

Electroweak corrections to Neutralino decays in supersymmetric models with and without *R*-parity

Stefan Liebler

Universität Würzburg - Fakultät für Physik und Astronomie

GRK 1147

Institut für Theoretische Physik und Astrophysik Lehrstuhl für Theoretische Physik II SUSY 2010, 27 August 2010

Rheinische Friedrich-Wilhelms-Universität Bonn

Helmholtz Alliance

Why do we consider *R*-parity violation at NLO?

Motivation for *R*-parity violation \implies Use *L*-violating terms to explain current neutrino data (via NLO corrected Neutralino mass matrix). But:

In R-parity violating models the incomplete NLO correction

doesn't necessarily show the correlation to neutrino mixing angles as predicted on tree-level! We will discuss the following points:

- Introduction of the $\mu\nu$ SSM: Explanation of neutrino data
- Features of LSP decays
- Relation between decay modes and neutrino mixing angles at NLO
- Examples in the NMSSM

Superpotential W in R-parity violating SUSY

All considered models have in common:

$$W_{\text{all}} = \left(Y_u\right)_{ij} \widehat{Q}_i \widehat{H}_u \widehat{u}_j^c + \left(Y_d\right)_{ij} \widehat{H}_d \widehat{Q}_i \widehat{d}_j^c + \left(Y_e\right)_{ij} \widehat{H}_d \widehat{L}_i \widehat{e}_j^c$$

The superpotentials of the MSSM and NMSSM are then given by:

no bilinear $W_{\text{MSSM}} = W_{\text{all}} - \mu \widehat{H}_d \widehat{H}_u$ coupling! $W_{\text{MSSM}} = W_{\text{all}} - \lambda \widehat{\Phi} \widehat{H}_d \widehat{H}_u + \frac{1}{3!} \kappa \widehat{\Phi} \widehat{\Phi} \widehat{\Phi} \quad \Leftrightarrow \begin{array}{l} \mu = \lambda \langle \Phi \rangle \\ \text{after EWSB} \end{array}$

Starting with the bilinear model (ϵ_i -term), one can use a similar ansatz: no bilinear $W_{\text{BRPV}} = W_{\text{all}} - \mu \hat{H}_d \hat{H}_u - \epsilon_i \hat{L}_i \hat{H}_u$ coupling! $W_{\mu\nu\text{SSM}} = W_{\text{all}} - \lambda \hat{\nu}^c \hat{H}_d \hat{H}_u + (Y_\nu)_i \hat{L}_i \hat{H}_u \hat{\nu}^c + \frac{1}{3!} \kappa \hat{\nu}^c \hat{\nu}^c \hat{\nu}^c$ $\Leftrightarrow \mu = \lambda \langle \tilde{\nu}^c \rangle, \epsilon_i = (Y_\nu)_i \langle \tilde{\nu}^c \rangle$ after EWSB

 $\mu\nu$ SSM: Proposal by D.E. Lopéz-Fogliani and C. Muñoz, 2005

Use right-handed neutrino superfield $\hat{\nu}^c$ with $L_{\hat{\nu}^c} = -1$ to solve μ -problem and to generate effective ϵ_i -terms!

Since $L_{\hat{\nu}^c} = -1$ *R*-parity already broken before EWSB!

Why do these *L*-violating terms explain neutrino physics? In the basis

$$\left(\psi^{0}\right)^{T} = \left(\tilde{B}, \tilde{W}_{3}^{0}, \tilde{H}_{d}^{0}, \tilde{H}_{u}^{0}, \nu^{c}, \nu_{1}, \nu_{2}, \nu_{3}\right)$$

one can write $\mathcal{L}_{\mathsf{neutral}}^{\mathsf{mass}} = -\frac{1}{2} \left(\psi^0\right)^T \mathcal{M}_n \psi^0 + h.c.$ with

$$\mathcal{M}_n = \begin{pmatrix} M_n & \mathbf{m} \\ \mathbf{m}^T & \mathbf{0} \end{pmatrix}.$$

- M_n mixes the 5 heavy states
- m mixes the heavy states with the neutrinos

This leads to an effective neutrino mass matrix $m_{\rm eff}$, which is at NLO given by

$$\begin{split} (m_{\text{eff}})_{ij} &= -\left(\boldsymbol{m}^{T} \boldsymbol{M}_{n}^{-1} \boldsymbol{m}\right)_{ij} = a \Lambda_{i} \Lambda_{j} + b \left(\Lambda_{i} \epsilon_{j} + \epsilon_{i} \Lambda_{j}\right) + c \epsilon_{i} \epsilon_{j} \\ \text{with} \quad \Lambda_{i} &= \mu v_{i} + v_{d} \epsilon_{i} \\ \text{including} \quad \mu = \lambda \left< \tilde{\nu}^{c} \right> \quad \text{and} \quad \epsilon_{i} = \left(Y_{\nu}\right)_{i} \left< \tilde{\nu}^{c} \right> \quad . \end{split}$$

