SOMMERFELD AND SUDAKOV CORRECTIONS IN HEAVY NEUTRALINO ANNIHILATION

Guillaume CHALONS

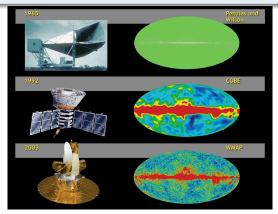
in collaboration with N. Baro, F. Boudjema, Sun Hao

August, 26th, 2010

ERA OF PRECISION MEASUREMENTS

RELIC DENSITY OF DARK MATTER

- WMAP : $0.0997 < \Omega_{DM} h^2 < 0.1221$ (10% precision)
- PLANCK : 2% precision



PRECISION MEASUREMENTS

CHALONS Guillaume

COSMOLOGY AND PARTICLE PHYSICS

RELIC DENSITY IN THE STANDARD SCENARIO

 $\Omega_{DM} h^2 \simeq rac{3 imes 10^{-27} cm^3 s^{-1}}{\langle \sigma(\chi\chi o SM) v
angle}$

RELIC DENSITY IN THE STANDARD SCENARIO

$$\Omega_{DM} h^2 \simeq rac{3 imes 10^{-27} cm^3 s^{-1}}{\langle \sigma(\chi\chi o SM) v
angle}$$

PRECISION

- Need for precise theoretical predictions w.r.t experimental measurements.
- Precision needed at the level of $\sigma \Rightarrow$ One-loop calculations (at least).
- If SUSY found \Rightarrow Reconstruction of fundamental underlying parameters.
- Radiative corrections must be under control to be able to constrain the cosmological underlying scenario.

SOME PREVIOUS WORK AT 1-L IN SUSY

EW + QCD corrections

- $ilde{\chi}_1^0 ilde{\chi}_1^0 o \gamma\gamma, Z\gamma, gg$: Boudjema, Semenov, Temes, Phys. Rev. D72, 055024 (2005)
- $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow ZZ, W^+W^-$: Baro,Boudjema,Semenov, Phys. Lett. B660 (2008) 550 Baro,Boudjema, G.C., Sun Hao, Phys. Rev. D81 (2008) 015005
- $ilde\chi_1^0 ilde\chi_1^0 o au^+ au^-, bar b$: Baro,Boudjema,Semenov, Phys. Lett B660 (2008) 550
- Co-annihilation with $\tilde{ au}$: Baro,Boudjema,Semenov, Phys. Lett B660 (2008) 550,

QCD corrections

- Co-annihilation with \tilde{t} Freitas Phys. Lett. **B652** (2007) 280
- Annihilation into massive quarks Hermann, Klasen, Kovarik Phys. Rev. D79 (2009)

Herrmann, Klasen, Phys. Rev. D76 (2007) 117704

Herrmann, Klasen and Kovarik, Phys. Rev. D80 (2009) 085025

• At tree-level we have for $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to WW$ 7 diagrams.

• Relic density predictions involve many annihilation (and coannihilation) channels.

- At tree-level we have for $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to WW$ 7 diagrams.
- Relic density predictions involve many annihilation (and coannihilation) channels.

Some efficient tree-level codes already exist for relic density calculations :

- DarkSUSY [Bergström et al. (2004)]
- micrOMEGAs [Bélanger, Boudjema, Pukhov, Semenov (2002)]
- Mainly $2 \rightarrow 2$ processes are taken into account in the computation.

- At tree-level we have for $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow WW$ 7 diagrams.
- Relic density predictions involve many annihilation (and coannihilation) channels.

Some efficient tree-level codes already exist for relic density calculations :

- DarkSUSY [Bergström et al. (2004)]
- micrOMEGAs [Bélanger, Boudjema, Pukhov, Semenov (2002)]
- Mainly $2 \rightarrow 2$ processes are taken into account in the computation.

At one-loop we have \simeq 7000 diagrams

- At tree-level we have for $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow WW$ 7 diagrams.
- Relic density predictions involve many annihilation (and coannihilation) channels.

Some efficient tree-level codes already exist for relic density calculations :

- DarkSUSY [Bergström et al. (2004)]
- micrOMEGAs [Bélanger, Boudjema, Pukhov, Semenov (2002)]
- Mainly $2 \rightarrow 2$ processes are taken into account in the computation.

At one-loop we have \simeq 7000 diagrams

- At tree-level we have for $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow WW$ 7 diagrams.
- Relic density predictions involve many annihilation (and coannihilation) channels.

