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Scope of the problem:
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‘They're just finalizing the spring cleaning before the next collider season begins'



The Bayesian reasoning

Given a model with parameters 0, and data x, Bayes’ theorem is

p@1x)~ p(x10)p(0)

Posterior probability  Likelihood  Prior knowledge

of 0 given x  (contribution on the model
from data)

Appealing features:
* Very general and conceptually straightforward

 Systematic learning from data through a recursive algorithm: posterior
at a given stage becomes prior for the next.

* Coherent way to incorporate uncertainties regardless of their origin

* Given just the posterior, one can extract details such as point estimates,
credible regions, etc.

* Can rank models according to their concordance with observation.



The issue with priors

A

Defining suitable priors is a critical task!

The discrepancy among results obtained using
different priors has been viewed, by some, as
problematic. But this is a conceptual advantage
that provides a way to assess whether the data
are sufficient to make firm conclusions.

Current SUSY studies generally adopt flat priors (that assign the same
probability to every point) on the parameters. However:

* Suppose we make the transformation 6 -> 1/a. The new prior
becomes ~1/a*. Why choose the prior to be flat in 6 rather than in a?

* Flat priors can lead to pathological results.

Therefore we need a formal way to construct priors.



Reference priors - |

In 1979, J. Bernardo introduced a formal rule to construct what he
called reference priors. By construction, a reference prior contributes

as little information as possible relative to the data.

A reference prior m(8) maximizes the difference

p(0|x)

=l

Dim,p| = / p(f|z) In

between the prior n(8) and the posterior p(B8|x). D is called the
Kullback-Leibler divergence. It is a measure of the information gained

from the experiment.
But maximizing D is not quite right because it would yield a prior that
depends on the observations x!



Reference priors - ||

Reference analysis averages over all possible observations from K
repetitions of the experiment:

IK[TT] = Z Z m(I{H}) D[ﬂ?p(mlﬂ{ﬁ})]'

=0 =0

in the limit K -> o=, where

m(zk)) = fp(i“(f-:} 0) m(6)do,

K

1=1

with p(z(x)|6)

is the marginal density for K experiments.

The reference prior is the  that maximizes | [mt], in the limit K -> e=.



Reference priors - |l

For the cases where the posterior densities are asymptotically normal,
that is, become Gaussian as more data are included, the reference
prior coincides with Jeffreys’ prior:

T Likelihood

N A

Therefore, constructing reference priors for single parameter scenarios
is straightforward.

Direct generalizations to multi-parameter scenarios exist, but they are
computationally demanding. Here we propose a different way to
approach the problem that is computationally tractable.



The plan

The Idea: Construct a proper posterior density for a simple
experiment, starting with a reference prior, and map the posterior
density into the parameter space of the model under investigation.

* We use the example of a single count experiment for which the signal
and background model is well understood, and construct a reference
prior 1i(s) for the signal count s.

* Using 11(s), we obtain the posterior density p(s|n), where n is the
observed event count (background + signal).

* We use a “look-alike principle” to map the posterior density p(s|n) to
a prior t(0) on the model parameter space.
* The prior rt(B) can now be used to continue the inference chain,

recursively incorporating additional measurements x to get to the
posterior p(6 |x).



so, let’s get going

-«




Simple mSUGRA example

* We illustrate our approach by investigating the mSUGRA scenario with
* free parameters: 150 < m;, < 600 and 0 < m,;, < 1500
* fixed parameters: A; =0, tanp=10and u>0
* We use the CMS SUSY benchmark point LM1 with
m, =60, my, =250, A;=0, tanf =10, u>0
as the “true state of nature”, which will provide the observed count n.

* For LM1 and for each pointin a grid in the m,-m, ,, space, we generate
1000 7 TeV LHC events (using PYTHIA and PGS)

* We implement a multijets + missing ET selection and obtain the event
yields for the LM1 and for the grid points. For background, we get the
numbers from an existing CMS analysis.

» We quote results for 1pb™, 100pb and 500pb™.



The single count model: Construction

Jﬁ Consider a counting experiment where the signal is due to new physics:

bu: Expected background in B
b: Expected BG for B / expected BG for A
> v: Observed countin B

I region (BG) region

A [ | s: Expected signal in A
| I . .

e , , L Expected backgnl:-und in A
g | sideband | | n: Observed count in A
“ | (BG) region signal | sideband

I

|

|

B 1 A B

some variable x

The likelihood for n events is given by a Poisson distribution

s+ )" el
pinjsp) = EEI =t

r

and we factorize the associated prior (s, p), as nu(s, u) = (e |s) m(s).

We assume that ni(p|s) = m(u) (BG is independent of the signal), and
model (1) as

b(bu)¥-1/4
Iy +1/2)

b

m(p) =



4&?; The single count model: Likelihood

We marginalize the likelihood p(n|s,u) (integrate it) over L

p(n| s) ] p(n | s, 4) m(u) dp,

N ] (s+m)" _oop BOW'TE Ly,
n! 'y +1/2)

1
. b y—}-i T Sk

l"(y+%+n—1:) 1 1"
T(y+3) (n—k) [b+1 '

dye,

where v,

Likelihood is reduced to a single parameter s.
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The single count model: The prior

Now we can use the 1-parameter reference algorithm to construct the
reference prior ni(s) (Jeffreys’ prior) for the likelihood p(n|s):

prior xis)
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p(sn)

pisin) for the single count model
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posterior pis[n)
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The single count model: The posterior

= p(nls) 7(5)/ [ ol

m(s) ds.

p(sin) for the single count model
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Mapping to the SUSY space

p(s|n) is a proper density based on a reference prior, and hence is invariant under
one-to-one transformations of s.

Given s = f(8 = my, m,,), intervals 6s € R map into regions O, € © which will have
the same probability content. We then impose the look-alike condition:

“every point within @4, be assigned the same prior density.”

a
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The new Bayesian procedure is consistent in that the posterior/prior
converges to the correct subspace of the parameter space. T
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Add EW/flavor observables

We continue the inference chain by incorporating the likelihood

[c:i[mﬂ.ml;,.zj—m,‘;}‘

L(a|mg, myya) H e 207
1

for a set of EW/flavor observables |, that are BR(b -> sy}, R(BR(B -> tv)),
BR(b -> Dtv)/BR(b -> etv), Rj,5, BR(D, -> tv), BR(D, -> pv) and Ap.

Since the state of nature is LM1, we use the LM1 values for the observables along
with the measured uncertainties from current experiments.

Fostarior after EW obs.

GO0
550 Obs. count = nfLM1)
500 L=1pb"
8 400
= 350
E

Em‘ :
| S, =,

i d |JJ_-JI.JJ_ L
9% 200 400 600 SO0 1000 1200 1400 9% 200 400 600 800 1000 1200 1400 200 400 600 800 1000 1200 1400
m, [GeV] m, [GeV] m, [GeV]




Summary and outlook

* We proposed a way to construct multi-dimensional priors from the
posterior density for a simple experiment. The key idea is to start with

a reference prior, and map the posterior density into the parameter
space of the model under investigation.

* The single count model we used for building the reference prior can
be replaced by any for which the signal and background modeling is
well-understood.

* Reference analysis provides a procedure for ranking models (i.e.,
hypothesis testing), parameter estimation, etc.

* Work is in progress to use Tevatron results to construct priors suitable
for analyses at the LHC.

* We need to find observables that will break the degeneracy in the
look-alike regions.






