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Higgs boson has not been discovered yet 

Models without Higgs boson
•Technicolor
•Higgsless model
•.... and maybe many others

Some of them may have similar low energy phenomenology.
Any efficient way to treat them at a time?

 Introduction

Low energy effective theory
•Bottom up approach
•Phenomenology of many models can be treated at a time



How to construct an effective theory?

•Specify symmetry breaking pattern
•Use non-linear sigma field to treat (would-be) NG bosons

 Non-linear sigma field and NG boson

Ui = exp
(

i
τaπa

i

fi

)

If symmmetry is “gauge” symmetry, they are eaten by gauge 
bosons

We can construct models without physical scalar particles



v2

4
tr (DµU)† (DµU)

(qL)iU

(
(mu)ij 0

0 (md)ij

) (
(uR)j

(dR)j

)
+ · · ·

U = exp
(

i
τaπa

v

)

How about                                  case?

 An example

•3 would-be NG bosons as non-linear fields

•fermion sector is the same as SM with heavy Higgs boson
(One of the UV completions is SM) 

i, j : generation indices

SU(2)× U(1)→ U(1)



 Perturbative unitarity

Longitudinal gauge bosons scattering

•Perturbative unitarity is broken at around 1TeV

•New patricles should be below 1TeV
(otherwise model becomes non-perturtbative...)

•(In SM case, Higgs boson cancels the bad energy behavior)

(insert a figure here)
　 + crossed ∝ O(E2)



 Extra gauge bosons

Extra gauge bosons

　 ・・・ ∝ O(E0)

C.Csaki et.al  PRL92 (2004) 101802
Nomura JHEP11 (2003) 050

Barbieri et.al PLB591(2004) 141 

How to keep perturbative unitarity without Higgs boson?

•Infinite numer of particles       Extra dimension
•... but we do not need to start from extra dimension
•It is enough to a few extra gauge bosons to study low 
energy phenomenology

→
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U1 = exp
(

i
τaπa

1

f1

)
, U2 = exp

(
i
τaπa

2

f2

)

•Symmetry breaking pattern is

    (3 extra gauge bosons are added)

•We need 6 would be NG bosons

3site Model R.S.Chivukula et.al  Phys.Rev.D74:075011 (2006) 
M.Bando et.al Nucl.Phys. B259 (1985) 493

R.Casalbuoni et.al Phys.Lett.B155(1985) 95 

1
f2
1

+
1
f2
2

=
√

2GF =
1
v2

The simplest Higgsless model

g0 g1 g2

U1 U2

•Schematically this can be written as follows (moose notation)



(quark case) SU(2)0 SU(2)1 U(1)2
ψL0 2 1 1/6

ψL1, ψR1 1 2 1/6

ψR2 ≡
(

uR2

dR2

)
1 1 2/3

−1/3

Fermion sector

3site Model R.S.Chivukula et.al  Phys.Rev.D74:075011 (2006) 
M.Bando et.al Nucl.Phys. B259 (1985) 493

R.Casalbuoni et.al Phys.Lett.B155(1985) 95 

1
f2
1

+
1
f2
2

=
√

2GF =
1
v2

Ui = exp
(

i
τaπa

i

fi

)

−(qL0)
iU1(m1)ij(qR1)j − (qL1)

iM ij(qR1)j − (qL1)
iU2

(
(m2u)ij 0

0 (m2d)ij

) (
(u2R)j

(d2R)j

)
+ h.c.

i, j : generation indices

ψR2

ψL0 ψL1

ψR1

g0 g1 g2

U1 U2
L

R



3site Model R.S.Chivukula et.al  Phys.Rev.D74:075011 (2006) 
M.Bando et.al Nucl.Phys. B259 (1985) 493

R.Casalbuoni et.al Phys.Lett.B155(1985) 95 

W ′ Z ′

SM particles Extra particles
(

u c t
d s b

)(
νe νµ ντ

e µ τ

) (
u′ c′ t′

d′ s′ b′

) (
ν′

e ν′
µ ν′

τ

e′ µ′ τ ′

)

γ W Z G

ψL0 ψL1

ψR1 tR2, bR2

g0 g1 g2

U1 U2
L

R

matter contents
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ηij(ψL0)
i
[
γµ(iDµU1)U †

1

]
(ψL0)j

η = (m1M
−1)(m1M

−1)† + (loop corrections)

FCNC and 3site Model
Dimension 4 operator

i, j : generation indices

Origins of this operator 
• by integrating out heavy fermions (appriximately ψL1 and ψR1)
• loop corrections

This operator
•contributes to S parameter
•can make FCNC



ηdiag ≈ εideal
L ≡

√
2

MW

MW ′
= 0.28

(
400GeV
MW ′

)

K0-K0, B0
d-B0

d, B0
s -B0

s

Diagonal components of η

To avoid a large contribution to S parameter

R.S.Chivukula et.al
  Phys.Rev.D74:075011 (2006) 

How about off-diagonal conponents of η?