Some efficient tree-level codes already exist for relic density calculations :

- DarkSUSY [Bergström et al. (2004)]
- micrOMEGAs [Bélanger, Boudjema, Pukhov, Semenov (2002)]
- Mainly $2 \rightarrow 2$ processes are taken into account in the computation.

At one-loop we have \simeq 7000 diagrams

Then for an accurate and reliable relic density prediction at one-loop order we need :

 \rightarrow A coherent renormalisation scheme and a choice of input parameters.

- At tree-level we have for $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow WW$ 7 diagrams.
- Relic density predictions involve many annihilation (and coannihilation) channels.

Some efficient tree-level codes already exist for relic density calculations :

- DarkSUSY [Bergström et al. (2004)]
- micrOMEGAs [Bélanger, Boudjema, Pukhov, Semenov (2002)]
- Mainly $2 \rightarrow 2$ processes are taken into account in the computation.

At one-loop we have \simeq 7000 diagrams

- \rightarrow A coherent renormalisation scheme and a choice of input parameters.
- $\rightarrow\,$ To generate counter-terms, for SUSY gigantic task.

- At tree-level we have for $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow WW$ 7 diagrams.
- Relic density predictions involve many annihilation (and coannihilation) channels.

Some efficient tree-level codes already exist for relic density calculations :

- DarkSUSY [Bergström et al. (2004)]
- micrOMEGAs [Bélanger, Boudjema, Pukhov, Semenov (2002)]
- Mainly $2 \rightarrow 2$ processes are taken into account in the computation.

At one-loop we have \simeq 7000 diagrams

- \rightarrow A coherent renormalisation scheme and a choice of input parameters.
- $\rightarrow\,$ To generate counter-terms, for SUSY gigantic task.
- \rightarrow To compute a huge amount of loop diagrams.

- At tree-level we have for $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow WW$ 7 diagrams.
- Relic density predictions involve many annihilation (and coannihilation) channels.

Some efficient tree-level codes already exist for relic density calculations :

- DarkSUSY [Bergström et al. (2004)]
- micrOMEGAs [Bélanger, Boudjema, Pukhov, Semenov (2002)]
- Mainly $2 \rightarrow 2$ processes are taken into account in the computation.

At one-loop we have \simeq 7000 diagrams

- $\rightarrow\,$ A coherent renormalisation scheme and a choice of input parameters.
- $\rightarrow\,$ To generate counter-terms, for SUSY gigantic task.
- \rightarrow To compute a huge amount of loop diagrams.
- \rightarrow Loop Integrals library to handle Gram determinant when $v \rightarrow 0$.

- At tree-level we have for $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow WW$ 7 diagrams.
- Relic density predictions involve many annihilation (and coannihilation) channels.

Some efficient tree-level codes already exist for relic density calculations :

- DarkSUSY [Bergström et al. (2004)]
- micrOMEGAs [Bélanger, Boudjema, Pukhov, Semenov (2002)]
- Mainly $2 \rightarrow 2$ processes are taken into account in the computation.

At one-loop we have \simeq 7000 diagrams

- $\rightarrow\,$ A coherent renormalisation scheme and a choice of input parameters.
- $\rightarrow\,$ To generate counter-terms, for SUSY gigantic task.
- \rightarrow To compute a huge amount of loop diagrams.
- \rightarrow Loop Integrals library to handle Gram determinant when $\nu \rightarrow 0$.
- \rightarrow To deal with IR and collinear divergencies \rightarrow include bremsstrahlung.

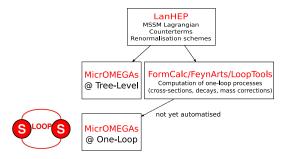
- At tree-level we have for $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow WW$ 7 diagrams.
- Relic density predictions involve many annihilation (and coannihilation) channels.

Some efficient tree-level codes already exist for relic density calculations :

- DarkSUSY [Bergström et al. (2004)]
- micrOMEGAs [Bélanger, Boudjema, Pukhov, Semenov (2002)]
- Mainly $2 \rightarrow 2$ processes are taken into account in the computation.

At one-loop we have \simeq 7000 diagrams

- \rightarrow A coherent renormalisation scheme and a choice of input parameters.
- $\rightarrow\,$ To generate counter-terms, for SUSY gigantic task.
- \rightarrow To compute a huge amount of loop diagrams.
- \rightarrow Loop Integrals library to handle Gram determinant when $v \rightarrow 0$.
- \rightarrow To deal with IR and collinear divergencies \rightarrow include bremsstrahlung.
- \rightarrow To evaluate many processes entering $\langle \sigma v \rangle$.



