pi}\right)^{2} \left(\frac{kF}{M_{\text{mess}}}\right)^{2} \left(1 + \mathcal{O}\left(\frac{kF}{M_{\text{mess}}^{2}}\right)\right)$$
$$m_{\text{gaugino}} \approx \left(\frac{\alpha}{4\pi}\right) \frac{kF}{M_{\text{mess}}} \left(+ \mathcal{O}\left(\frac{kF}{M_{\text{mess}}^{2}}\right)\right)$$

 $M^2 > kF$

$$m_{\text{scalar}}^{2} \approx \left(\frac{\alpha}{4\pi}\right)^{2} \left(\frac{kF}{M_{\text{mess}}}\right)^{2} \left(1 + \mathcal{O}\left(\frac{kF}{M_{\text{mess}}^{2}}\right)\right)$$
$$m_{\text{gaugino}} \approx \left(\frac{\alpha}{4\pi}\right) \frac{kF}{M_{\text{mess}}} \left(\mathcal{A} + \mathcal{O}\left(\frac{kF}{M_{\text{mess}}^{2}}\right)\right)$$
$$M^{2} > kF$$

• F-term gauge mediation with stable vacuum

e.g. direct GMSB

• Messengers have only mass term in superpotential e.g. semi-direct GMSB

$$m_{\text{scalar}}^{2} \approx \left(\frac{\alpha}{4\pi}\right)^{2} \left(\frac{kF}{M_{\text{mess}}}\right)^{2} \left(1 + \mathcal{O}\left(\frac{kF}{M_{\text{mess}}^{2}}\right)\right)$$
$$m_{\text{gaugino}} \approx \left(\frac{\alpha}{4\pi}\right) \frac{kF}{M_{\text{mess}}} \left(\mathbf{x} + \mathcal{O}\left(\frac{kF}{M_{\text{mess}}^{2}}\right)\right)$$
$$M^{2} > kF$$

• F-term gauge mediation with stable vacuum

e.g. direct GMSB

• Messengers have only mass term in superpotential e.g. semi-direct GMSB

Scalar and Gaugino Mass

$$m_{\text{scalar}} \approx \Lambda \left(\frac{\alpha}{4\pi}\right)$$

$$m_{\text{gaugino}} \approx \Lambda \left(\frac{\alpha}{4\pi}\right) \left(\frac{kF}{M_{\text{mess}}^2}\right)^p \qquad p > 0$$

$$M^2 > kF$$

Scalar and Gaugino Mass

$$m_{\text{scalar}} \approx \Lambda \left(\frac{\alpha}{4\pi}\right) \swarrow 1$$

$$m_{\text{gaugino}} \approx \Lambda \left(\frac{\alpha}{4\pi}\right) \left(\frac{kF}{M_{\text{mess}}^2}\right)^p \qquad p > 0$$

$$M^2 > kF$$

Scalar and Gaugino Mass

$$m_{\text{scalar}} \approx \Lambda \left(\frac{\alpha}{4\pi}\right) \swarrow 1$$

$$m_{\text{gaugino}} \approx \Lambda \left(\frac{\alpha}{4\pi}\right) \left(\frac{kF}{M_{\text{mess}}^2}\right)^p \qquad p > 0$$

$$M^2 > kF$$

Gravitino Mass

(in perturbative models)

$$m_{\text{scalar}} \approx \Lambda \left(\frac{\alpha}{4\pi}\right) \swarrow 1$$

$$m_{\text{gaugino}} \approx \Lambda \left(\frac{\alpha}{4\pi}\right) \left(\frac{kF}{M_{\text{mess}}^2}\right)^p \qquad p > 0$$

$$M^2 > kF$$
Suppression on gaugino mass
$$m_{3/2} \simeq \frac{F}{M_P} > \mathcal{O}(1 \text{ keV} - 1 \text{ MeV}) \quad \text{for} \quad m_{\text{gaugino}} = \mathcal{O}(100) \text{ GeV}$$
Gravitino Problem

Relation of Gaugino Masses

$$m_{\rm gaugino} \approx \Lambda \left(\frac{\alpha}{4\pi}\right) \left(\frac{kF}{M_{\rm mess}^2}\right)^p$$

Relation of Gaugino Masses

$$m_{\rm gaugino} \approx \Lambda \left(\frac{\alpha}{4\pi}\right) \left(\frac{kF}{M_{\rm mess}^2}\right)^p$$

