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Motivation

- nearly Gaussian spectrum (fNL~ 0) 

Kahler inflation
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(open string inflation)

D!brane inflation

(closed string inflation)

String inflation has become a very active subject in the 
last years. Here, inflaton finds a natural geometric
geometric interpretation in terms of open or closed 
string moduli:

- open string modulus: D-brane inflation 
(brane position/WL)

Most slow roll inflationary scenarios in string theory consider a single 
field dynamics for simplicity. Generic inflationary predictions are:

- negligible tensor modes (scalar to tensor ratio r << 1)

Is single field generic? What are implications of multifield dynamics?

- closed string modulus (geometric moduli, 
e.g. Kähler inflation)
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Study these questions in concrete string set-up: type IIB LARGE Volume 
(LV) flux compactifications. 

Kähler moduli cosmology

[Balasubramanian et al. Conlon et al. ‘05]

Combine these two models to study multifield cosmology in LARGE 
Volume framework, in a natural realisation of curvaton scenario to 
generate the density perturbations in non-standard fashion

Two (single field) Kähler inflationary scenarios have been studied: 
 

Bulk

T1

T2

T3
inflationary

blow-up
stabilised
blow-up

stabilised cycle- Blow-up Inflation  [Conlon-Quevedo, ‘05]

- Fiber Inflation      [Cicoli-Burgess-Quevedo, ‘08]

Generically several moduli are involved => requires study of multifield 
cosmological evolution. 
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iv) Second blow-up mode τ4: plays the role of inflaton as in CQ. Potential generated via 
gaugino condensation on hidden sector D7-branes. 

The set up

V

i) A fiber modulus τ1: plays role of curvaton. It 
is wrapped by a stack of D7-branes (visible 
sector lives here), which provide potential via 
loop corrections. 

Compactification with minimal field content: CY3 with K3 fibration controlled 
by large cycles (τ1, τ2) together with 2 blow-up modes (τ3, τ4) such that: 

ii) A base modulus τ2: controls overall volume. 
It is wrapped by a stack of D7-branes (visible 
sector also here). Heavy during inflation => 
remains at minimum during cosmological 
evolution.

iii) A blow-up mode τ3: assists volume stabilisation. Non-perturbative generated potential via 
gaugino condensation on hidden sector D7-branes. Heavy during inflation => remains at 
minimum during cosmological evolution.

Brane set-up
Visible sector on the K3 fibre:

Moduli couplings:

The inflaton is !4 ! at the end of inflation !4 quanta are produced non-perturbatively

Can. norm. around the minimum:

curvaton

Hidden D7

inflaton

Hidden D7
Visible 

D7

Visible D7

Geometry cartoon [from Cicoli ‘10]

Brane set-up
Visible sector on the K3 fibre:

Moduli couplings:

The inflaton is !4 ! at the end of inflation !4 quanta are produced non-perturbatively

Can. norm. around the minimum:

curvaton

Hidden D7

inflaton

Hidden D7
Visible 

D7

Visible D7
τ1

τ2

τ3
τ4

τ2 > τ1 ! τ4 > τ3



Volume can be written as:

V = α

(√
τ1 τ2 − γ3τ

3/2

3
− γ4 τ

3/2

4

)

Scalar potential ingredients

Kähler potential (with     corrections): α
′

ξ =
(h1,2 − h1,1)ζ(3)

(2π)3
> 0

The superpotential is: W ! W0 + A3 e
−a3 T3 + A4 e

−a4 T4

τ2 > τ1 ! τ4 > τ3Regime of interest: 

K = −2 ln

[

V +
ξ

2 g
3/2
s

]

;

Parameters of model: 

ai = 2π/Ni

(α, γi, ξ,W0, Ai, ai)



Scalar potential

Scalar potential before loop corrections:

V =
gs

8π

[

3β ξ W0

4 g
3/2
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This fixes (τ3, τ4) and the volume V ! α

√
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2/3
s α J

)2/3

, 〈V〉 =

(

3α γi

4 ai Ai

)