- Evaluation of one-loop diagrams including a complete and coherent renormalisation of each sector of the MSSM with an OS scheme.
- Modularity between different renormalisation schemes.
- Non-linear gauge fixing.
- Handles a large number of Feynman diagrams.
- Checks : results UV, IR finite and gauge independent.

http://code.sloops.free.fr/

CHALONS Guillaume

FERMION + GAUGE SECTOR

Input parameters as in the Standard Model $M_f, \alpha(0), M_W, M_Z$

FERMION + GAUGE SECTOR

Input parameters as in the Standard Model $| m_f, \alpha(0), M_W, M_Z$

HIGGS SECTOR

Input parameters : /

$$M_{A0}, t_{\beta} = v_2/v$$

Several definitions for δt_{β} :

• \overline{DR} : δt_{β} is a pure divergence

FERMION + GAUGE SECTOR

Input parameters as in the Standard Model $M_f, \alpha(0), M_W, M_Z$

HIGGS SECTOR

Input parameters : $M_{A^0}, t_{eta} = v_2/v_1$. Several definitions for δt_{eta} :

- \overline{DR} : δt_{β} is a pure divergence
- MH : δt_{β} is defined from the measurement of the mass m_H

FERMION + GAUGE SECTOR

Input parameters as in the Standard Model $|m_f, \alpha(0), M_W, M_Z|$

HIGGS SECTOR

Input parameters : $M_{A^0}, t_eta = v_2/v_1$. Several definitions for δt_eta :

- \overline{DR} : δt_{β} is a pure divergence
- MH : δt_{β} is defined from the measurement of the mass m_H
- $A^0 \tau \tau : \delta t_\beta$ is defined from the decay $A^0 \to \tau^+ \tau^-$ (vertex $\propto m_\tau t_\beta$)

FERMION + GAUGE SECTOR

Input parameters as in the Standard Model $m_f, \alpha(0), M_W, M_Z$

HIGGS SECTOR

Input parameters : M

$$_{\mathcal{A}^0}, t_eta = v_2/v_1$$

. Several definitions for δt_{β} :

- \overline{DR} : δt_{β} is a pure divergence
- $MH : \delta t_{\beta}$ is defined from the measurement of the mass m_H
- $A^0 \tau \tau : \delta t_\beta$ is defined from the decay $A^0 \to \tau^+ \tau^-$ (vertex $\propto m_\tau t_\beta$)

FERMION + GAUGE SECTOR

Input parameters as in the Standard Model $m_f, \alpha(0), M_W, M_Z$

HIGGS SECTOR

Input parameters : M_{A^0}, t_0

$$_{\mathsf{A}^0}, t_\beta = \mathsf{v}_2/\mathsf{v}_1$$

•
$$\overline{\textit{DR}}$$
 : δt_{eta} is a pure divergence

- $MH : \delta t_{\beta}$ is defined from the measurement of the mass m_H
- $A^0 au au$: δt_β is defined from the decay $A^0 \to au^+ au^-$ (vertex $\propto m_\tau t_\beta$)

SFERMIONS SECTOR

Input parameters : 3 sfermions masses $m_{ ilde{d}_1}, m_{ ilde{d}_2}, m_{ ilde{u}_1}$ and 2 conditions for $A_{u,d}$

Several definitions for δt_{β} :

FERMION + GAUGE SECTOR

Input parameters as in the Standard Model $m_f, \alpha(0), M_W, M_Z$

HIGGS SECTOR

Input parameters : $M_{A^0}, t_eta = v_2/v_1$. Several definitions for δt_eta :

•
$$\overline{DR}$$
 : δt_{β} is a pure divergence

• $MH : \delta t_{\beta}$ is defined from the measurement of the mass m_H

$$A^0 au au$$
 : δt_eta is defined from the decay $A^0 o au^+ au^-(vertex\propto m_ au t_eta)$

SFERMIONS SECTOR

Input parameters : 3 sfermions masses $m_{\tilde{d}_1}, m_{\tilde{d}_2}, m_{\tilde{u}_1}$ and 2 conditions for $A_{u,d}$

NEUTRALINOS/CHARGINOS SECTOR

Input parameters : 2 charginos $m_{\tilde{\chi}_1^{\pm}}, m_{\tilde{\chi}_2^{\pm}}$ and 1 neutralino $\tilde{\chi}_1^0$

COSMOLOGY (MicrOmegas)

THERMAL RELIC DENSITY

• Solve the Boltzmann equation

$$dn/dt = -3Hn - \langle \sigma v \rangle (n^2 - n_{eq}^2)$$

Processes with gauge boson production are the most difficult because gauge invariance plays a dominant role.

