Prospects for observing CP-violating Higgs at Tevatron and LHC

Siba Prasad Das

University of Valencia

AHEP, IFIC

in collaboration with Manuel Drees (PI,Bonn)

Siba Prasad Das (AHEP, IFIC) Prospects for observing CP-violating Higgs at

SUSY 2010 1 / 34

< ロ ト < 同 ト < 三 ト < 三 ト

Outline

Introduction

- Higgs at MSSM: CP-conserving and violating
- Higgs searches at LEP
- CP-violating Higgs sensitivity study at LHC

Analysis at Hadron Colliders

- Event characteristics
- Tagging and Mistagging
- Higgs mass reconstruction

3 Summary

CP-conserving Higgs sector

The Higgs sector of the MSSM consists of two doublets:

$$H_1 = \begin{pmatrix} H_1^0 \\ H_1^- \end{pmatrix}; \quad H_2 = \begin{pmatrix} H_2^+ \\ H_2^0 \end{pmatrix}.$$
(1)

$$H_1^0 = \frac{1}{\sqrt{2}}(\phi_1 - ia_1), \quad H_2^0 = \frac{1}{\sqrt{2}}(\phi_2 + ia_2)\Omega$$

 $\Rightarrow \phi_{1,2} \text{ (CP-even) and } a_{1,2} \text{ (CP-odd).}$ $\Rightarrow \text{After EWSB}, \langle \phi_1 \rangle = v \cos \beta \text{ and } \langle \phi_2 \rangle = v \sin \beta$ $\Rightarrow 2 \text{ charged and 3 neutral.}$

Mass states

 $\Rightarrow 1 \text{ CP-odd state, } A = -a_1 \sin \beta + a_2 \cos \beta,$ $\Rightarrow 2 \text{ CP-even}, h \text{ and } H \text{ mixes, } \alpha:$

$$\begin{pmatrix} h \\ H \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \phi_2 \\ \phi_1 \end{pmatrix}.$$
 (3)

イロト イポト イヨト イヨト

(2)

Explicit CP-violation and Higgs sector

Superpotential, $W \supset \mu \hat{H}_2 \cdot \hat{H}_1$, and the soft-SUSY breaking terms:

$$\begin{aligned} -\mathcal{L}_{\text{soft}} &\supset \\ \frac{1}{2} (M_3 \, \widetilde{g} \widetilde{g} + M_2 \, \widetilde{W} \widetilde{W} + M_1 \, \widetilde{B} \widetilde{B} + \text{h.c.}) \\ &+ \widetilde{Q}^{\dagger} \, \mathsf{M}_{\widetilde{Q}}^2 \, \widetilde{Q} + \widetilde{L}^{\dagger} \, \mathsf{M}_{\widetilde{L}}^2 \, \widetilde{L} + \widetilde{u}_R^* \, \mathsf{M}_{\widetilde{u}}^2 \, \widetilde{u}_R + \widetilde{d}_R^* \, \mathsf{M}_{\widetilde{d}}^2 \, \widetilde{d}_R + \widetilde{e}_R^* \, \mathsf{M}_{\widetilde{e}}^2 \, \widetilde{e}_R \\ &+ (\widetilde{u}_R^* \, \mathsf{A}_{u} \, \widetilde{Q} H_2 - \widetilde{d}_R^* \, \mathsf{A}_{d} \, \widetilde{Q} H_1 - \widetilde{e}_R^* \, \mathsf{A}_{e} \, \widetilde{L} H_1 + \text{h.c.}) \\ &- (m_{12}^2 H_1 H_2 + \text{h.c.}). \end{aligned}$$
(4)

 \Rightarrow Physical observables depend on: Arg($M_i \mu m_{12}^2$) and Arg($A_f \mu m_{12}^2$) [Dugan, Grinstein,Hall]

 \Rightarrow Higgs sector: most relevant 3rd generation: top and bottom

イロト イポト イヨト イヨト

Explicit CP-violation and Higgs sector contd.

