Effects of electroweak contributions to squark pair production at the LHC

Jong Soo Kim

in collaboration with Bornhauser, Drees, Dreiner, Kim (Phys. Rev. D76, 2007, Phys. Rev. D80:09500, 2009) Bornhauser, Drees, Grab, Kim (work in progress]

> Technische Universität Dortmund Theoretische Physik III

SUSY, Bonn 2010

Outline

EW contributions to squark pair production

- Role of EW contributions
- Results

Rapidity gap events

- Basic idea of a rapidity gap
- Caveats of rapidity gap events
- Results

- $pp \rightarrow bbt_1 t_1^*$
- Preliminary results

Role of EW contributions Results

EW contributions @ LO

- Detection of squarks might be around the corner!
- EW contributions to σ(q̃q) @ LO

Role of EW contributions Results

Numerical results

- EW contributions enhance $\sigma(\tilde{q}_L \tilde{q}_L)$ up to 20% in mSUGRA
- SU(2)-contributions are significant
- Interference between EW t– and QCD u–channel is dominant
- $|\mathcal{M}_{\mathrm{interference}}(\tilde{q}_L \tilde{q}_L)|^2 \propto m_{\mathrm{gaugino}}$
- EW contributions can exceed 50% in SUGRA

				$\sigma_{\rm OCD}$ in pb		$\sigma_{\rm OCD+EW}$ in pb		ratio	
Scenario	m ₀ GeV	m _{1/2} GeV	m _ã GeV	Total	LL	Total	LL	Total	LL
SPS 1a	100	250	560	12.11	3.09	12.55	3.50	1.036	1.133
SPS 1b	200	400	865	1.57	0.42	1.66	0.499	1.055	1.186
SPS 2	1450	300	1590	0.0553	0.0132	0.0567	0.0144	1.025	1.091
SPS 3	90	400	845	1.74	0.464	1.83	0.551	1.055	1.188
SPS 4	400	300	760	3.10	0.813	3.22	0.927	1.040	1.141
SPS 5	150	300	670	5.42	1.41	5.66	1.62	1.042	1.152

< 回 > < 三 > < 三 >

EW contributions to squark pair production

Rapidity gap events Stop searches with two b jets and missing energy Summary Role of EW contributions Results

p_T dependence

- In mSUGRA, $M_1 : M_2 : M_3 = 1 : 3 : 6$
- EW contributions dominant for $p_T \ll m_{\tilde{q}}$

EW contributions to squark pair production

Rapidity gap events top searches with two b jets and missing energy Summary Role of EW contributions Results

Gaugino mass dependence

- Final state $\tilde{q}_L \tilde{q}_L$ requires helicity flip
- EW contributions become maximal for M₂ = m_{q̃}

Basic idea of a rapidity gap Caveats of rapidity gap events Results

Rapidity gap events in squark pair production

(d) not colo connected

- Color octet exchange: QCD radiation between the two outgoing squarks
- Color singlet exchange: QCD radiation between the squarks and the beam remnants

Basic idea of a rapidity gap Caveats of rapidity gap events Results

Classical picture: accelerated color charge

 Small ⊖_{CMS} dynamically preferred in t-channel contribution ⇒ color connected: Bremsstrahlung gluons emitted over most of rapidity region

 \implies non color connected: Bremsstrahlung only populate a small region in rapidity

- 4 The built

Basic idea of a rapidity gap Caveats of rapidity gap events Results

Caveats of rapidity gap events

- Signal: Two energetic jets with little hadron activity in gap region
- Caveats:
 - Color connected events can fake rapidity gap events
 - Interference between color connected and not color connected diagrams
 - Decay products in the gap region
 - ISR, FSR and UE fill up the gap region
 - Uncertainties of the MC generators

Preliminaries

• mSUGRA ($m_0 = 100$ GeV, $m_{1/2} = 250$ GeV, $m_{ ilde{q}} \approx 560$ GeV)