CHALONS Guillaume

COSMOLOGY (MicrOmegas)

THERMAL RELIC DENSITY

- Solve the Boltzmann equation
- Thermal average (MB approx.)

$$\langle \sigma v \rangle \propto \int_0^\infty (\sigma v) v^2 e^{-xv^2/4} \, dv$$

Processes with gauge boson production are the most difficult because gauge invariance plays a dominant role.

CHALONS Guillaume

COSMOLOGY (MicrOmegas)

THERMAL RELIC DENSITY

- Solve the Boltzmann equation
- Thermal average (MB approx.)

PARTICLE PHYSICS (SloopS)

GAUGE BOSON PRODUCTION

- SU(2)_L type couplings
- Channels contributions > 5% to Ωh² at TL corrected at one-loop
- Coannihilation channels
- Large number of diagrams to compute

Processes with gauge boson production are the most difficult because gauge invariance plays a dominant role.

CHALONS Guillaume

COSMOLOGY (MicrOmegas)

THERMAL RELIC DENSITY

- Solve the Boltzmann equation
- Thermal average (MB approx.)

PARTICLE PHYSICS (SloopS)

GAUGE BOSON PRODUCTION

- SU(2)_L type couplings
- Channels contributions > 5% to Ωh² at TL corrected at one-loop
- Coannihilation channels
- Large number of diagrams to compute

 $ilde{\chi}^0_1 ilde{\chi}^\pm_1 W^\pm$ and $ilde{\chi}^\pm_1 ilde{\chi}^\pm_1 Z^0$ vertices

 $\alpha(\mathbf{0}) \rightarrow \alpha(M_Z^2)$: 13% corrections absorbed.

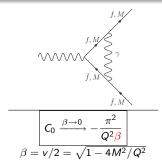
Also $q\bar{q}'$ production \rightarrow QCD corrections

Processes with gauge boson production are the most difficult because gauge invariance plays a dominant role.

• Singularities arise in scalar triangle C_0 and box D_0 loop integrals when $\beta \rightarrow 0$.

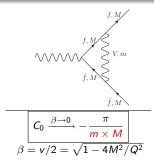
SINGULARITIES IN LOOPS

• Singularities arise in scalar triangle C_0 and box D_0 loop integrals when $\beta \rightarrow 0$.



SINGULARITIES IN LOOPS

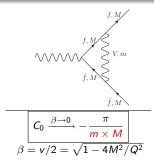
• Singularities arise in scalar triangle C_0 and box D_0 loop integrals when $\beta \rightarrow 0$.



- If two heavy masses M and one internal mass very small $m \ll M$
- See also study of these integrals in the non-relativistic limit with application to the relic density [Drees, Kim, Nagao Phys. Rev. D81 (2010) 105004] and Kim's talk

SINGULARITIES IN LOOPS

• Singularities arise in scalar triangle C_0 and box D_0 loop integrals when $\beta \rightarrow 0$.



- If two heavy masses M and one internal mass very small $m \ll M$
- See also study of these integrals in the non-relativistic limit with application to the relic density [Drees, Kim, Nagao Phys. Rev. D81 (2010) 105004] and Kim's talk

Results in numerical instabilities (vanishing Gram determinant). Avoided using Segmentation of the loop integrals. [Boudjema-Semenov-Temes (2005)]. Idea : split 4 pt function \rightarrow 3 pt function when $\beta \rightarrow 0$.

Parameter	M_1	M_2	μ	t_{eta}	M_3	$M_{\tilde{L},\tilde{Q}}$	A_i	M_{A^0}	
Value(GeV)								5000	
$ ilde{\chi}^0_1 = 0.000 ilde{B} - 0.999 ilde{W} + 0.004 ilde{H}^0_1 + 0.032 ilde{H}^0_2$									