Remark: Present neutrino data

From neutrino oszillations: mass differences $\Delta m_{ij}^2 = m_i^2 - m_j^2$ between the different mass eigenstates and mixing angles:

parameter	best fit	2σ
$\Delta m_{21}^2 [10^{-5} \mathrm{eV}^2]$	$7.65^{+0.23}_{-0.20}$	7.25 - 8.11
$ \Delta m_{31}^2 [10^{-3} eV^2]$	$2.40^{+0.12}_{-0.11}$	2.18 - 2.64
$\tan^2 \theta_{sol}$	$0.438^{+0.046}_{-0.034}$	0.37 - 0.54
$\tan^2 \theta_{atm}$	$1.00^{+0.33}_{-0.21}$	0.64 - 1.70
$\tan^2 \theta_R$	$0.010\substack{+0.017\\-0.010}$	≤ 0.042

Schwetz, 2008, arXiv:0808.2016

Example for fitting the neutrino data with the parameters of (m_{eff}) :

$$\tan^2 \theta_{atm} \approx \left(\frac{\Lambda_2}{\Lambda_3}\right)^2, \quad \tan^2 \theta_{sol} \approx \left(\frac{\tilde{\epsilon}_1}{\tilde{\epsilon_2}}\right)^2, \quad \tan^2 \theta_R \approx \left(\frac{\Lambda_1}{\sqrt{\Lambda_2^2 + \Lambda_3^2}}\right)^2,$$

 \implies Alignment parameter Λ_i fits atmoshperic and ϵ_i solar scale.

What features do these *R*-parity violating models have?

- Neutrino data is explainable (\mathbb{R} via L-violating terms).
- Lightest supersymmetric particle (LSP) is not stable any more.
 ⇒ Decay length of mm up to several km ⇔ Displaced vertices
- Decay modes of LSP are correlated with the neutrino mixing angles.
- Special phenomenology in $\mu\nu$ SSM due to singlets states
- \implies Testable at future colliders (LHC and ILC)!

Correlation of LSP decays with neutrino mixing angles

Where does the correlation come from?

Consider the lightest neutralino $\tilde{\chi}_1^0 = \tilde{W}_3^0$ as LSP in the $\mu\nu$ SSM. Two-body decay: At tree level the left-handed W- $\tilde{\chi}_1^0$ - l_i -coupling reads:

$$\begin{aligned} \mathcal{L} &= \overline{l_i^-} \gamma^\mu \left(O_{Li} P_L + O_{Ri} P_R \right) \tilde{\chi}_1^0 W_\mu^- + h.c. \\ O_{Li} &\approx \frac{g}{\sqrt{2}} \left[\frac{g \Lambda_i}{\det_+} N_{12} - \left(\frac{\epsilon_i}{\mu} + \frac{g^2 v_u \Lambda_i}{2\mu \det_+} \right) N_{13} - \sum_{j=1}^5 N_{1j} \boldsymbol{\xi_{ij}} \right] \\ & \Longrightarrow \frac{Br \left(\tilde{\chi}_1^0 \to W^- \mu^+ \right)}{Br \left(\tilde{\chi}_1^0 \to W^- \tau^+ \right)} \propto \left| \frac{O_{L2}}{O_{L3}} \right|^2 = \left(\frac{\Lambda_2}{\Lambda_3} \right)^2 \approx \tan^2 \theta_{atm} \end{aligned}$$

The branching ratios of $\tilde{\chi}_1^0 \to W^{\pm} l_i$ with the Singlino $\tilde{\chi}_1^0 = \nu^c$ should on tree-level be proportial to Λ_i , but they aren't after the incomplete one-loop correction:

NLO corrections to LSP decays

Electroweak contributions:

Self energies:

Vertex corrections:

Shifting the vacuum structure:

NLO corrections to LSP decays

Electroweak contributions:

Absolute corrections for $\tilde{\chi}^0_1 \rightarrow l^+ W^-$

LSP properties in models with broken R-parity Neutrino mixing angles - $\tilde{\chi}_1^0 \rightarrow l^+ W^-$

Finally we can compare the ratios of decay widths $\tilde{\chi}_1^0 \rightarrow l^+ W^-$ with the neutrino mixing angles:

 \implies The full NLO corrections show the desired behaviour!

Example in the NMSSM

NLO corrections to $\tilde{\chi}^0_3 \rightarrow \tilde{\chi}^+_1 W^-$

Summary:

- Electroweak corrections using an on-shell scheme become very important in *R*-parity violating supersymmetry. (This doesn't imply that the perturbation series is senseless!)
- They preserve the correlations between decay modes and neutrino mixing angles as predicted on tree-level.
- They typcially provide corrections of up to 20% to the decays of Neutralinos and Charginos in the MSSM or NMSSM.
- Electroweak corrections using an on-shell scheme show the same technical behaviour as in the Standard Model.