W0

√

〈τi〉e
ai〈τi〉 , i = 3, 4

Including subleading string loop corrections to K give correction to scalar 
potential of form:
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This fixes second combination of (τ1, τ2) at

〈τ1〉 #
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B > 0
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Cosmological evolution 
During inflationary evolution,             are heavy =>           sit at their minima(V, τ3)(φ3, χ2)

are light and evolve almost independently. (τ1, τ4)χ1 φ4while      and  

Volume dependent mass 
spectrum during inflation:

H
2
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M2
p

V3

m2
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∼

M2
p

V2
,

m2
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∼
gs W 2

0

4π

M2
p

V3+n
, n > 0

v

Vinf (φ4) ! V0 −
gs W0a4A4

2π V2

(

3V
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)2/3

φ
4/3

4
exp

{

−
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a4

(

3V
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)2/3

φ
4/3

4
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volume modulus will be stable during inflation. As we obviously require ρ < 1,
it follows that at least three Kähler moduli are necessary. While (18) can always
be satisfied by an appropriate choice of ai, this becomes easier and easier with
more Kähler moduli.

We illustrate the form of the resulting inflationary potential in figure 1, show-
ing the inflaton and volume directions.

Figure 1: Inflationary potential: the inflaton lies along the x-direction and the
volume along the y-direction.

3 Inflationary Potential and Parameters

Let us now quantify the resulting potential and compute the inflationary param-
eters. The inflationary potential is read off from (13) to be

Vinf = V0 −
4τnW0anAne−anτn

V2
, (19)

as the double exponential in (13) is irrelevant during inflation. During inflation
V0 is constant and can be parametrised as

V0 =
βW 2

0

V3
. (20)

7

Text-book form! 

Inflaton potential: [Conlon-Quevedo ‘05]

Displace field from minimum. Rolls back in inflationary way. 
Slow roll conditions satisfied                                                  

m
2
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gs CtW
2
0

4π

M2
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V10/3

⇒ heavy!

ε, η ! 1 ; Ne ∼ 60.

P
inf
ζ ! P

COBE
ζ

But V = V0

(

1 − Ae
−a φ

)

V (φ4, χ1) = Vinf (φ4) + Vcur(χ1) The potential during inflation is 
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     gets large quantum fluctuations: χ1 δχ1 ∼ H!/2π

 A power spectrum of curvaton isocurvature fluctuations is generated 

Curvaton isocurvature fluctuations get converted to adiabatic as 
curvaton decays.

Need to compute the couplings of moduli to visible and hidden sector dof.

Fiber curvaton potential: 

1

!1V(   )

!

V ! Vcur,0 +
m2

χ1

2
χ2

1

Curvaton mechanism 1

m2

χ1
∼

gs CtW
2
0

4π

M2
p

V10/3

[Lyth-Ungarelli-Wands ‘02]

P
1/2

δχ1/χ1
=

H#

2πχ#
!

2 g
3/2
s Ct

πβξV1/3



Curvaton mechanism 2

Nice feature: In LV stabilisation framework, these couplings can be 
explicitly computed! 

The inflaton       decays before the curvaton 

Focusing on decay rates to visible gauge bosons we get:

Γχ1→gg =
1

4π

m3
χ1

M2
p

!
Mp

V5
, Γχ2→gg =

1

8π

m3
χ2

M2
p

!
Mp

V9/2
,

Γφj→gg =
27 (lnV)

3

2

64π

m3
φj

VM2
p

!
Mp

V4
, j = 3, 4

φ4 χ1

from which, using the definitions of A and B in eqs (2.28), (2.29), we obtain

(
CKK

1

)2 =
125 α

g2
s

CW
12

V (4.6)

As we see in the following, when discussing explicit examples, this condition is relatively
easy to satisfy. We do not have to choose unnaturally large hierarchies between the
parameters CKK

1 and CW
12 .