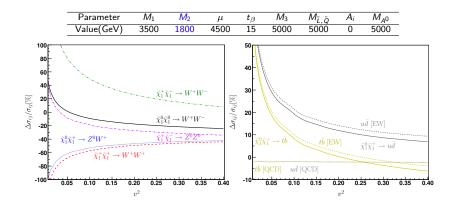
		Tree
$ ilde{\chi}_1^0 ilde{\chi}_1^0 o W^+ W^-$ [10%]	а	+2.43
	Ь	+0.52
$\tilde{\chi}_1^+ \tilde{\chi}_1^+ \to W^+ W^+$ [10%]	а	+1.22
	Ь	+0.26
$\tilde{\chi}_1^0 \tilde{\chi}_1^+ \to Z^0 W^+$ [9%]	а	+0.51
	Ь	+0.12
$ ilde{\chi}^0_1 ilde{\chi}^+_1 ightarrow t ar{b}$ [9%]	а	+0.54
-	Ь	-0.23
$ ilde{\chi}_1^0 ilde{\chi}_1^+ ightarrow u \overline{d} \ [9\%]$	а	+0.54
	Ь	-0.23
$\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-} \rightarrow Z^{0}Z^{0}$ [6%]	а	+0.73
	Ь	+0.16
$\tilde{\chi}_1^+ \tilde{\chi}_1^- \to W^+ W^-$ [6%]	а	+0.65
	Ь	+0.17
$\Omega_{\chi} h^2$		0.0997

•
$$m_{\tilde{\chi}_1^0} = 1799.1 \text{ GeV}$$

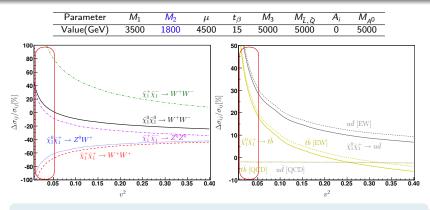
•
$$\delta(m_{\tilde{\chi}_1^+} - m_{\tilde{\chi}_1^0}) = 0.0003 \text{ GeV}$$

- $\sigma_0 v = a + bv^2$
- $m_{\tilde{\chi}_1^0}, m_{\tilde{\chi}_1^\pm}$ almost degenerate
- Coannihilation very important
- Degeneracy between processes $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow W^+ W^-$ and $\tilde{\chi}_1^+ \tilde{\chi}_1^+ \rightarrow W^+ W^+$
- A lot of processes contribute

HEAVY-WINO NEUTRALINO

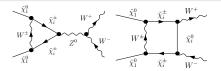


HEAVY-WINO NEUTRALINO



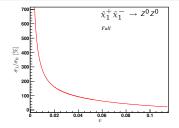
• $M_W/m_{\tilde{\chi}^0_1} = 0.045 \Rightarrow W^{\pm}, Z^0$ bosons almost considered as massless.

• $\underline{v \rightarrow 0}$: Large Sommerfeld (QED+EW) enhancement.



EXTRACTING THE ONE-LOOP SOMMERFELD EFFECT

- The EW Sommerfeld effect is expected to be cut-off, as opposed to the QED one.
- To extract it, remove the QED Coulomb effect first.



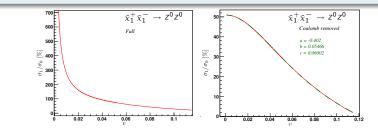
•
$$S_{nr} = X_{nr}/(1 - e^{-X_{nr}})$$
 $X_{nr} = 2\pi\alpha Q_i Q_j/v$
• $S_{1L} = \frac{\pi\alpha}{v} \times \sigma_0 Q_i Q_j$

EXTRACTING THE ONE-LOOP SOMMERFELD EFFECT

- The EW Sommerfeld effect is expected to be cut-off, as opposed to the QED one.
- To extract it, remove the QED Coulomb effect first.
- Then, as behavior expected to be cut-off, fit with,

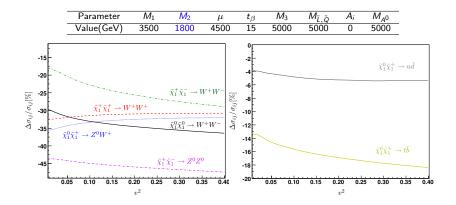
$$\sigma_1/\sigma_0 = a + rac{b}{\sqrt{v^2 + c^2}}$$

where c is supposed to be the cut-off, of order $M_W/m_{\tilde{\chi}^0_1}$.

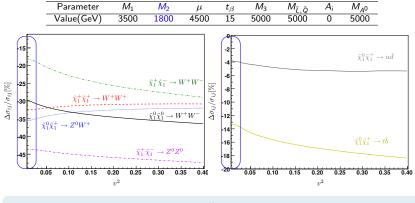


• Large corrections but < QED Sommerfeld for $v \rightarrow 0$.

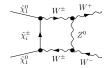
EXTRACTING THE ONE-LOOP SOMMERFELD EFFECT



EXTRACTING THE ONE-LOOP SOMMERFELD EFFECT



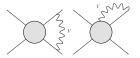
• $\underline{v \rightarrow 1}$: Large negative corrections of Sudakov type.