Thank you for your attention!

Why not adding the following terms $W = W_{\text{MSSM/NMSSM}} + W_{R}$?

$$W_{\mathbf{R}} = \epsilon_{ab} \left(\frac{1}{2} \lambda_{ijk} \widehat{L}_i^a \widehat{L}_j^b \widehat{e}_k^c + \lambda'_{ijk} \widehat{L}_i^a \widehat{Q}_j^b \widehat{d}_k^c - \epsilon_i \widehat{L}_i^a \widehat{H}_u^b \right) + \frac{1}{2} \lambda''_{ijk} \widehat{u}_i^c \widehat{d}_j^c \widehat{d}_k^c$$

All terms of W_{R} are invariant under SUSY- and gauge transformations. \implies Strong restrictions from i.e. $p \rightarrow \pi^+ \nu / \pi^0 e$:

 \iff All terms in $W_{\mathbb{R}}$ are forbidden by *R*-parity $P_R = (-1)^{3(B-L)+2s}$, which is $P_R = +1$ for SM particles and $P_R = -1$ for SUSY partners.

Idea:

But allowing only *L*-violating terms explains neutrino physics. My work focuses on models with (effective) ϵ_i -terms.

Particle content of the $\mu\nu$ SSM

MSSM + right-handed neutrino superfield $\widehat{
u}^c$ with $L_{\widehat{
u}^c} = -1$

The new, *R*-parity violating terms induce a mixing of the following flavor eigenstates to mass eigenstates:

• Neutralinos $\left(\tilde{B}, \tilde{W}_3^0, \tilde{H}_d^0, \tilde{H}_u^0, \nu^c, \nu_1, \nu_2, \nu_3\right)$

 \implies 5 heavy states including Singlino ν^c and three light states

• Scalars/Pseudoscalars $(H_d^0, H_u^0, \tilde{\nu}^c, \tilde{\nu}_1, \tilde{\nu}_2, \tilde{\nu}_3)$

 \Longrightarrow Singlet scalar/pseudoscalar state $\tilde{\nu}^c$

Similar to BRPV and SRPV:

- Charginos $\left(\tilde{W}^{-}, \tilde{H}_{d}^{-}, e, \mu, \tau\right)$
- Charged Scalars $\left(H_{d}^{-}, H_{u}^{+}, \tilde{e}, \tilde{\mu}, \tilde{\tau}, \tilde{e}^{c}, \tilde{\mu}^{c}, \tilde{\tau}^{c}\right)$

Definition of the matrix $\xi = m^T M_n^{-1}$

The complete diagonalization of the neutral fermion mass matrix reads

$$\widehat{\mathcal{M}}_n = \mathcal{N}^* \mathcal{M}_n \mathcal{N}^{\dagger} \quad \text{with} \quad \mathcal{M}_n = \begin{pmatrix} M_n & m \\ m^T & 0 \end{pmatrix}$$

and can be done approximately with $\xi=m^TM_n^{-1}$ in the form

$$\mathcal{N}^* = \begin{pmatrix} N^* & 0\\ 0 & \mathcal{V}^T \end{pmatrix} \begin{pmatrix} 1 - \frac{1}{2}\xi^{\dagger}\xi & \xi^{\dagger}\\ -\xi & 1 - \frac{1}{2}\xi\xi^{\dagger} \end{pmatrix}$$

resulting in

$$\mathcal{N}^* \mathcal{M}_n \mathcal{N}^{\dagger} \approx \begin{pmatrix} N^* & 0\\ 0 & \mathcal{V}^T \end{pmatrix} \begin{pmatrix} M_n & 0\\ 0 & -m^T M_n^{-1} m \end{pmatrix} \begin{pmatrix} N^{\dagger} & 0\\ 0 & \mathcal{V} \end{pmatrix} \quad ,$$

where in the 1- $\mu\nu$ SSM the matrix ξ is given by

$$\xi_{ij} = K^j_\Lambda \Lambda_i - \frac{1}{\mu} \delta_{j3} \epsilon_i$$

with K_{Λ}^{j} neither proportional to v_{j} nor $(Y_{\nu})_{j}$.