Quark Messenger Contribution is Reduced
Small Gluino Mass

Violation of GUT-relation

$$M_1 = \Lambda \frac{\alpha_1}{4\pi} \left(\frac{2}{5} r^{-p} + \frac{3}{5} \right)$$

$$M_2 = \Lambda \frac{\alpha_2}{4\pi}$$

$$M_3 = \Lambda \frac{\alpha_3}{4\pi} r^{-p}$$

$$r \equiv \frac{M_d}{M_\ell} > 1$$

$$M_1 : M_2 : M_3 \approx \alpha_1 \left(\frac{2}{5} r^{-p} + \frac{3}{5} \right) : \alpha_2 : \alpha_3 r^{-p}$$

Deviation from GUT relation In some cases, the gluino becomes the lightest

Non-minimal GMSB

Mass splitting

 $M_{\rm scalar} \gg M_{\rm gaugino}$

Gravitino Mass > keV

Even if GUT respected, GUT relation violated

 $M_1: M_2: M_3 \neq \alpha_1: \alpha_2: \alpha_3$ Gluino tends to be light

Non-minimal GMSB

Mass splitting

 $M_{\rm scalar} \gg M_{\rm gaugino}$

Gravitino Mass > keV

Even if GUT respected, GUT relation violated

 $M_1: M_2: M_3 \neq \alpha_1: \alpha_2: \alpha_3$

Gluino tends to be light

Bino NLSP or Gluino NLSP is plausible
2. Cosmology

LSP gravitino, NLSP gaugino

NLSP decays into LSP

LSP gravitino, NLSP gaugino

NLSP decays into LSP

$$\tau_{\rm NLSP} \sim 0.1 \, \sec \left(\frac{m_{3/2}}{1 \,\,{\rm MeV}}\right)^2 \left(\frac{M_{\rm NLSP}}{100 \,\,{\rm GeV}}\right)^{-5}$$

$$\tilde{B} \to \gamma + \tilde{G}_{3/2}$$

$$\tilde{g} \to g + \tilde{G}_{3/2}$$

LSP gravitino, NLSP gaugino

NLSP decays into LSP

$$\tau_{\rm NLSP} \sim 0.1 \, \sec \left(\frac{m_{3/2}}{1 \,\,{\rm MeV}}\right)^2 \left(\frac{M_{\rm NLSP}}{100 \,\,{\rm GeV}}\right)^{-5}$$

NLSP Abundance

Annihilation cross section

$$\Omega h^2 \sim \mathcal{O}(1) \left(\frac{\langle \sigma v \rangle_{\text{Anni}}}{10^{-9} \text{ GeV}^{-2}} \right)^{-1}$$

Bino Abundance

$$\sigma \propto rac{M_{ ilde{B}}^2}{M_{ ilde{s}}^4}$$

$$\Omega_{\tilde{B}}h^2 \sim \mathcal{O}(10) \times \left(\frac{100 \text{ GeV}}{M_{\tilde{B}}}\right)^2 \left(\frac{M_s}{1 \text{ TeV}}\right)^4$$

Large Scalar Mass Large Bino Abundance

Gluino Abundance

$$\Omega_{\tilde{g}}h^2 \sim 10^{-3} \left(\frac{M_{\tilde{g}}}{1 \text{ TeV}}\right)^2$$

Independence on Scalar Mass

Lifetime of NLSP

Bino NLSP

 $\tau_{\rm Bino} \lesssim 0.1 \, \sec$

 $\tau_{\rm Gluino} \lesssim 1000 \, {\rm sec}$

3. LHC Signal

NLSP Decay

 $m_{3/2} > \mathcal{O}(1 \text{ keV} - 1 \text{ MeV}) \quad \tau_{\text{NLSP}} \sim 0.1 \text{ sec} \left(\frac{m_{3/2}}{1 \text{ MeV}}\right)^2 \left(\frac{M_{\text{NLSP}}}{100 \text{ GeV}}\right)^{-5}$ $c\tau_{\text{NLSP}} > \mathcal{O}(10) \text{ m} \left(\frac{M_{\text{NLSP}}}{100 \text{ GeV}}\right)^{-5}$