SUDAKOV VIRTUAL CORRECTIONS

- Originate from vertex and box diagrams involving virtual bosons.
- General form of one-loop Sudakov corrections

$$\alpha \left[C_2 \underbrace{\ln^2 \left(\frac{s}{M_V^2} \right)}_{\text{LL}} + C_1 \underbrace{\ln^1 \left(\frac{s}{M_V^2} \right)}_{\text{NLL}} + C_0 \right] + \mathcal{O} \left(\frac{M_V^2}{s} \right) \quad V = \gamma, W^{\pm}, Z^0$$



• The $\ln(s/M_V^2)$ represents mass singularities and originate from soft and collinear regions.

• For QED corrections always present ($M_{\gamma} \rightarrow 0$), for EW ones when $s \gg M_{W,Z}^2$.

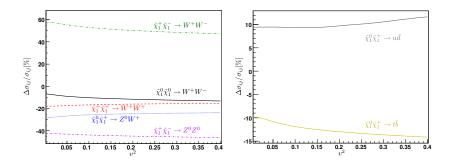
SUDAKOV VIRTUAL CORRECTIONS

- Originate from vertex and box diagrams involving virtual bosons.
- General form of one-loop Sudakov corrections

$$\alpha \left[C_2 \underbrace{\ln^2 \left(\frac{s}{M_V^2} \right)}_{\text{LL}} + C_1 \underbrace{\ln^1 \left(\frac{s}{M_V^2} \right)}_{\text{NLL}} + C_0 \right] + \mathcal{O} \left(\frac{M_V^2}{s} \right) \quad V = \gamma, W^{\pm}, Z^0$$

- The $\ln(s/M_V^2)$ represents mass singularities and originate from soft and collinear regions.
- For QED corrections always present $(M_{\gamma} \rightarrow 0)$, for EW ones when $s \gg M_{W,Z}^2$.
- Dependency on M_{γ} unphysical \Rightarrow removed by adding real emission as stated by the Bloch-Nordsieck theorem [Bloch,Nordsieck(1937)].
- For EW corrections, $M_{W,Z}$ physical and retained in the calculation.
- Adding real emission can counterbalance virtual corrections.

ADDING REAL EMISSION AND SUBSTRACTING SOMMERFELD



• Still large correction for some processes (-45% corrections for $\tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow Z^0 Z^0$).

RELIC DENSITY					
	Tree	$A_{\tau \tau}$	+ Z ⁰ brem	+ Coul resum	EW Som removed
$\Omega_{\chi} h^2$	0.0993	0.104	0.0934	0.0934	0.103
$\frac{\delta \Omega_{\chi} h^2}{\Omega_{\chi} h^2}$		+4.7%	-5.9%	-5.9%	+3.7%

- Taking into account Z^0 real emission or not has an important effect.
- The QED Coulomb one-loop effect is enough, and doesn't change the result.
- One-loop EW Sommerfeld still relevant for relic density calculation.
- Large corrections for individual processes but final result not so affected, large compensation between processes.

RELIC DENSITY					
	Tree	$A_{\tau \tau}$	+ Z ⁰ brem	+ Coul resum	EW Som removed
$\Omega_{\chi}h^2$	0.0993	0.104	0.0934	0.0934	0.103
$\frac{\delta \Omega_{\chi} h^2}{\Omega_{\chi} h^2}$		+4.7%	-5.9%	-5.9%	+3.7%

- Taking into account Z^0 real emission or not has an important effect.
- The QED Coulomb one-loop effect is enough, and doesn't change the result.
- One-loop EW Sommerfeld still relevant for relic density calculation.
- Large corrections for individual processes but final result not so affected, large compensation between processes.

ORIGIN OF LARGE REMAINING CORRECTIONS

- Non-compensation between real and virtual corrections.
- Due to Bloch-Norsieck violations [Ciafaloni, Ciafaloni, Comelli (2000)] ?
- Non cancellation between real and virtual contributions due to W emission.
- One-loop expansion not enough ⇒ Two-loop effects important?

- Importance of radiative corrections in the relic density calculations.
- Need to control them to be able to extract informations from it and to constrain the underlying cosmological scenario.
- For a heavy neutralino scenarios taking into account $2 \rightarrow 3$ processes is necessary.
- Large corrections due to soft/collinear logs and Sommerfeld enhancement.
- Study of the dependency of the results on the chargino/neutralino renormalisation scheme.
- Improve the interface with micrOMEGAs.