 \Rightarrow The complex soft breaking parameters through loop:

 \Rightarrow Non vanishing CP-phases lead to mixing among CP-even and CP-odd Higgses. [Pilaftsis, Demir, Choi etal.,Carena etal., Bechtle, recently Lee: hep-ph/0808.2014]

Explicit CP-violation and Higgs sector contd.

$$(\phi_1,\phi_2,\boldsymbol{a})_{\alpha}^{T} = \boldsymbol{O}_{\alpha i}(\boldsymbol{H}_1,\boldsymbol{H}_2,\boldsymbol{H}_3)_{i}^{T}, \qquad (5)$$

$$\mathcal{L}_{HVV} = g M_W \left(W^+_{\mu} W^{-\mu} + \frac{1}{2c_W^2} Z_{\mu} Z^{\mu} \right) \sum_i g_{H_i VV} H_i, \quad (6)$$

$$\begin{array}{lll}
 g_{H_{i}VV} &= c_{\beta} O_{\phi_{1}i} + s_{\beta} O_{\phi_{2}i}, \\
 g_{H_{i}H_{j}Z} &= sign[det(O)] \varepsilon_{ijk} g_{H_{k}VV}, \\
 {H{i}H^{+}W^{-}} &= c_{\beta} O_{\phi_{2}i} - s_{\beta} O_{\phi_{1}i} - iO_{ai},
\end{array}$$
(7)

$$\sum_{i=1}^{3} g_{H_{i}VV}^{2} = 1 \quad and \quad g_{H_{i}VV}^{2} + |g_{H_{i}H^{+}W^{-}}|^{2} = 1 \quad for \; each \; i \; . \tag{8}$$

 \Rightarrow Neutral Higgs do not have any definite CP-parity

g

 \Rightarrow Couplings to SM and SUSY particles modified significantly

Siba Prasad Das (AHEP, IFIC) Prospects for observing CP-violating Higgs at

▲ 王 ▶ 王 少へ(SUSY 2010 6/34

<ロト < 回ト < 回ト < 回ト

Benchmark: CPX-scenario

$$\mathcal{M}_{SP}^2 \sim \frac{m_t^4}{v^2} \frac{Im(\mu A_t)}{32\pi^2 M_{SUSY}^2}, \qquad (9)$$

$$\begin{split} \widetilde{M}_Q &= \widetilde{M}_t = \widetilde{M}_b = M_{SUSY} = 500 \, \text{GeV}, \qquad \mu = 4M_{SUSY}, \\ |A_t| &= |A_b| = 2M_{SUSY}, \qquad \arg(A_t) = \arg(A_b) = 90^\circ, \\ m_{\widetilde{g}}| &= 1 \, \text{TeV}, \qquad \arg(m_{\widetilde{g}}) = 90^\circ, \end{split}$$
(10)

 \Rightarrow Maximal CP-violation occurs in the Higgs sectors.

 \Rightarrow Masses(H_i) and H_iVV couplings changes appreciably.

Higgs masses (H_i) and H_iVV couplings

 \Rightarrow CP violation affects appreaciably: masses, couplings etc. Fig. from Carena etal. NPB586 (2000) 92.

 $\Rightarrow H_2 \rightarrow H_1 H_1 \text{ is possible} \\\Rightarrow \sigma_{WH_2} \text{ is large}$

イロト イロト イヨト イヨト

Masses and compositions

- \Rightarrow We are interested to study the CPV from production and decay;
- \Rightarrow So the sum rules are important.

$$\sum_{i=1}^{3} g_{H_{i}VV}^{2} = 1 \quad and \quad g_{H_{i}VV}^{2} + |g_{H_{i}H^{+}W^{-}}|^{2} = 1 \quad for \; each \; i \, .$$

 \Rightarrow ZZh1 low at LEP; thus at Hadron Colliders: ZZh2, WWh2 are relatively large

Higgs searches at LEP

⇒LEP combined; no Higgs evidence; LEP lower limit 114.6 GeV

- Complementary and cover whole kinematical masses;
- low (high) $\tan\beta$ Higgsstrahlung (Pair production) dominant;
- Upper bounds on σ on various Higgs like event topologies;
- Limits on CP-conserving MSSM-benchmarks.