As studied in [46], at the end of inflation, due to the steepness of the potential, the inflaton
τ4 stops oscillating just after two or three oscillations due to an extremely efficient non-
perturbative particle production of τ4 fluctuations. Expanding the canonical normalization
(2.22) around the global minimum (τi = 〈τi〉 + τ̂i ∀i) we find [22]:11

τ̂4 ∼ O(V−1/3)χ̂1 +O(1)χ̂2 +O(V−1/2)φ̂3 +O(V1/2)φ̂4, (4.7)

realising that the Universe is mostly filled with φ̂4-particles plus some χ̂2 and fewer χ̂1 and
φ̂3-particles. Therefore the energy density of the Universe is dominated by φ̂4 whose decay
to visible d.o.f. is responsible for reheating.

The following table summarizes the moduli couplings to visible gauge bosons living on
τ1 (denoting the corresponding field strength as F (1)

µν ):

χ̂1 χ̂2 φ̂i, ∀ i = 3, 4

F (1)
µν F (1) µν 2√

3 Mp

√
2
3

1
Mp

3 (lnV)
3
4

2 ai V1/2 Mp

Table 1: Couplings between moduli and gauge bosons for a field theory on the τ1 cycle.

Because the light curvaton field mixes through its kinetic terms with both τ1 and V,
one might hope to use the χ1-dependence of couplings and masses to use the modulation
mechanism [18, 16] to generate the primordial fluctuations. Although in the present instance
the couplings do not depend on the fluctuations of χ1, the masses of the fields do. However, it
turns out that in all cases we investigated the amplitude of modulation-generated fluctuations
is too small to have interesting cosmological consequences. It is for this reason that we focus
on the curvaton mechanism in the following.

We can now derive the total decay rate of a generic modulus ϕ into gauge bosons g:

Γϕ→gg =
Ng λ2 m3

ϕ

64π
, (4.8)

11The subleading dependence on χ̂1 is introduced once string loop corrections are included.

– 18 –

Decay rate of generic modulusφ 
to gauge bosons g.
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The strongest moduli couplings turn out to be to gauge bosons.

[Cicoli-Mazumdar ‘10]



Non-Gaussianities from curvaton
When curvaton decays its isocurvature fluctuations get converted into 
adiabatic ones whose amplitude depends on 

Imposing that this amplitude matches COBE

constraint on 

Considering nongaussianities of local-form 

with: {
a = 1 for radiation dominance ⇔ Ω" 1,

a = 4/3 for curvaton dominance ⇔ Ω# 1.
(5.2)

The last equality in (5.1) substitutes the value of the various quantities in the present scenario.
The resulting expression for the power spectrum of curvature fluctuations, in the limit12 in
which Ω" 1, is [40]:

P
1
2
ζ =

2
3

ΩP
1
2
δχ1/χ1

$ 1
128π

g1/2
s (β ξ̂)2 W0

C3/2
t V

. (5.3)

Demanding this converted amplitude agree with the amplitude measured by COBE then gives
P

1
2
ζ = 4.8× 10−5, which imposes the constraint

C
3
2
t $ 50

g1/2
s (β ξ̂)2 W0

V . (5.4)

5.2 Nongaussianities

Following [40], it is not difficult to provide an estimate for the amount of nongaussianity
predicted in this scenario. We focus on nongaussianities of local form

ζ = ζG +
3
5

fNL ζ2
G , (5.5)

where ζG is a Gaussian curvature fluctuation. This Ansatz is particularly well-suited to the
present context, since there is a non-linear relation between scalar fluctuations, and curvature
perturbations produced after inflation ends. In writing eq (5.3), indeed, we implicitly express
the curvature fluctuation as a first order expansion in the fluctuation of χ1. The complete
expression, generalizing the linear order relation given in eq. (5.3), allows to exhibit the
non-linear connection between scalar and curvature fluctuations. Indeed, it reads

ζ =
Ω
3

δρχ1

ρχ1

. (5.6)

In our case, since we work with a quadratic potential, one finds that

δρχ1

ρχ1

= 2
δχ1

χ1
+

(δχ1)2

χ2
1

(5.7)