BACKUP

A WORD ABOUT LOOP INTEGRALS

- Loop tensor integrals reduced to a basis of scalar integrals [Passarino-Veltman (1979)]
- Reduction method rely on a kinematical ingredient : The Gram Determinant.
- For 2 \rightarrow 2 processes, Gram determinant vanishes when relative velocity $v \rightarrow 0$
- In this case reduction method inefficient \Rightarrow different approach

A WORD ABOUT LOOP INTEGRALS

- Loop tensor integrals reduced to a basis of scalar integrals [Passarino-Veltman (1979)]
- Reduction method rely on a kinematical ingredient : The Gram Determinant.
- For 2 \rightarrow 2 processes, Gram determinant vanishes when relative velocity $v \rightarrow 0$
- In this case reduction method inefficient ⇒ different approach
- Segmentation has been used to study the analytical and numerical behaviour for $v \rightarrow 0$ [Boudjema-Semenov-Temes (2005)].

$$\begin{aligned} \frac{1}{D_0 D_1 D_2 D_3} &= \left(\frac{1}{D_0 D_1 D_2} - \alpha \frac{1}{D_0 D_2 D_3} - \beta \frac{1}{D_0 D_1 D_3} + (\alpha + \beta - 1) \frac{1}{D_1 D_2 D_3}\right) \times \\ &\frac{1}{A + 2\ell \cdot (s_3 - \alpha s_1 - \beta s_2)} \\ A &= (s_3^2 - M_3^2) - \alpha (s_1^2 - M_1^2) - \beta (s_2^2 - M_2^2) - (\alpha + \beta - 1) M_0^2. \\ D_i &= (\ell + s_i)^2 - M_i^2, \ s_i = \sum_{j=1}^i p_j \end{aligned}$$

Relevant mostly for indirect detection : $\chi\chi \rightarrow W^+W^-, \gamma\gamma \cdots$ in our galaxy ($v \simeq 10^{-3}c$).

- Segmentation has been used to study the analytical and numerical behaviour for $v \rightarrow 0.$

$$\begin{array}{lll} \displaystyle \frac{1}{D_0 D_1 D_2 D_3} & = & \left(\frac{1}{D_0 D_1 D_2} - \alpha \frac{1}{D_0 D_2 D_3} - \beta \frac{1}{D_0 D_1 D_3} + (\alpha + \beta - 1) \frac{1}{D_1 D_2 D_3} \right) \times \\ & & \\ & & \\ \displaystyle \frac{1}{A + 2\ell \cdot (s_3 - \alpha s_1 - \beta s_2)} \\ A & = & (s_3^2 - M_3^2) - \alpha (s_1^2 - M_1^2) - \beta (s_2^2 - M_2^2) - (\alpha + \beta - 1) M_0^2. \\ D_i & = & (\ell + s_i)^2 - M_i^2, \ s_i = \sum_{j=1}^i p_j \end{array}$$

• For any graph if det $G(s_1, s_2, s_3) \simeq 0$, construct all 3 sub-determinants det $G(s_1, s_2)$ and take the couple s_i, s_j (as independant basis) that corresponds to Max|det $G(s_i, s_j)$ |.Then

$$s_3 = \alpha s_1 + \beta s_2 + \varepsilon_T \quad \text{with } s_1 \cdot \varepsilon_T = s_2 \cdot \varepsilon_T = 0$$
$$\alpha = \frac{s_2^2(s_3 \cdot s_1) - (s_1 \cdot s_2)(s_2 \cdot s_3)}{\det G(s_1, s_2)}, \quad \beta = \alpha(s_1 \leftrightarrow s_2)$$
$$\det G(s_1, s_2, s_3) = \varepsilon_T^2 \det G(s_1, s_2)$$

Linear gauge fixing

$$\mathcal{L}_{GF} = -\frac{1}{\xi_W} |\partial_\mu W^{\mu +} + i\xi_W \frac{g}{2} vG^+|^2$$
$$-\frac{1}{2\xi_Z} (\partial_\mu Z^\mu + \xi_Z \frac{g}{2c_W} vG^0)^2$$
$$-\frac{1}{2\xi_A} (\partial_\mu A^\mu)^2$$

$$\Gamma^{VV} = \frac{-i}{q^2 - M_V^2 + i\epsilon} \left[g_{\mu\nu} + (\xi_V - 1) \frac{q_{\mu}q_{\nu}}{q^2 - \xi_V M_V^2} \right]$$