From CP-violation: $\Rightarrow h_i Z$ all produced by Higgsstrahlung \rightarrow complementary lost; h_2 and h_3 heavy

 $\Rightarrow h_i h_j (i \neq j)$ pair production

 $\Rightarrow m_{h_2} - m_{h_1}$ is large; $h_2 \to h_1 h_1$ with large BR.

▶ < Ē ▶ Ē ∽ Q (SUSY 2010 10/34

イロト イポト イヨト イヨト

Cross-section in different decay modes at LEP

[hep-ex/0602042] ⇒ \sqrt{s} =202 GeV; m_{h_1} =35-45 GeV; m_t =175 GeV. ⇒ tanβ ≈ 4 → h_2 Z decay mode is dominant.

SUSY 2010 11 / 34

< 17 ▶

→ ∃ →

LEP allowed regions for m_t =174.3 GeV

[hep-ex/0602042]

- \Rightarrow Intermediate tan β : All low production;
- h_1 CP-odd no Higgsstrhaulng; h_2 heavy; $h_2 \rightarrow h_1 h_1$
- \Rightarrow *h*₁ decay dominantly into *bb* mode.
- \Rightarrow Allowed regions shrink if m_t decreases. [HiggsBounds]

Sac

イロト イポト イヨト イヨト

The LEP allowed regions at LHC

⇒ gg→ $H_i(\gamma\gamma,ZZ)$; $t\bar{t}H_i(b\bar{b})$; $b\bar{b}H_i(\mu\mu)$; WW→ $H_i(WW,\tau\tau)$, tH^{\pm} for 300 fb⁻¹ [Schumacher, CPNSH, hep-ph/0608079, Carena etal NPB659(2003)145.] ⇒ LEP hole still exists

Siba Prasad Das (AHEP, IFIC)

SUSY 2010 13 / 34

Signature

$$egin{aligned} \mathcal{C}_{211_{4b}} &= & \sigma_{SM}(par{p}/pp
ightarrow Wh_2)g_{h2VV}^2Br(h_2
ightarrow h_1h_1) \ & imes Br(h_1
ightarrow bar{b})^2 2Br(W
ightarrow e
u_e); \end{aligned}$$

$$W \rightarrow W^{\pm}$$
 and 2 is for $\ell = e$ and μ .

 \Rightarrow CPsuperH (one can also use FeynHiggs)

 \Rightarrow CPX-1: $tan\beta, m_{H\pm}$: 4.02,131.8 $\rightarrow m_{h_1}, m_{h_2}$: 36,101.6 lower

⇒ CPX-2: $tan\beta$, $m_{H^{\pm}}$: 4.39,131.8 → m_{h_1} , m_{h_2} :45,102.6 upper ⇒ Model-independent: m_{h_1} , m_{h_2} :30, 90-130; model independent searches and subdominant CP-odd component and also WW^*/ZZ^* dominant \rightarrow Br($h_2 \rightarrow h_1 h_1$) reduced.

Other models: recently [Ham etal., Chang etal., Ellwanger etal.]

 \Rightarrow Carena etal. 0712.2466 [hep-ph] in parton level.

 \Rightarrow We performed event generator level simulation using Pythia.

