Stability of Scalar Fields in Warped Extra Dimensions

Mert Aybat

Nikhef, Amsterdam

SUSY 2010 - 27 August

in collaboration with Damien George, arXiv:1006.2827

Compact extra dimensions

Models with compact extra dimensions offer new ways of understanding the stability of electroweak scale against ultraviolet physics. metric warp factor -ve -ve soft +vesoft +ve brane brane brane wall brane wall **RS Hard Wall RS Soft Wall** Randall and Sundrum '99 Karch, Katz, Son and Stephanov '06

- Original soft-wall motivation: AdS/QCD and linear Regge trajectories
- Now exist early BSM models

Batell and Gherghetta '08, Falkowski and Perez-Victoria '08, Batell, Gherghetta and Sword '08 Cabrer, von Gersdorff and Quiros '09, MA and Santiago '09

Branes: you don't need them!

Why interesting ? — Purely field theoretical construction and requires no appeal to string theory.

General set-up; background configuration

General framework: N scalar fields coupled to gravity;

$$\begin{split} \mathcal{S} &= \int d^4 x \, dy \left[\sqrt{-g} \left(M^3 R + \mathcal{L}_{\text{matter}} \right) \right] \\ \text{with} \qquad \mathcal{L}_{\text{matter}} = -\frac{1}{2} \sum_i g^{MN} \partial_M \Phi_i \partial_N \Phi_i - V \left(\{ \Phi_i \} \right) \end{split}$$

Background ansatz: $ds^2 = e^{-2\sigma(y)}\eta_{\mu\nu}dx^{\mu}dx^{\nu} + dy^2$, $\Phi_i(x^{\mu}, y) = \phi_i(y)$.

Background fields σ and $\phi_i(y)$ are solutions of Einstein's and Euler-Lagrange equations.

We specialize to potentials generated using the superpotential approach!

Superpotential approach

Construct a superpotential W such that the original potential is given by

$$V\left(\{\Phi_i\}\right) = \sum_i \frac{1}{2} \left(\frac{\partial W(\{\Phi_i\})}{\partial \Phi_i}\right)^2 - \frac{1}{3M^3} \left(W(\{\Phi_i\})\right)^2$$

DeWolfe, Freedman, Gubser and Karch '00 Freedman, Nunez, Schnabl and Skenderis '04

Restricts potentials since not all potentials can be generated this way!

For a generic W solutions to Einstein's and Euler-Lagrange equations are given by

$$\sigma' = \frac{1}{3M^3} W(\{\phi_i\})$$

$$\phi'_i = \frac{\partial W(\{\phi_i\})}{\partial \phi_i}$$

- Set of first order differential equations
- Can take $\sigma(y_0) = 0$ without loss of generality
- Have N integration constants : set of values $\{\phi_i(y_0)\}$

 $\{W, \phi_i(y_0)\}$ uniquely define a configuration. Is it stable ??

Spin-0 and spin-2 perturbations described by:

 $ds^{2} = e^{-2\sigma} \left[\left(1 - 2F(x^{\mu}, y)\eta_{\mu\nu} + h_{\mu\nu}(x^{\mu}, y) \right) dx^{\mu} dx^{\nu} + \left[1 + 4F(x^{\mu}, y) \right] dy^{2}, \\ \Phi_{i}(x^{\mu}, y) = \phi_{i}(y) + \varphi_{i}(x^{\mu}, y) .$

Spin-2: $h_{\mu\nu}$ decouples from F and φ_i . Is non-tachyonic. Has a zero mode (4D graviton). Known RS2 result.

Spin-0: Non-trivial. Physical modes are mixtures of F and φ_i .

Systems with one scalar field were shown to be stable without any tachyonic or zero modes! DeWolfe, Freedman, Gubser and Karch '00

We want: generalization to N>1 scalar fields.

EF

Scalar perturbations for arbitrary N

For spin-0 the equations to solve are

$$6M^{3}(F' - 2\sigma'F) = \phi'_{i}\varphi_{i}$$

$$6M^{3}(-e^{2\sigma}\Box F - 2\sigma'F' + F'') = 2\phi_{i}\varphi'_{i}$$

$$e^{2\sigma}\Box\varphi_{i} + \varphi''_{i} - 4\sigma'\varphi'_{i} - 6\phi'_{i}F' - 4V_{i}F - V_{ij}\varphi_{j} = 0$$

We can do it! Go to conformal coordinates $(dy = e^{-\sigma}dz)$, rescale fields: $F(y) = \frac{1}{\sqrt{12}}e^{3\sigma/2}\chi(z(y))$, $\varphi_i(y) = M^{3/2}e^{3\sigma/2}\psi_i(z(y))$.

