Viability of MSSM scenarios at very large tan β based on arXiv:1004.1993 [hep-ph]

David M. Straub

(in collaboration with Wolfgang Altmannshofer)

T31, Physik-Department, Technische Universität München

SUSY10 Bonn August 23, 2010

Outline

Why not very large tan β? Yukawa perturbativity FCNCs

2 Why very large tan β ?

The $B\mu$ problem of gauge mediation Uplifted SUSY

3 Numerical analysis

Perturbativity of Yukawa couplings Low energy scan Very large $\tan \beta$ in gauge mediation

4 Conclusions

Demotivation 1: perturbativity of Yukawa couplings

3rd generation fermion masses at tree level:

$$m_t = v_u y_t, \qquad m_b = v_d y_b, \qquad m_\tau = v_d y_\tau$$
(1)
$$\tan \beta = \frac{v_u}{v_d}, \qquad v_u^2 + v_d^2 = (174 \text{ GeV})^2$$

Large $\tan \beta \Rightarrow$ small $v_d \Rightarrow$ large down-type Yukawas

Using these tree-level relations,

- y_b and y_{τ} would be non-perturbative for tan $\beta \gtrsim 250$
- y_b and y_{τ} would have a Landau pole below $M_{\rm GUT}$ for tan $\beta \gtrsim 75$

Ways out:

- $\tan \beta$ enhanced threshold corrections to (1)
- Perturbativity up to M_{GUT} not strictly necessary

Demotivation 2: flavour violation

Large tan $\beta \Rightarrow$ enhanced contributions to *B* decays even for flavour-blind soft terms:

Under control if trilinear terms are small (as in gauge mediation)

Demotivation 2: flavour violation

Large tan $\beta \Rightarrow$ enhanced contributions to *B* decays even for flavour-blind soft terms:

Under control if trilinear terms are small (as in gauge mediation)

$$\frac{\mathsf{BR}(B^+ \to \tau^+ \nu)}{\mathsf{BR}(B^+ \to \tau^+ \nu)_{\mathsf{SM}}} \simeq \left(1 - \frac{m_{B^+}^2}{M_{H^+}^2} \frac{\tan^2 \beta}{(1 + \epsilon_0 t_\beta)(1 + \epsilon_\ell t_\beta)}\right)^2$$

Under control if M_{H^+} is large

Outline

Why not very large tan β? Yukawa perturbativity FCNCs

2 Why very large tan β ?

The B_{μ} problem of gauge mediation Uplifted SUSY

3 Numerical analysis

Perturbativity of Yukawa couplings Low energy scan Very large tan β in gauge mediation

4 Conclusions

Motivation 1: the $\mu/B\mu$ problem of gauge mediation

$$\mathcal{W} \supset \mu H_u H_d$$
, $\mathcal{L}_{\text{soft}} \supset -\mathbf{B}\mu H_u H_d + \text{h.c.}$

• Difficult to generate $B\mu$ of the right size in GMSB $\Rightarrow B\mu(M) = 0$ natural possibility

•
$$\tan \beta = \frac{m_A^2}{B\mu}$$
 at tree level

• Non-zero $B\mu$ generated by RG effects \Rightarrow large tan β [Dine, Nir, Shirman (1993)]

Motivation 1: the $\mu/B\mu$ problem of gauge mediation

$$\mathcal{W} \supset \mu H_u H_d$$
, $\mathcal{L}_{soft} \supset -\mathbf{B}\mu H_u H_d + h.c.$

• Difficult to generate $B\mu$ of the right size in GMSB $\Rightarrow B\mu(M) = 0$ natural possibility

•
$$\tan \beta = \frac{m_A^2}{B\mu}$$
 at tree level

• Non-zero $B\mu$ generated by RG effects \Rightarrow large tan β [Dine, Nir, Shirman (1993)]

Additional nice features:

- Soft terms are flavour blind
- Trilinear couplings are small
- Mediation scale can be quite low (perturbativity!)