CHALONS Guillaume

Linear gauge fixing

$$\mathcal{L}_{GF} = -\frac{1}{\xi_W} |\partial_\mu W^{\mu +} + i\xi_W \frac{g}{2} v G^+|^2$$
$$-\frac{1}{2\xi_Z} (\partial_\mu Z^\mu + \xi_Z \frac{g}{2c_w} v G^0)^2$$
$$-\frac{1}{2\xi_A} (\partial_\mu A^\mu)^2$$

$$\Gamma^{VV} = rac{-i}{q^2 - M_V^2 + i\epsilon} \left[g_{\mu
u} + (\xi_V - 1) rac{q_\mu q_
u}{q^2 - \xi_V M_V^2}
ight]$$

 $\xi_{W,Z,A} = 1$ (Feynman gauge)

Non-Linear gauge fixing

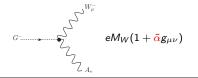
$$\mathcal{L}_{GF} = -\frac{1}{\xi_{W}} |(\partial_{\mu} - ie\tilde{\alpha}A_{\mu} - igc_{w}\tilde{\beta}Z_{\mu})W^{\mu +} \\ + i\xi_{W}\frac{g}{2}(v + \tilde{\delta}h^{0} + \tilde{\omega}H^{0} + i\tilde{\kappa}G^{0} + i\tilde{\rho}A^{0})G^{+}|^{2} \\ -\frac{1}{2\xi_{Z}}(\partial_{\mu}Z^{\mu} + \xi_{Z}\frac{g}{2c_{w}}(v + \tilde{\epsilon}h^{0} + \tilde{\gamma}_{H}^{0})G^{0})^{2} \\ -\frac{1}{2\xi_{A}}(\partial_{\mu}A^{\mu})^{2}$$

 $\xi_{W,Z,A} = 1$ (Feynman gauge)

CHALONS Guillaume SO

Non-Linear gauge fixing

$$\mathcal{L}_{GF} = -\frac{1}{\xi_{W}} |(\partial_{\mu} - ie\tilde{\alpha}A_{\mu} - igc_{w}\tilde{\beta}Z_{\mu})W^{\mu +} \\ + i\xi_{W}\frac{g}{2}(v + \tilde{\delta}h^{0} + \tilde{\omega}H^{0} + i\tilde{\kappa}G^{0} + i\tilde{\rho}A^{0})G^{+}|^{2} \\ -\frac{1}{2\xi_{Z}}(\partial_{\mu}Z^{\mu} + \xi_{Z}\frac{g}{2c_{w}}(v + \tilde{\epsilon}h^{0} + \tilde{\gamma}_{H}^{0})G^{0})^{2} \\ -\frac{1}{2\xi_{A}}(\partial_{\mu}A^{\mu})^{2}$$



 $\xi_{W,Z,A} = 1$ (Feynman gauge)

→ Gauge parameter dependence in gauge/Goldstone/ghost vertices. → No "unphysical" threshold, no higher rank tensor.

CHALONS Guillaume

SOMMERFELD AND SUDAKOV CORRECTIONS IN HEAVY NEUTRALINO ANNIHILATION

SUDAKOV VIRTUAL+REAL CORRECTIONS : ABELIAN EXAMPLE

- However adding real emission of EW gauge boson can counterbalance virtual effects.
- Abelian $Z' \rightarrow \overline{\nu}\nu + Z^0$ (of mass \sqrt{s}) as an example (in the limit $s \gg M_Z^2$) :

$$\Gamma^{V}_{\nu\bar{\nu}} = - \Gamma^{0}_{\nu\bar{\nu}} \frac{\alpha_{Z}}{4\pi} \left[2 \left(\ln^{2} \left(\frac{m_{Z}^{2}}{s} \right) + 3 \ln \left(\frac{m_{Z}^{2}}{s} \right) \right) - \frac{2\pi^{2}}{3} + 7 \right]$$

$$\Gamma^{R}_{\nu\bar{\nu}} = + \Gamma^{0}_{\nu\nu} \frac{\alpha_{Z}}{4\pi} \left[2 \left(\ln^{2} \left(\frac{m_{Z}^{2}}{s} \right) + 3 \ln \left(\frac{m_{Z}^{2}}{s} \right) \right) - \frac{2\pi^{2}}{3} + 10 \right]$$

- Complete compensation between virtual and real logarithmic corrections.
- Factorisation and universality : $\mathcal{M}_1^{Sud} = \mathcal{M}_0 \times Sudakov$ form factor
- For our heavy-wino case Sudakov corrections important $(M_W^2/m_{\tilde{\chi}_1^0}^2 = 2.10^{-3})$.
- $\bullet~2 \rightarrow 3$ to be taken into account for relic density.
- Real emission of a Z^0 boson added.