イロト イポト イヨト イヨト

Cross-sections at Tevatron (1.96 TeV) and LHC(14 TeV)

Proc	explicit	j/ī	σ (TeV) fb	σ(LHC)fb
S1	130,30	bbbb	89.9	1091.1
S2	120,30	bbbb	121.7	1401.5
S3	110,30	bbbb	162.5	1850.8
S4	100,30	bbbb	223.5	2472.0
S5	90,30	bbbb	315.1	3317.4
CPX-1	101.6,36.	bbbb	212.0	2367.1
CPX-2	102.6,45.	bbbb	206.5	2283.8
p1	$t ar{t} ightarrow b ar{b} \ W^+ \ W^-$	bbqq′	5000.0	500000.0
p2	$b\bar{b}b\bar{b}~W^{\pm}$	bbbb	14.5	156.0
p3*	b $\overline{b}bj W^{\pm}, \overline{b}b\overline{b}j W^{\pm}$	udscg	0.05	10.7
p4	bb̄cj W−, bb̄c̄j W+	udsg	151.6	33813.7
p5	b̄bc̄c W±	bbcc	51.4	520.5
p6	bb̄jj W±	udsg	5985.3	247534.0
p7*	bjjj W±,̄bjjj W±	udcsg	16.5	3324.6
p8	jjjj W±	udcsg	447870.0	29252000.0
p9	$t\bar{t}b\bar{b} ightarrow b\bar{b}b\bar{b}W^+ W^-$	bb̄bb̄qq̄′	8.9	2988.8
p10	$t\bar{t}c\bar{c} ightarrow b\bar{b}c\bar{c}W^+ W^-$	b̄bc̄cq̄q′	16.0	4862.5
p8.1	gggg W [±]	gggg	93385.8	918552.0
p8.2	gggj W±	udcs	206421.0	19678100.0
p8.n				
p8.9	jjjj W±	uds	2666.3	99443.8
S-p8	jjjj W±	udcsg	443627.1	27586307.6
ToB			450355.5	28374655.9

⇒ Q= $\sqrt{\hat{s}}$ and CTEQ5L PDF ⇒S(B) approx. 10(100) times at LHC compare to Tevatron ⇒Signal SLHA; Bgs(splitting): MadGraph/MadEvent → Pythia 6.408 for showering

Siba Prasad Das (AHEP, IFIC) Prospects for observing CP-violating Higgs at

SUSY 2010 15 / 34

Events characteristics at LHC: Number of Jets

 \Rightarrow C1: $N_{\text{jet}} \ge 4$, $E_T^{j=1-4} > 15.0$ and $|\eta^{j=1-4}| < 5.0;$

 \Rightarrow Basic Efficiencies and Higgs mass reconstruction

Siba Prasad Das (AHEP, IFIC)

SUSY 2010 16 / 34

 $\Rightarrow C2: N_{lepton} \geq 1, E_T^{\ell} > 20.0 \text{ and } |\eta^{\ell}| < 2.5;$

 \Rightarrow C3: $\not\!\!\!E_T >$ 20 from all visible objects

SUSY 2010 17 / 34

nac

< ∃ >

b-tagging and mistagging at LHC

 \Rightarrow Identification of jets/hadrons which contains a b-quark.

[ATLAS arXiv:0901.0512 [hep-ex]]

⇒Matching: ΔR (j-q) and Et ratio: identify the flavor of the jets(b,c,q) ⇒For $\epsilon_b \approx 50\% \rightarrow \epsilon_c \approx 10\%$ and $\epsilon_i \approx 0.25\%$

< ロト < 同ト < ヨト < ヨト

Tagging and Mistagging at LHC

 \Rightarrow C4a(b): $|\eta^{b-jet}| <$ 2.5, $\Delta R(j, B) \leq$ 0.2;

⇒ Br is included, B and C-hadron counting imposed to avoid doubling among different Bgs.

 $\Rightarrow N_{btag} \geq 3$ (4);

Siba Prasad Das (AHEP, IFIC) Prospects for observing CP-violating Higgs at

SUSY 2010 19 / 34

 $\Rightarrow \epsilon_{acc}$: jet \otimes lepton \otimes MET;

 \Rightarrow 4b too low so use 3b-tagging (however, statistics is not large)

 \Rightarrow 3b-taggable \rightarrow find flavor of the jet using matching and weight accordingly

Overall Events: using Tagging probability

 \Rightarrow C6: $N_{jet} = 4(t\bar{t}, t\bar{t}b\bar{b}, t\bar{t}c\bar{c}$ more supression) less combinatorics.