Motivation 2: Uplifted SUSY

Tree-level relations between masses and Yukawas are modified by $\tan \beta$ enhanced threshold corrections:

[Hall, Rattazzi, Sarid (1993)]

$$m_{b,\tau} = y_{b,\tau} v_d + \Delta m_{b,\tau} = y_{b,\tau} (v_d + \epsilon_{b,\tau} v_u) = y_{b,\tau} v_d (1 + \epsilon_{b,\tau} \tan \beta)$$
$$\epsilon_b = \epsilon_b^{\tilde{B}} + \epsilon_b^{\tilde{W}} + \epsilon_b^{\tilde{g}} + \epsilon_b^{\tilde{H}}$$
$$\epsilon_\tau = \epsilon_b^{\tilde{B}} + \epsilon_b^{\tilde{W}}$$

"Uplifted SUSY" [Dobrescu, Fox (2010)]

For tan $\beta \gg 50$, one could have $\Delta m_{b,\tau} \gtrsim y_{b,\tau} v_d$

- Loop contribution to b/τ mass comparable to tree-level contribution
- Yukawas remain perturbative even for very large $\tan \beta$
- Can be a consequence of $B_{\mu} = 0$ at some scale

Outline

Why not very large tan β? Yukawa perturbativity FCNCs

2 Why very large tan β ?

The B_{μ} problem of gauge mediation Uplifted SUSY

3 Numerical analysis

Perturbativity of Yukawa couplings Low energy scan Very large $\tan \beta$ in gauge mediation

4 Conclusions

Yukawa RGE:

$$\frac{dy_i}{dt} = \frac{y_i}{16\pi^2} \sum_{j,k} (a_j y_j^2 - b_k g_k^2)$$

Gray contours:

The scale (10^{χ} GeV) where y_b or y_τ reach $y^{max} = \sqrt{4\pi}$, depending on their value at the TeV scale.

Yukawa RGE:

$$rac{dy_i}{dt} = rac{y_i}{16\pi^2} \; \sum_{j,k} (a_j \, y_j^2 - b_k \, g_k^2)$$

Gray contours:

The scale (10[×] GeV) where y_b or y_τ reach $y^{max} = \sqrt{4\pi}$, depending on their value at the TeV scale.

Yukawa RGE:

$$rac{dy_i}{dt} = rac{y_i}{16\pi^2} \; \sum_{j,k} (a_j \, y_j^2 - b_k \, g_k^2)$$

Gray contours:

The scale (10^X GeV) where y_b or y_τ reach $y^{\text{max}} = \sqrt{4\pi}$, depending on their value at the TeV scale.

Yukawa RGE:

$$rac{dy_i}{dt} = rac{y_i}{16\pi^2} \; \sum_{j,k} (a_j \, y_j^2 - b_k \, g_k^2)$$

Gray contours:

The scale (10[×] GeV) where y_b or y_τ reach $y^{max} = \sqrt{4\pi}$, depending on their value at the TeV scale.

Yukawa RGE:

$$\frac{dy_i}{dt} = \frac{y_i}{16\pi^2} \sum_{j,k} (a_j y_j^2 - b_k g_k^2)$$

Gray contours:

The scale (10^{χ} GeV) where y_b or y_τ reach $y^{max} = \sqrt{4\pi}$, depending on their value at the TeV scale.

Red line:

Value of $y_{b,\tau}$ at 1 TeV without threshold corrections

Yukawa RGE:

$$rac{dy_i}{dt} = rac{y_i}{16\pi^2} \; \sum_{j,k} (a_j \, y_j^2 - b_k \, g_k^2)$$

Gray contours:

The scale (10^{χ} GeV) where y_b or y_τ reach $y^{max} = \sqrt{4\pi}$, depending on their value at the TeV scale.

Red line:

Value of $y_{b,\tau}$ at 1 TeV without threshold corrections

At what scale do the Yukawas become non-perturbative \Leftrightarrow how far can the actual Yukawas deviate from the red line?

David Straub (TU München)

Low-energy parameter scan

Vary the low-energy MSSM parameters for fixed values of $\tan \beta$, assuming

- no new sources of CP violation
- flavour-blind soft terms

Scan ranges:

$$\begin{array}{ll} m_{\mathcal{Q}, U, \mathcal{D}, L, \mathcal{E}} \in [0.1, 2] \; \text{TeV}, & \mathcal{A}_{u, d, l} \in [-0.5, 0.5] \; \text{TeV}, \\ \mu \in [-2, 2] \; \text{TeV}, & \mathcal{M}_{\mathcal{A}^0} \in [0.1, 2] \; \text{TeV}, \\ \mathcal{M}_1 \in [-1, 1] \; \text{TeV}, & \mathcal{M}_2 \in [-2, 2] \; \text{TeV}, & \mathcal{M}_3 \in [0, 6] \; \text{TeV}, \end{array}$$