Consequently, including this second order expansion in the definition of ζ of eq. (5.6), and
comparing with the Ansatz in (5.5), one can read the following expression for fNL:

fNL =
5

4 Ω
$ 140 C5/2

t g4
s V2/3

W0 β3 ξ3
= 105

(
βξW 2

0

) 1
3

g1/6
s V

, (5.8)

12It is easy to re-express each quantity in the curvaton dominance case.
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Note that     tells how efficient the conversion is:Ω

Non-gaussianity
When the curvaton decays its isocurvature fluctuations get converted into

adiabatic perturbation whose amplitude depends on:

Need to impose that this amplitude matches COBE: 

find the constraint:

NB ! tells you how efficient the conversion is:

small ! ! low efficiency ! large isocurvature fluct. ! large non-gauss.

large ! ! high efficiency ! small isocurvature fluct. ! small non-gauss.

In fact considering non-gaussianities of local form:   

For generic choice of parameters and volume not too big 103<Vol<106  find

(even models with without fine tuning) Observable by PLANCK!

P
1/2

ζ = 4.8 × 10
−5

P1/2

ζ =
2

3
ΩP1/2

δχ1/χ1
!

√
2

576 π

(β ξ)2 W0

g
5/2
s C

3/2

t V

Ω = ρcur/ργ !

[

1

6

(

χ"

Mp

)2 (

mχ

Γχ1

)1/2
]

!

[√
2
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(β ξ)3 W0

g4
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t V2/3

]

C
3

2

t ! 16
(β ξ)2 W0

g
5/2
s V

fNL =
5

4Ω
!

679C
5/2

t g4
s V

2/3

W0 β3 ξ3
= 10

5

(

βξW 2
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)1/3
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1/6
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Explicit examples

1) Small volume, large fNL

2) Larger volume, smaller fNL

J
H
E
P
0
8
(
2
0
1
0
)
0
4
5

V a4 ξ gs W0 α A4 γ4

103 1
10

1
10

1
100

1
10 6 1

10 20

Table 2. Set of parameters with relatively small volume, considered in example 1 below.

6 Explicit set-ups

The previous sections present the conditions that our system must satisfy in order to fur-

nish a realization of a curvaton scenario. In this section, we present two representative

parameter choices that satisfy all the constraints, to get a preliminary sense of how much

observable quantities vary.

There is a simple first observation. The results of the previous sections suggest that

once volumes are too large (and so the inflationary Hubble scale becomes too low) then

it becomes difficult to obtain adequately large primordial fluctuations using the curvaton

mechanism. Indeed, eq. (5.3) cannot be satisfied for volumes that are too large without re-

quiring other parameters to acquire unnatural values. For typical values of the parameters

a curvaton scenario has a chance for volumes in the range 103 ≤ V ≤ 108. Also, eq. (5.8)

shows that very large volumes are usually associated with nongaussianities of small size.

Obtaining a large fNL is therefore easiest when choosing relatively small volumes. Be-

cause the underlying expansion is in powers of α′/$2
s ∝ 1/V1/3 we never allow ourselves to

consider volumes smaller than Vmin # 103.

6.1 First example: small volume, large fNL

Consider the choice of parameters given in table 2. This example is characterized by not-

too-large a volume, V = 103 in Planck units, and by a relatively small string coupling,

gs # 10−2. Also a4 = 1/10 corresponds to a gauge group with large rank in the non-

perturbative contribution to the inflaton superpotential. Plugging these parameters in

eqs. (3.6) and (3.8), and imposing that inflation starts when the ε parameter is of order

10−4, we find a sufficient number of e-foldings (Ne # 56). Moreover, there is a small infla-

ton contribution to the amplitude of adiabatic fluctuations (P inf
ζ # 10−2 PCOBE

ζ ). Since

the volume is relatively small, the scale of inflation is fairly high in this example. Next, the

conditions of having an acceptable size for the gauge coupling theory, discussed in section 4,

imposes the condition CW
12 = 10

(

CKK
1

)2
, which in turn implies Ct # CW

12 . The COBE

normalization condition for the curvaton fluctuations (5.4) then fixes Ct ∼ 142.