For a generic potential V we then can write the above equations as

$$-\begin{pmatrix} \boldsymbol{\chi} \\ \boldsymbol{\psi_i} \end{pmatrix}'' + \begin{pmatrix} \mathcal{V}_{00} & \mathcal{V}_{0j} \\ \mathcal{V}_{0i} & \mathcal{V}_{ij} \end{pmatrix} \begin{pmatrix} \boldsymbol{\chi} \\ \boldsymbol{\psi_j} \end{pmatrix} = \Box \begin{pmatrix} \boldsymbol{\chi} \\ \boldsymbol{\psi_i} \end{pmatrix}$$

Superpotential approach is powerful !

Using superpotential approach we find that $\mathcal{V} = \mathcal{S}^2 + \mathcal{S}'$

$$\mathcal{S} = e^{-\sigma} \begin{pmatrix} \frac{1}{12M^3} W & \frac{1}{\sqrt{3M^3}} \frac{\partial W}{\partial \Phi_j} \\ \frac{1}{\sqrt{3M^3}} \frac{\partial W}{\partial \Phi_i} & -\frac{1}{4M^3} \frac{\partial_i W}{\partial \phi_i W} + \frac{\partial W}{\partial \Phi_i \partial \Phi_j} \end{pmatrix} \Big|_{\text{bg}}$$

Write $\Psi = (\chi, \psi_i)^T$. Perturbations obey $(\partial_z + S)(-\partial_z + S)\Psi = \Box \Psi$. Fourier transform on x^{μ} , multiply by Ψ^{\dagger} on left and integrate:

$$\int |(-\partial_z + \mathcal{S})\Psi|^2 dz + (\text{boundary terms}) = E \int |\Psi|^2 dz$$

Boundary terms vanish for warped metric. We find $E \ge 0$.

What about E = 0? Such modes can correspond to changes in the size of the compact extra dimension.

NI

N>1 and the zero-mode criterion

System with N=I is well understood and there does not exist a zero-mode in the spin-0 sector. For N>I there may or may not be a zero mode! DeWolfe, Freedman, Gubser and Karch '00

Criteria: For a system of definite parity with N scalar fields that couple to gravity, the number of independent normalisable zero modes is at most equal to the number of fields whose background solutions are even.

Proof: If a zero mode exists, adding it to the background takes you to another background, generated using the same superpotential but with different integration constants.

Zero modes \longleftrightarrow available integration constants No integration constants \longrightarrow no zero modes

Look at some examples with N=2 scalar fields.

Example: N=2 unstable system

 Φ_1 even, Φ_2 odd, σ even Superpotential: $W(\Phi_1, \Phi_2) = e^{\nu \Phi_1} \left(a \Phi_2 - b \Phi_2^3 \right)$

choice of integration constant

zero mode integration constant

size of extra dimension is not fixed

 $(\nu = 1.4, a = 0.5, b = 0.3)$

For this case, we have found the explicit solution for the zero mode.

Example: N=2 stable system

 Φ_1 odd, Φ_2 odd, σ even

Superpotential: $W(\Phi_1, \Phi_2) = \alpha \sinh(\nu \Phi_1) + (a\Phi_2 - b\Phi_2^3)$

- no integration constants to choose
- background solution is unique
- no normalizable zero modes
- size of extra dimension is fixed by parameters in W

 $(\alpha = 1, \nu = 1.4, a = 0.5, b = 0.3)$

An example of a domain-wall model with a soft-wall that stabilizes the size of the extra dimension.

SUSY 2010 S.M.Aybat

Summary and outlook

Dynamic branes not necessary!

We can have a stable compact extra dimension

- Soft wall at the edge of the space; replaces negative tension brane
- Domain wall at the origin; replaces positive tension brane
- Additional scalar (dilaton) cuts off space

Using superpotential approach, need definite parity and all scalars must be odd to eliminate zero modes!

Technical questions:

- No superpotential: Can we have even fields?
- No definite parity: Are there zero modes?

Other interesting questions:

- Can we solve the hierarchy problem?
- Can we construct a realistic BSM model?