NLSP Decay

 $m_{3/2} > \mathcal{O}(1 \text{ keV} - 1 \text{ MeV}) \quad \tau_{\text{NLSP}} \sim 0.1 \text{ sec} \left(\frac{m_{3/2}}{1 \text{ MeV}}\right)^2 \left(\frac{M_{\text{NLSP}}}{100 \text{ GeV}}\right)^{-5}$ $\mathcal{O}(10) \text{ m} \left(\frac{M_{\text{NLSP}}}{100 \text{ GeV}}\right)^{-5}$

If $c\tau_{\rm NLSP}$ > detector size

NLSP seems to be "stable" particle

Bino NLSP

$$c\tau_{\rm NLSP} > \mathcal{O}(10) \,\,\mathrm{m} \left(\frac{M_{\rm NLSP}}{100 \,\,\mathrm{GeV}}\right)^{-5}$$

$$c\tau_{\rm Bino} \lesssim 10^7 {\rm m} \sim 0.1 {\rm sec}$$
 Cosmology

Fraction of decays occur in detector

Fraction of decays occur in detector

Fraction of decays occur in detector

Gluino NLSP

 $m_{3/2} > \mathcal{O}(1 \text{ keV} - 1 \text{ MeV})$

$$c\tau_{\rm NLSP} > \mathcal{O}(10) \,\,\mathrm{m} \left(\frac{M_{\rm NLSP}}{100 \,\,{\rm GeV}}\right)^{-5}$$

From Cosmology

 $c\tau_{\rm Gluino} \lesssim 10^{11} {\rm m} \sim 1000 {\rm sec}$

Too long to observe in-flight decay

Event Topology at the LHC

Event Topology at the LHC

Event Topology at the LHC

Stopped Gluino

Detector as stopper

For ATLAS HCAL Barrel 1440 mm Fe Endcap 1400 mm Cu

Stopped Gluino

Detector as stopper

For ATLAS HCAL Barrel 1440 mm Fe Endcap 1400 mm Cu

Stopped Gluino

Detector as stopper

 ${\widetilde{g}}$

For ATLAS HCAL Barrel 1440 mm Fe Endcap 1400 mm Cu

Observation of Late-time Decay

Gluino Production Trapped in Detector

Time

Observation of Late-time Decay

Lifetime Measurement is Possible

Summary

In non-minimal GMSB,

 $M_{\rm scalar} \gg M_{\rm gaugino}$

 $M_1: M_2: M_3 \neq \alpha_1: \alpha_2: \alpha_3$

The Gluino can be the NLSP

From cosmology, lifetime of NLSP is constrained

Decay of NLSP is observed at LHC

Example

 $R \equiv \frac{m_{\tilde{e}_R}}{M_1}$

	$m_{3/2}$	R	p
minimal	$\gtrsim 1 \text{ eV} \cdot \left(\frac{1}{N_5^2 \lambda}\right)$	$N_5^{-\frac{1}{2}}$	0
semi-direct	$\gtrsim 1 \text{ MeV} \cdot \left(\frac{10^{-4}}{hh_g^{10/3}L_V^{4/3}}\right)$	$\gtrsim 10^2 \left(\frac{hh_g L_V}{10^{-2}}\right)^{\frac{1}{2}}$	2 or 4
stable <i>F</i> -term	$\gtrsim 10^2 \text{ eV} \cdot \left(\frac{1}{n_5^2 \lambda}\right)$	$\gtrsim 10 \left(n_5^{3/4} \lambda \right)^{\frac{2}{5}}$	2

 $M_1 = 100 \text{ GeV}$

Expected Number of Decays

for $L = 1000 \text{ fb}^{-1}$

Gluino Mass[GeV]	# of Events	# of Decays
500	3×10^7	$\gtrsim 30$
750	$3 imes 10^6$	$\gtrsim 3$
1000	4×10^5	$\gtrsim 0.4$
1250	10^{5}	$\gtrsim 0.1$

Vacuum of Minimal GMSB

(Low-energy effective)

Including interaction with messengers

$$W = kS\bar{\psi}\psi + M\bar{\psi}\psi + W_{\text{SUSY}}(S) \qquad \psi \sim (d, \ell)$$
$$F = \frac{\partial W}{\partial S} = \frac{\partial W_{\text{SUSY}}(S)}{\partial S} + k\bar{\psi}\psi$$

 $\langle \bar{\psi}\psi \rangle \neq 0$ **— F-term condition** satisfied

SUSY breaking vacua is not stable

R-Hadron

Hadronic Bound State with Quarks or Gluon

Some have EM charge interaction with ordinary matter

Fractions of R-Hadrons can be trapped in Matters