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Motivation

String inflation has become a very active subject in the ,, /5,
last years. Here, inflaton finds a natural geometric
geometric interpretation in terms of open or closed

ST r. l ng mo d u I ' : Kahler inflation

(closed string inflation)

4d

- open string modulus:
(brane position/WL)

- closed string modulus (geometric moduli,
e.g. Kahler inflation)

Most slow roll inflationary scenarios in string theory consider a single
field dynamics for simplicity. Generic inflationary predictions are:

- negligible tensor modes (scalar to tensor ratio r <« 1)

- nearly Gaussian spectrum (fnL~ O)

Is single field generic? What are implications of multifield dynamics?
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Kdhler moduli cosmology

Study these questions in concrete string set-up: type IIB LARGE Volume
(LV) flux compactifications. [Balasubramanian et al. Conlon et al. '05]

Generically several moduli are involved => requires study of multifield
cosmological evolution.

Two (single field) Kahler inflationary scenarios have been studied:

- BlOW-Up Inflation [Conlon-Quevedo, '05]

- Fiber Inflation  [Cicoli-Burgess-Quevedo, '08]

Combine these two models to study multifield cosmology in LARGE
Volume framework, in a natural realisation of curvaton scenario to
generate the density perturbations in non-standard fashion
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Is it possible to obtain large non-Gausssianities??



The set up

Compactification with minimal field content: CY3 with K3 fibration controlled
by large cycles (T1, T2) fogether with 2 blow-up modes (T3, T4) such that:

i) A fiber modulus T1: plays role of curvaton. I't
is wrapped by a stack of D7-branes (visible
sector lives here), which provide potential via
loop corrections.

To > T1 > Tyqg > T3

curvaton

i Hidden D7 Hidden D7
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i) A base modulus T2: controls overall volume. /?.m, Q
It is wrapped by a stack of D7-branes (visible |[ | e

sector also here). Heavy during inflation =>
remains at minimum during cosmological
evolution.

" Visible D7
F

iii) A blow-up mode T3: assists volume stabilisation. Non-perturbative generated potential via
gaugino condensation on hidden sector D7-branes. Heavy during inflation => remains at
minimum during cosmological evolution.

iv) Second blow-up mode T4: plays the role of inflaton as in CQ. Potential generated via
gaugino condensation on hidden sector D7-branes.



Scalar potential ingredients

Volume can be written as:
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Kdhler potential (with o corrections):
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The superpotential is: W ~ W, + Aze 73 + Aye %14
a; — 27T/NZ

Regime of interest: TQ > T1 > T4 > T3

Parameters of model: (o, 7;, &, Wo, A, a;)



Scalar potential

Scalar potential before loop corrections:
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Including subleading string loop corrections to K give correction to scalar

potential of form:
s (A B c gs W2 B >0
“\7 vm 87 V2

This fixes second combination of (11, T2) at



Scalar potential

Scalar potential before loop corrections:
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Cosmological evolution

During inflationary evolution, (¢3.X2) are heavy => (V,73) sit at their minima
while x1 and ¢4 (71, 74) are light and evolve almost independently.

The potential during inflation is V (¢4, x1) = Vins(¢4) + Veur(x1)

2
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Inflaton potential: [Conlon-Quevedo '05]
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Displace field from minimum. Rolls back in inflationary way.
Slow roll conditions satisfied ¢,n < 1; N. ~ 60. But
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Curvaton mechanism 1

m2 VOt
Fiber curvaton potential: V o Veuro + —F X3
2 gs CtWO2 Mg \ /X1
"o Y T Y1073

X1 gets large quantum fluctuations: dx. ~ H,/2n

A power spectrum of curvaton isocurvature fluctuations is generated

3/9 [Lyth-Ungarelli-Wands '02]
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Curvaton isocurvature fluctuations get converted to adiabatic as
curvaton decays.

Need to compute the couplings of moduli to visible and hidden sector dof.



Curvaton mechanism 2

Nice feature: In LV stabilisation framework, these couplings can be
explicitly computed!

The strongest moduli couplings turn out to be to gauge bosons.

L X2 | ¢, ¥i=34  Decay rate of generic modulus ¢
o) i || 2 \EL 3 () to gauge bosons g.
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Focusing on decay rates to visible gauge bosons we get: (Cicoli-Mazumdar 10]
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The inflaton ¢4 decays before the curvaton X1



Non-Gaussianities from curvaton

When curvaton decays its isocurvature fluctuations get converted into
adiabatic ones whose amplitude depends on
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Imposing that this amplitude matches COBE P;/* = 4.8 x 107°
3 2W,
= constrainton ¢F =16 (5955)/2V .

Considering nongaussianities of local-form ¢ = ¢, + g Fan G2

1/3
= fap = 5 679 C2/2 g4 V2/3 o (BEWE) /

S

Note that Q2 tells how efficient the conversion is:

small Q < low efficiency < large isocurvature fluct. & large non-gauss.
large Q2 & high efficiency < small isocurvature fluct. & small non-gauss.
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Explicit examples

1) Small volume, large faL

V lag | €| g5 | Wo |a| A | 4
1 3 1 1 1 1 1 9 -
0 10 10 100 10 6 10 0
Observable by Planck!
2) Larger volume, smaller fnu
V lag | €] g5 | Wo | a | Ag | 14
1006 L 1] 110 10| <& |10 :
] 100 10

fnp ~ 57

fNL ~ 2

In both cases, scale of inflation is ~ 107 GeV



Conclusions

Generic string compactifications have several moduli. These can be
relevant for inflation and post-inflation evolution =>

Non-standard ways to generate primordial fluctuations, as e.g.
curvaton mechanism.

The LV scenario constitutes a perfect stringy-controlled framework
to study these possibilities.

Large Volume suppressed masses for different (closed string) moduli

allows for such a picture. Some fields remain light, some stay heavy,
during inflation

Couplings to hidden and visible sectors can be explicitly computed
=> explicit realisation of the curvaton scenario in string theory!

Large non-gaussianity can be generated, which may be observable
soon by PLANCK!