The most important feature of this model is the high level of nongaussianity it predicts:

using the previous results we find

fNL # 57 . (6.1)

This value can be slightly changed by tuning the choice of parameters, but the requirement

of satisfying all the constraints does not leave much freedom in this regard. Consequently

the order of magnitude for fNL is fairly robust in this scenario with not too large volume

(V = 103) and high rank gauge group (a4 = 1/10).
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fNL ∼ 57

J
H
E
P
0
8
(
2
0
1
0
)
0
4
5

V a4 ξ gs W0 α A4 γ4

106 1
8 1 1

100 10 10 1
10 10

Table 3. Set of parameters with large volume, considered in example 2 below.

6.2 Second example: larger volume, smaller fNL

Choosing a different set of parameters shows how the results change as the volume grows.

Consider the set of parameters listed in table 3. In this example, the volume is larger with

respect to the previous example, while the string coupling and a4 are the same. Plugging

these parameters in eqs. (3.6) and (3.8), with the same criteria of the previous example, we

find a sufficient number of e-foldings in this model (Ne ! 66) and a small contribution of the

inflaton sector to the COBE amplitude of adiabatic fluctuations (P inf
ζ ! 10−3 PCOBE

ζ ). Af-

ter requiring to have an acceptable gauge coupling, as discussed in section 4, and imposing

COBE normalization condition (5.4), we find that Ct ∼ 306. The amount of nongaussianity

in this case is small:

fNL ! 2 , (6.2)

showing that the value of fNL strongly depends on the choice of underlying parameters. Dif-

ferent models characterized by different volumes, although providing the same amplitude

for the spectrum of adiabatic fluctuations, nevertheless give very different values for fNL.

In both the previous examples, the ratio between the masses of the inflaton and the

curvaton is comparable during slow-roll inflation: the former is only few times more mas-

sive than the latter. Instead, towards the end of inflation when slow-roll conditions are

violated, the inflaton mass becomes much larger than the curvaton one. These appear to

be general features of our set-ups, and depend on parameters that are fixed by the require-

ments of having sufficient e-foldings, and the correct amplitude for the power spectrum.

As we discussed at the beginning of section 5.1, these features are compatible with the

requisites for having a succesful curvaton mechanism.

7 Conclusions

In this paper we use LARGE Volume string compactifications to construct a controlled

string-inflation model that does not use the inflaton to generate primordial fluctuations.

Because the dynamics cannot be captured by a simple single-field slow roll, it becomes

possible to generate observably large non-gaussianities. These tend to have the local form

in the model examined because they are generated well after inflation ends.

The key ingredients for any such a scenario are twofold. There must be other fields,

besides the inflaton, with masses m # H during the inflationary epoch in order to have

isocurvature fluctuations be generated over extra-Hubble distances. The second ingredient

is a mechanism for converting these isocurvature fluctuations into adiabatic fluctuations.

We find that both ingredients are possible in the LV scenario. The hierarchy of volume-

suppressed modulus masses enjoyed by this scenario allows some moduli to have masses
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fNL ∼ 2

In both cases, scale of inflation is ~ 10   GeV15

Observable by Planck!



Conclusions

Generic string compactifications have several moduli. These can be 
relevant for inflation and post-inflation evolution =>  

The LV scenario constitutes a perfect stringy-controlled framework 
to study these possibilities.

Large Volume suppressed masses for different (closed string) moduli 
allows for such a picture. Some fields remain light, some stay heavy, 
during inflation

Non-standard ways to generate primordial fluctuations, as e.g. 
curvaton mechanism. 

Large non-gaussianity can be generated, which may be observable 
soon by PLANCK!

Couplings to hidden and visible sectors can be explicitly computed
 => explicit realisation of the curvaton scenario in string theory!