ηij(ψL0)
i
[
γµ(iDµU1)U †

1

]
(ψL0)j

Dimension 4 operator

i, j : generation indices

•ΔF = 2 processes
•LFV processes µ− → e−e+e−

τ− → µ−e+e−

τ− → e−τ+τ−



ηlepton ≈ (εideal
L )2

(
400GeV
MW ′

)2



1 < 0.00013 < 0.034

< 0.00013 1 < 0.036
< 0.034 < 0.036 1
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Bound on off-diagonal component of η

Experimental bound on off-diagonal component of η
(preliminary result...)

ηquark ≈ (εideal
L )2

(
400GeV
MW ′

)2



1 < 0.006 < 0.0285

< 0.006 1 < 0.202
< 0.0285 < 0.202 1





Almost proportional to identity
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 We focused on low energy effective theory without 
Higgs bosons

 3site model is the simplest Higgsless model

 There are three parameter making flavor structure, 
m1, M and m2u,d 

 η can make FCNC

 We found current experimental bound of off-
diagonal component of η 

Summary

Thank you for your attention!



BACK-UP SLIDES



Electroweak Precision 
Test



g3site
WWZ = gSM

WWZ

(
1 +

1
2c2

M2
W

M2
W ′

+ · · ·
)

L = −igSM
WZZ (1 + ∆κZ)W+

µ W−
ν Zµν

−igSM
WZZ

(
1 + ∆gZ

1

)
(W+

µνW−
ν −W−

µνW+
ν )Zν

= ∆κZ = ∆gZ
1 < 0.028

K.Hagiwara, R.D.Peccei, D.Zeppenfeld, and K.Hikasa,
 Nucl.Phys. B282,253(1987)

• constraint from WWZ coupling (LEP)

MW ′ ≥ 380GeV

W’ mass from WWZ coupling



αS = −4s2 MW

MW ′

gW ′ff

gWff
− α

24π

MW ′

MW

gW ′ff

gWff
ln

M2
W ′

M2
F

− α

24π
ln

M2
W ′

M2
F

+
α

12π
ln

Λ2

M2
Href

αT = −
√

2GF

64π2

(
Mt

MF

)2 M2
t(

MW
MW ′

)4 [
1− MW ′

MW

gW ′ff

gW ff

]2 −
3α

32πc2
ln

M2
W ′

M2
Href

− 3α

32πc2
ln

Λ2

M2
Href

•3site Higgsless model 

S, T parameter

•From these we make constraint for 

‣ KK fermion mass
‣ W’ff coupling 



αT = −
√

2GF

64π2

(
M2

t

M2
W

)2 (
M2

W ′

MF

)2

+ · · ·

Lower bound for KK fermion mass
•KK fermion mass vs KK gauge boson mass

Not allowed

Allowed

T.A, S.Matsuzaki, M.Tanabashi Phys.Rev.D78:055020,2008



αS = −4s2 MW

MW ′

gW ′ff

gWff
+ (1 loop)

Important for
• W’ decay to fermions
• DY process

Strongly restricted by EWPM

•LHS is 1-loop order 
•1st term in RHS comes from tree level contribution

W’ff coupling

gW ′ff ∼ 0•In qualiteativly
•In quantitatively 1loop calculation is needed



gW ′ff/gWff ∼ O(10−2)

gW ′ff != 0

MW ′ = 500GeVMW ′ = 380GeV

T.A, S.Matsuzaki, M.Tanabashi Phys.Rev.D78:055020,2008

                   gW ′ff/gWff gW ′ff/gWff

W’ff coupling
•1 loop level analysis
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Flavor structure



µ
d

dµ
m1 =

m1

(4π)2

[
−8g2

s −
1
6
g2
2 − 3

m2
1

f2
1

]

µ
d

dµ
M =

M

(4π)2

[
−8g2

s −
9
2
g2
1 −

1
6
g2
2 −

3
2

m2
1

f2
1

− m2
2u

f2
2

− m2
2d

f2
2

]

mij
1 ∝ δij , M ij ∝ δij

T.A, S Matsuzaki, M. Tanabashi, 
Phys.Rev.D78:055020,2008. Yukawa and mass terms

Assumption in original 3site paper

•Dangerous FCNC does not occur at tree level 
•Flavor violation is carried by m2u and m2d 

This assumption is unstable under the loop corrections

−(qL0)
iU1(m1)ij(qR1)j − (qL1)

iM ij(qR1)j − (qL1)
iU2

(
(m2u)ij 0

0 (m2d)ij

) (
(u2R)j

(d2R)j

)
+ h.c.



m2u = L2umdiag
2u R†

2u

m2d = L2dm
diag
2d R†

2d

m1 = L1m
diag
1 R†

1, M = LMMdiagR†
M ,

−qL0U1m
diag
1 qR1 − qL1(L

†
2dLMMdiagR†

MR1)qR1 − qL1U2

(
L†

2dL2umdiag
2u 0

0 mdiag
2d

) (
u2R

d2R

)
+ h.c.