⇒ Effective cross-section (EffC): C6 \otimes C2(lep) \otimes 3b \otimes B-hadron \leq b-parton \otimes C-hadron \leq c-parton;

 \Rightarrow EffT: Used tagging probability; j-q matching: $N_{b_{taggable}} \ge 3$;

 \Rightarrow If the efficiencies are stablized (for large sample MC events) then the two approaches agree.

 \Rightarrow If not stablized, for low stat MC events, EffT is useful to increase the statistics virtually.

イロト イポト イヨト イヨト 二日

SUSY 2010

21/34

Mass scale: $H_T = \not\!\!E_T + \sum_{\ell,j} E_T$

 \Rightarrow H_T < 220 GeV approx. to m_{h_2} <140 GeV veto.

SUSY 2010 22 / 34

590

Events splitting: 4jW and subprocesses at the LHC

Proc	RawEvt	ϵ_{acc}	3b	EffC(h2,+h1)	EffT(h2,+h1)
p8	63301328.	4531109.	0.00	.000 (.000,.000)	4.34 (.336,.322)
p8.1	1987746.	98083.	0.00	.000(.000,.000)	.003(.001,.001)
p8.2	42583408.	2817659.	0.00	.000(.000,.000)	.360(.064,.062)
p8.3	13745078.	1235224.	0.00	.000(.000,.000)	.372(.070,.069)
p8.4	4896179.	434584.	0.00	.000(.000,.000)	3.26(.522,.510)
p8.5	110172.	12081.	0.00	.000(.000,.000)	.007(.001,.001)
p8.6	72009.	7587.	0.00	.000(.000,.000)	.088(.010,.010)
p8.7	32402.	3120.	1.56	.778(.000,.000)	.703(.108,.100)
p8.8	1019.	69.9	0.15	.112(.051,.051)	.056(.015,.014)
p8.9	215196.	24429.	0.00	.000(.000,.000)	.001(.000,.000)
p8.2.1	20128532.	1191931.	0.00	.000(.000,.000)	.036(.005,.005)
p8.2.2	4010779.	299075.	0.00	.000(.000,.000)	.008(.002,.002)
p8.2.3	10848067.	711286.	0.00	.000(.000,.000)	.021(.003,.003)
p8.2.4	3381185.	252290.	0.00	.000(.000,.000)	.007(.002,.002)
S-p8.2	38368563.	2454582.	0.00	.000(.000,.000)	.072(.012,.012)
p8.3.1	6817573.	741642.	0.00	.000(.000,.000)	.200(.048,.045)
p8.3.2	7195905.	554890.	0.00	.000(.000,.000)	.181(.034,.032)
S-p8.3	14013478.	1296532.	0.00	.000(.000,.000)	.381(.082,.077)
S-p8	59696764.	4331068.	1.71	.089(.051,.051)	4.57(.751,.725)

 \Rightarrow h2: $M_{h_2} \lesssim 140$; h1:60 $\lesssim M_{h_2} \lesssim 140 \otimes 10 \lesssim M_{h_1} \lesssim$ 60(hole);

 \Rightarrow Splitting is useful to get the correct results and weighting to get EffT.

Siba Prasad Das (AHEP, IFIC)

э **SUSY 2010** 23/34

Sac

イロト イポト イヨト イヨト

Lighter Higgs mass (m_{h_1}) reconstruction at LHC

$\Rightarrow |h_1(j_i j_i) - h_1(j_k j_l)|$ is minimmum

Siba Prasad Das (AHEP, IFIC)

Prospects for observing CP-violating Higgs at

SUSY 2010 24 / 34

590

Intermediate Higgs mass $(m_{h_2}=m_{j_1j_2j_3j_4})$ reconstruction at LHC

 \Rightarrow Higgs signal showed up just above the Total Backgrounds.