Numerical results: Yukawas

Threshold correction to y_{τ} $-\Delta y_{\tau}^{W} \propto \tan \beta \times \operatorname{sgn}(\mu M_{2})$ Threshold correction to y_b $\Delta v_{\tau}^{g} \propto \tan \beta \times \operatorname{sgn}(\mu M_{3})$ The muon g - 2 $\Delta a_{\mu}^{\exp} = (25.5 \pm 8.0) \times 10^{-10}$ $\Delta a_{\mu}^{\text{SUSY}} \propto \tan \beta \times \operatorname{sgn}(\mu M_2)$

Numerical results: Yukawas

Threshold correction to y_{τ} $-\Delta y_{\tau}^{W} \propto \tan \beta \times \operatorname{sgn}(\mu M_{2})$ Threshold correction to y_b $\Delta v_{\tau}^{g} \propto \tan \beta \times \operatorname{sgn}(\mu M_{3})$ The muon g - 2 $\Delta a_{\mu}^{\exp} = (25.5 \pm 8.0) \times 10^{-10}$ $\Delta a_{\mu}^{\text{SUSY}} \propto \tan \beta \times \operatorname{sgn}(\mu M_2)$

Numerical results: Yukawas

Threshold correction to y_{τ} $-\Delta v_{-}^{\widetilde{W}} \propto \tan \beta \times \operatorname{sgn}(\mu M_{2})$ Threshold correction to y_b $\Delta v_{\tau}^g \propto \tan \beta \times \operatorname{sgn}(\mu M_3)$ The muon q - 2 $\Delta a_{\mu}^{\exp} = (25.5 \pm 8.0) \times 10^{-10}$ $\Delta a_{\mu}^{\text{SUSY}} \propto \tan \beta \times \operatorname{sgn}(\mu M_2)$

Simultaneous $\Delta y_{ au} > 0$ and $\Delta y_b > 0$ strongly disfavoured by $(g-2)_{\mu}$

Threshold corrections vs. g - 2

ruled out by g-2

ruled out by g-2

Gauge mediation

- Can naturally lead to $B\mu(M) = 0$ (\Rightarrow large tan β)
- Small A terms suppress tan β enhanced FCNCs
- Low mediation scale welcome due to Yukawa Landau poles

Setup: General gauge mediation (GGM) [Meade, Seiberg, Shih (2008)]

Large class of GM models described while the soft terms are parametrized in terms of a small number of parameters

$$M_k = g_k^2 M B_k , \qquad m_f^2 = g_1^2 Y_f \zeta + \sum_k g_k^4 C_2(f,k) A_k , \qquad A_{u,d,l}^{lJ} = 0 ,$$

GGM parameter scan

- Mediation scale fixed to 100 TeV
- Gaugino masses assumed to be positive

GGM: Numerical results - Yukawa couplings

 $M = 10^5 \text{ GeV}, M_2 > 0$

 $\tan\beta =$ 100
75
50

No convergence for tan $\beta \gg$ 100: Yukawas non-perturbative at mediation scale ${\it M}$

GGM: Numerical results – $B\mu$ term

Points with $B\mu(M) = 0$ ruled out by BR $(B \rightarrow \tau \nu)$ and/or $(q-2)_{\mu}$

Conclusion

- $B\mu = 0$ at M = 100 TeV not compatible with tan $\beta \gg 50$
- $B\mu(M) = 0$ possible for M > 100 TeV, but then tan $\beta < 100$

Low-energy analysis of the MSSM with very large $\tan\beta$

- At tan $\beta = 100$ (150), Yukawas are at most perturbative up to 10^{12} (10⁶) GeV.
- $(g-2)_{\mu}$ rules out $\Delta y_b > 0$ and $\Delta y_{\tau} > 0$ at tan $\beta \gg 50$

General gauge mediation with very large $\tan\beta$

With M = 100 TeV,

- $\tan\beta \sim 100$ allowed for $\mu > 0$
- $\tan \beta \sim 150$ ruled out by perturbativity
- $B\mu(M) = 0$ ruled out by $(g 2)_{\mu}$ and $BR(B \rightarrow \tau \nu)$