Yukawa and mass terms

−(qL0)
iU1(m1)ij(qR1)j − (qL1)

iM ij(qR1)j − (qL1)
iU2

(
(m2u)ij 0

0 (m2d)ij

) (
(u2R)j

(d2R)j

)
+ h.c.

Mass param. can be diagonalized by biunitary transformation

After redefinition of fermion field.....

So generally we can teke m1 and m2d (or m2u) as diagonal
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is also diagonal, and from eqn. (64) we have

M
−1

m2u ∝ V †
CKM∆u . (66)

Using eqs. (65) and (66) in the last fourth and fifth lines of the effective Lagrangian in eq. (6), we see that the absence
of right-handed flavor-changing neutral currents to this order (as found in eq. (55) in [1]) is a general result valid
so long as m1 is flavor-universal (and proportional to the identity). Also, the flavor structure of the charged-current
operator in line six of eq. (6) is entirely given by VCKM , as found in [1].

B. General Scenario: FCNC For Flavor-Non-Universal m1

We turn now to the phenomenological constraints on the flavor structure of the three-site model for more general
m1, M, m2u,d. We will start by investigating the tree-level limits on the off-diagonal elements of the flavor matrix η
that are set by data on neutral meson mixing.

1. Bounds on Left-Handed FCNCs

We begin with what we will see are the potentially most severely constrainted interactions: the flavor-changing
left-handed neutral-boson couplings contained in the third line of Eq. (6). Retracing the analysis of lepton-flavor-
violation in SECTION, leads us to conclude that at low energies, Z and Z ′ exchange between quarks gives rise to
four-fermion operators of the form

LL−FCNC → ±
1

2!
·
(

1

2

)2

· ηijηk!

(

e2

4s2
θc

2
θ

1

M2
Z

+
g̃2

M2
Z′

)

(q̄i
Lγµqj

L)(q̄k
Lγµq!

L) , (67)

here the first factor (1/2!) accounts for the two identical currents, the next ((1/2)2) accounts for the T3 charges of the
external fermions, the ηijηk! the elements of the matrix η in eqn. (36), and the two factors in the parantheses arise
from the neutral-boson couplings derived above. Since M2

Z′ ≈ g̃2v2 [7], we find

e2

4s2
θc

2
θ

1

M2
Z

≈
g̃2

M2
Z′

≈
1

v2
, (68)

where v = (
√

2GF )−1/2 ≈ 246 GeV, and therefore

LL−FCNC → ±
ηijηk!

4v2
(q̄i

Lγµqj
L)(q̄k

Lγµq!
L) . (69)

Ref. [10] has derived constraints on a variety of ∆F = 2 four-fermion operators. Particularly relevant here are their
limits on the coefficients (C1

j ) of the following operators:

C1
K(s̄LγµdL)(s̄LγµdL) (70)

C1
Bd

(b̄LγµdL)(b̄LγµdL) (71)

C1
Bs

(b̄LγµsL)(b̄LγµsL) . (72)

The numerical values of the limits they obtain in the down-quark sector are:

−9.6 × 10−13 GeV −2 < '(C1
K) < 9.6 × 10−13 GeV−2 (73)

−4.4 × 10−15 GeV −2 < ((C1
K) < 2.8 × 10−15 GeV−2 (74)

|C1
Bd

| < 2.3 × 10−11 GeV−2 (75)

|C1
Bs

| < 1.1 × 10−9 GeV−2 . (76)

Applying these constraints to eqn. (69) we find that

−(4.82× 10−4)2 < '(ηsd)
2 < (4.82 × 10−4)2 (77)

−(3.26× 10−5)2 < ((ηsd)
2 < (2.60 × 10−5)2 (78)

|ηbd|2 < (2.3 × 10−3)2 (79)

|ηbs|2 < (1.63 × 10−2)2 (80)
ηquark ≈ (εideal

L )2
(

400GeV
MW ′

)2



1 < 0.006 < 0.0285

< 0.006 1 < 0.202
< 0.0285 < 0.202 1





Left-handed FCNC
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is also diagonal, and from eqn. (64) we have

M
−1

m2u ∝ V †
CKM∆u . (66)

Using eqs. (65) and (66) in the last fourth and fifth lines of the effective Lagrangian in eq. (6), we see that the absence
of right-handed flavor-changing neutral currents to this order (as found in eq. (55) in [1]) is a general result valid
so long as m1 is flavor-universal (and proportional to the identity). Also, the flavor structure of the charged-current
operator in line six of eq. (6) is entirely given by VCKM , as found in [1].