Results

- 14 TeV @ LHC and $\mathcal{L} =$ 40 fb^{-1}
- SUSY QCD contribution to squark pair production is dominant background
- Outs
 - $E_{
 m T}^{
 m jets}\,\geq\,100\,{
 m GeV}$ and $|\eta_j|\leq5.0$
 - $\Delta\eta_{j_1,j_2} \geq 3.0$
 - At least two leptons of SS
 - $p_{T_{\min}}^{ ext{lepton}} = 5 ext{ GeV}$ and $|\eta^{ ext{lepton}}| \leq 2.4$
 - $E_{\rm T}^{\rm miss} \geq 200 \, {\rm GeV}$
- Most of the final leptons are τ's at our mSUGRA point
- Assume $\epsilon_{\tau-\text{tagging}} = 1$

Summarv

Basic idea of a rapidity gap Caveats of rapidity gap events Results

Jet-in-the-gap cross section

- Fractions of events where most energetic jet in the gap region has E_T ≤ E^{gap}_{T,jet,max}
- Jets with $E_T \ge 5 \text{ GeV} \Longrightarrow \text{cut} \text{ against UE}$
- 5 σ effect for $E_{T,jet,max}^{gap} = 30 \text{ GeV}$

→ ∃ →

Results

Basic idea of a rapidity gap Caveats of rapidity gap events Results

 Pythia QCD prediction is larger than Herwig++ QCD–EW prediction

 \implies current theoretical error cannot be estimated

- Both MC's can be tuned by SM-dijet events
- Gives handle to separate EW & QCD SUSY
- Reconstruction of SUSY EW couplings

 $pp \rightarrow b \overline{b} \overline{t}_1 \overline{t}_1^*$ Preliminary results

Signal process and mass spectrum

- Final state $b\bar{b}\tilde{t}_1\tilde{t}_1^*$ with $\tilde{t}_1
 ightarrow c\tilde{\chi}_1^0$
- Main contribution from higgsinolike on–shell chargino with $\tilde{\chi}_1^+ \to \tilde{t}_1 \bar{b}$
- $m_{ ilde{t}_1}-m_{ ilde{\chi}_1^0}pprox$ 20 GeV, $m_{ ilde{\chi}_1^+}-m_{ ilde{t}_1}pprox$ 20 GeV
- Remaining sparticles are decoupled

Preliminaries

- Backgrounds
 - tī
 - single t
 - Wbb
 - Zībb
- Outs
 - Isolated lepton veto
 - Require two b-jets
 - $p_T(b1) > 150$ GeV, $p_T(b2) > 50$ GeV and $|\eta_b| < 2.5$
 - *"p*_T > 200 GeV
 - Charge multiplicity > 10
 - *p*_T(*b*1)/ *p*_T < 1.2
- $\epsilon_{b-tagging} \approx 0.6$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Significance

- Significance for $\mathcal{L} = 100 \, \mathrm{fb}^{-1}$ @ LHC with $\sqrt{s} = 14 \, \mathrm{TeV}$
- Significance is greatly enhanced

$m_{\tilde{\chi}_1^0}$ - $m_{\tilde{t}_1}$ -plane

- Significance in the $m_{\tilde{\chi}_1^0}$ - $m_{\tilde{t}_1}$ plane
- Provide an alternative discovery channel to detect \tilde{t}_1 with $\tilde{t}_1 \to c \tilde{\chi}_1^0$

 $pp \rightarrow b \overline{b} \overline{t}_1 \overline{t}_1^*$ Preliminary results

Determination of the higgsino coupling

- Reconstruction of the higgsino-coupling $\tilde{\chi}_1^+ \tilde{t}_1 \bar{b}$
- $\tilde{t}_1 \tilde{t}_1^* j$ can be used to extract EW coupling from $b \bar{b} \tilde{t}_1 \tilde{t}_1^*$
- Theoretical errors, e. g. pdf uncertainties, must be estimated

- EW contributions @ LO enhances cross section up to 50%
- Rapidity gap events separate the SUSY EW from SUSY QCD contribution
- EW enhancements of $b\bar{b}\tilde{t}_1\tilde{t}_1^*$
- Alternative stop search via b-jets and missing energy
- Determination of SUSY EW coupling might be possible, e.g. the $\tilde{t}_1 \tilde{t}_1^* b \bar{b}$ channel $\rightarrow \tilde{\chi}_1^+ \tilde{t}_1 b$ coupling

4 D N 4 B N 4 B N 4 B