Decay modes of the lightest neutralino $\tilde{\chi}_1^0$ as LSP

Most important decay modes:

decay	$m_{\tilde{\chi}^0_1} < m_W$	$m_W < m_{\tilde{\chi}^0_1} < m_Z$	$m_Z < m_{\tilde{\chi}^0_1}$
$\tilde{\chi}_1^0 \to Z \nu_i$			•
$\tilde{\chi}^0_1 ightarrow W^{\pm} l^{\mp}$		•	•
$\tilde{\chi}_1^0 \to S_i^0 \nu_j / P_i^0 \nu_j$	0	0	0
$ ilde{\chi}^0_1 ightarrow l_i^{\pm} l_j^{\mp} u_k$	•	•	•
$ ilde{\chi}^0_1 o q_i \bar{q}_j l_k$	•	•	•

Also present: $\tilde{\chi}_1^0 \rightarrow 3\nu$ or $\tilde{\chi}_1^0 \rightarrow q_i \bar{q}_j \nu_k$ Notation:

- \iff Link to neutrino physics
- $\circ \iff$ Masses of scalars and pseudoscalars crucial

Appendix

UV divergence and Renormalization scale

Let's have a look at the dependence of the UV parameter Δ and the renormalization scale Q for a NMSSM Neutralino decay.

Julius-Maximilians-

UNIVERSITÄT WÜRZBURG

 10^{9}

 10^7

 10^{5}

 Γ in GeV versus Δ

 $+\Gamma_1^V = \Gamma_1$

 $\Gamma_0 + \Gamma_1$

 $\Gamma_1^{CT}(\delta g) + \Gamma_1^{CT}(\delta N) + \Gamma_1^{CT}(\delta U, \delta V)$ $+ \Gamma_{1}^{CT}(\delta Z_W) + \Gamma_1^{CT}(\delta Z_0) + \Gamma_1^{CT}(\delta Z_{\pm})$

A massless photon produces IR divergences. Therefore one calculates with a photon with mass m_{γ} . But how to get rid of this dependence on an unphysical mass scale m_{γ} ?

ulius-Maximilians-

UNIVERSITÄT WÜRZBURG

What is missing?

We have to take into account the real corrections coming from the emission of a photon with mass $m_{\gamma}!$

Appendix

This can either be done by considering a cut-off energy for the real correction or by calculating the full hard photon emission, what was done here:

Appendix Gauge dependence

A last problem, which we want to address, are gauge dependences. As in electrodynamics the theory is invariant under gauge transformations. A commonly used gauge fixing are the so called R_{ξ} -gauges:

$$\mathcal{L}_{\text{fix}} = -\frac{1}{2\xi_{\gamma}} \left(\partial^{\mu} A_{\mu}\right)^{2} - \frac{1}{2\xi_{Z}} \left(\partial^{\mu} Z_{\mu} - M_{Z} \xi_{Z}^{\prime} \phi\right)^{2} \\ -\frac{1}{2\xi_{W}} \left(\partial^{\mu} W_{\mu}^{+} - iM_{W} \xi_{W}^{\prime} \phi^{+}\right) \left(\partial^{\mu} W_{\mu}^{-} + iM_{W} \xi_{W}^{\prime} \phi^{-}\right)$$

In the t'Hooft-Feynman-gauge the gauge parameters ξ_V and ξ'_V are choosen equal and appear at several stages in the calculation:

• propagators of the gauge bosons

$$G_V^{\mu\nu}(p^2) = \frac{g^{\mu\nu}}{p^2 - m_V^2} - (1 - \xi_V) \frac{p^\mu p^\nu}{(p^2 - m_V^2)(p^2 - \xi_V m_V^2)}$$

masses of the goldstone bosons and the ghosts

$$m_{G_V} = \boldsymbol{\xi}_V m_V^2$$
 and $m_{U_V} = \boldsymbol{\xi}_V m_V^2$

- scalar-ghost-ghost couplings
- \implies The final result should be independent of the parameters ξ_V !

Appendix

Gauge dependence

Gauge dependence

Total decay length and explicit branching ratios?

Higgs decays

Interesting feature: Decays of the lightest Higgs h^0

Considering the possible extension of bilinear R-parity breaking, one can compare displaced vertex signals, completely invisible final state branching ratios for LSP decays and lightest Higgs decays:

	Displaced vertex	Comment	BR(Invis.)	Higgs decays
BRPV	Yes	Visible	≤ 10 %	standard
SRPV	Yes/No	anti-correlates with invisible	any	non- standard (invisible)
$\mu\nu$ SSM	Yes/No	anti-correlates with non-standard Higgs	≤ 10 %	non- standard

Combining the NMSSM with BRPV results in the superpotential:

$$W_{\text{NMSSM}+\text{BRPV}} = W_{\text{all}} - \lambda \widehat{\Phi} \widehat{H}_d \widehat{H}_u - \epsilon_i \widehat{L}_i \widehat{H}_u + \frac{1}{3!} \kappa \widehat{\Phi} \widehat{\Phi} \widehat{\Phi}$$

This model is very hard to distinguish from the $\mu\nu$ SSM, since in both a light singlet scalar/neutralino can be present.