Siba Prasad Das (AHEP, IFIC)

Prospects for observing CP-violating Higgs at

SUSY 2010 25 / 34

Sac

Events at the LHC with 10fb⁻¹

Proc	RawEvt	ϵ_{acc}	3b	EffC(h2,+h1)	EffT(h2,+h1)
S1	1091.1	332.4	31.58	13.20(6.53,6.41)	13.18(6.89,6.76)
S2	1401.5	393.5	33.97	14.51(7.43,7.29)	14.49(7.83,7.66)
S3	1850.8	478.8	39.09	15.64(8.11,7.92)	16.05(8.90,8.70)
CPX-1	2367.1	567.2	38.80	16.05(8.71,8.47)	16.25(9.02,8.81)
CPX-2	2283.8	563.8	39.46	15.83(9.04,8.88)	15.93(9.55,9.26)
p1	1690000.	818597.	7623.	1458.(11.83,10.14)	1467.(8.90,8.18)
p2	337.6	31.9	4.07	2.98 (0.549, 0.491)	2.95(0.635,0.583)
p3	23.3	2.3	0.14	0.104 (0.012,0.012)	0.113 (0.016,0.015)
p4	73172.	7371.	83.71	62.9 (9.36,8.78)	56.4 (7.89,7.34)
p5	1126.	90.8	1.49	1.07 (0.237,0.225)	1.15 (0.274,0.256)
p6	535663.	45904.	30.0	14.9 (2.14,2.14)	17.8 (2.25,2.09)
p7	7194.	587.5	0.17	0.115 (0.000,0.000)	0.046 (0.007,0.007)
p8	63301328.	4531109.	0.00	0.000 (0.000,0.000)	4.34 (0.336,0.322)
p9	10102.	5698.	746.3	73.5 (0.889,0.889)	72.7 (1.49,1.43)
p10	16435.	9202.	255.0	31.8 (0.394,0.263)	31.4 (0.554,0.513)
S-p8	59696764.	4331068.	1.71	0.089(0.051,0.051)	4.57(0.751,0.725)
ToB	62030817.	5218552.	8745.6	1646.(25.4,22.9)	1654.(22.8,21.1)
$\frac{S2}{\sqrt{B}}$	0.177	0.172	0.369	0.357(1.47,1.52)	0.356(1.64,1.66)

 $\Rightarrow p1(t\bar{t}), p2(4bW), p3(3bjW), p4(2bcj), p5(2b2c), p6(2b2j), p7(b3j), p8(4j), p9(t\bar{t}b\bar{b}), p10(t\bar{t}c\bar{c})$

 \Rightarrow Low stat events (e.g.,p2,p3,p5...) are well matched;

 \Rightarrow tt,2bcj,2b2j,2t2b are the main contributions; few ten Signal Events

Siba Prasad Das (AHEP, IFIC) Prospects for observ

Prospects for observing CP-violating Higgs at

SUSY 2010 26 / 34

Other benchmark points at LHC

 \Rightarrow Might be show up around 115 GeV

Siba Prasad Das (AHEP, IFIC)

Prospects for observing CP-violating Higgs at

SUSY 2010 27 / 34

590

∃ >

Events at the Tevatron with 4 fb⁻¹

Proc	RawEvt	N _{acc}	N _{3b}	EffC(h2,+h1)	EffT(h2,+h1)
S1	36.0	10.5	0.73	.504(.394,.385)	.460(.397,.387)
S2	48.7	13.1	0.78	.523(.423,.417)	.486(.430,.424)
S3	65.0	15.6	0.81	.549(.445,.439)	.510(.455,.447)
CPX-1	84.8	19.1	0.77	.505(.423,.416)	.461(.413,.405)
CPX-2	82.6	21.2	0.83	.525(.444,.439)	.498(.457,.447)
p1	6760.0	3540.5	26.51	10.62(.081,.081)	9.60(.062,.054)
p2	12.6	1.5	0.06	.035(.012,.011)	.034(.014,.013)
p3	.043	.0063	0.00	.000(.000,.000)	.000(.000,.000)
p4	131.2	17.5	0.05	.021(.009,.008)	.019(.009,.008)
p5	44.5	5.6	0.04	.020(.009,.008)	.014(.007,.007)
p6	5180.9	611.1	0.31	.207(.104,.104)	.155(.069,.063)
p7	14.3	2.0	0.00	.000(.000,.000)	.000(.000,.000)
p8	387676.3	46172.2	0.00	.000(.000,.000)	.020(.009,.007)
p9	12.1	6.8	0.44	.028(.001,.001)	.026(.001,.001)
p10	21.7	13.7	0.21	.015(.001,.001)	.016(.001,.000)
S-p8	384003.9	47414.4	0.00	.001(.001,.001)	.028(.012,.010)
ToB	396181.2	51613.1	27.62	10.95(.218,.215)	9.89(.175,.156)
$\frac{S2}{\sqrt{B}}$.077	.057	.148	.158(.907,.900)	.154(1.02,1.07)

 \Rightarrow p1($t\bar{t}$),p2(4bW),p3(3bjW),p4(2bcj),p5(2b2c),p6(2b2j),p7(b3j),p8(4j),p9($t\bar{t}b\bar{b}$),p10($t\bar{t}c\bar{c}$)

 \Rightarrow Signal events is very very low using 3b-tagged in 4fb⁻¹.

Siba Prasad Das (AHEP, IFIC)

Prospects for observing CP-violating Higgs at

э **SUSY 2010** 28/34

Sac

・ロト ・ 四ト ・ ヨト ・ ヨト

Higgs mass reconstruction at Tevatron

 \Rightarrow Higgs mass peak in simulation show up but with fractional events due to poor eff.

Sac

29/34

Other benchmark points at Tevatron

 \Rightarrow Good but again no more than 1 event in all benchmark points (factor of 5 final Tevatron combined Luminosity).

Siba Prasad Das (AHEP, IFIC)

Prospects for observing CP-violating Higgs at

SUSY 2010 30 / 34

590

• • • • • • • •

Signal and Backgrounds at Tevatron and LHC

 \Rightarrow Tevatron very hard and LHC in the vicinity of present LEP exclusion.

2b-tagging at Tevatron (minor changes, e.g., averaging the masses)

SUSY 2010 32 / 34

Tevatron with 20 fb⁻¹

	Significance: S/\sqrt{B}			
Signal(Bgs)	$N_b \ge 2$	$N_b \ge 3$		
S1(B)	4.12(31.93),1.	1.34(0.61),2.		
S3(B)	4.85(23.60),1.	1.31(0.63),2.		
S5(B)	5.95(33.48),1.	1.36(0.44),2.		
CPX-1(B)	6.12(48.79),1.	1.44(0.76),2.		

$$\begin{array}{ll} 0.6m_{h_1} & \leq m_{\rm pair} & \leq m_{h_1} + 5 \,\,{\rm GeV}\,;\\ 0.7m_{h_2} & \leq m_{4j} & \leq m_{h_2} + 10 \,\,{\rm GeV}\,. \end{array} \tag{11}$$

 \Rightarrow Double peaks and one would need to try different combinations for Higgs masses peaks.

イロト イロト イヨト イヨト

Summary and Outlook:

- LEP found no Higgs signal; hence put upper limits and exclusions.
- $p\bar{p} \rightarrow Wh_2 \rightarrow \ell + 4 jets(2b jets) + \not\!\!E_T$.
- b,c-tagging and low flavor-mistagging jet-by-jet basis in an event.
- All SM backgrounds; some of them are statistics limited.
- Identifying flavor of the jets and weight accordingly with tagging probability.
- Efficiencies are very poor at Tevatron and thus the events.
- Few ten events at LHC and S:B \sim 1:2, promising at 100 $\rm fb^{-1}.$
- $\bullet\,$ Tevatron very hard and at LHC might be show up \sim 115 GeV.
- Look elsewhere effect with Double peaks (although overestimates) with 20 fb⁻¹ is also not helping.
- Other channels and also in different models.

イロト イポト イヨト イヨト 二日