B. General Scenario: FCNC For Flavor-Non-Universal m1

We turn now to the phenomenological constraints on the flavor structure of the three-site model for more general
m1, M, m2u,d. We will start by investigating the tree-level limits on the off-diagonal elements of the flavor matrix η
that are set by data on neutral meson mixing.

1. Bounds on Left-Handed FCNCs

We begin with what we will see are the potentially most severely constrainted interactions: the flavor-changing
left-handed neutral-boson couplings contained in the third line of Eq. (6). Retracing the analysis of lepton-flavor-
violation in SECTION, leads us to conclude that at low energies, Z and Z ′ exchange between quarks gives rise to
four-fermion operators of the form

LL−FCNC → ±
1

2!
·
(

1

2

)2

· ηijηk!

(

e2

4s2
θc

2
θ

1

M2
Z

+
g̃2

M2
Z′

)

(q̄i
Lγµqj

L)(q̄k
Lγµq!

L) , (67)

here the first factor (1/2!) accounts for the two identical currents, the next ((1/2)2) accounts for the T3 charges of the
external fermions, the ηijηk! the elements of the matrix η in eqn. (36), and the two factors in the parantheses arise
from the neutral-boson couplings derived above. Since M2

Z′ ≈ g̃2v2 [7], we find

e2

4s2
θc

2
θ

1

M2
Z

≈
g̃2

M2
Z′

≈
1

v2
, (68)

where v = (
√

2GF )−1/2 ≈ 246 GeV, and therefore

LL−FCNC → ±
ηijηk!

4v2
(q̄i

Lγµqj
L)(q̄k

Lγµq!
L) . (69)

Ref. [10] has derived constraints on a variety of ∆F = 2 four-fermion operators. Particularly relevant here are their
limits on the coefficients (C1

j ) of the following operators:

C1
K(s̄LγµdL)(s̄LγµdL) (70)

C1
Bd

(b̄LγµdL)(b̄LγµdL) (71)

C1
Bs

(b̄LγµsL)(b̄LγµsL) . (72)

The numerical values of the limits they obtain in the down-quark sector are:

−9.6 × 10−13 GeV −2 < '(C1
K) < 9.6 × 10−13 GeV−2 (73)

−4.4 × 10−15 GeV −2 < ((C1
K) < 2.8 × 10−15 GeV−2 (74)

|C1
Bd

| < 2.3 × 10−11 GeV−2 (75)

|C1
Bs

| < 1.1 × 10−9 GeV−2 . (76)

Applying these constraints to eqn. (69) we find that

−(4.82× 10−4)2 < '(ηsd)
2 < (4.82 × 10−4)2 (77)

−(3.26× 10−5)2 < ((ηsd)
2 < (2.60 × 10−5)2 (78)

|ηbd|2 < (2.3 × 10−3)2 (79)

|ηbs|2 < (1.63 × 10−2)2 (80)

M. Bona et al. [UTfit Collaboration]
JHEP 0803, 049 (2008)Constraint (UT fit collaboration)

3site model case

Almost proportional to identity
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1. Bounds on η!12

We begin with limits arising from searches for the decay µ → 3e, where BR(µ− → e−e+e−) < 1.0 × 10−12 at 90%
CL [11]. This is easy to scale from ordinary muon decay, where the interaction

Lµ−decay = 2
√

2GF (µ̄LγµνLµ)(ν̄Leγ
µeL) (44)

yields the width

Γ(µ → eνµν̄e) =
G2

F m5
µ

192π3
. (45)

Hence, since BR(µ → eνµν̄e) $ 100%, from eqn. (43) we find8

BR(µ → 3e)

BR(µ → eνµν̄e)
≈

1

2
·
[

η!12

2

(

−
1

2
+ sin2 θ

)]2

< 1.0 × 10−12 . (46)

This yields the bound

|η!12| < 1.05 × 10−5 (90% CL) (47)

$ 1.3 × 10−4(εideal
L )2

(

MW ′

400 GeV

)2

. (48)

A similar bound can be obtained from µ Pb → e Pb conversion9 [16]. In terms of the effective Lagrangian

Lµ−e = −
√

2GF (ēLγµµL)

[

g0
V + g1

V

2
ūγµu +

g0
V − g1

V

2
d̄γµd

]

, (49)

these authors quote

|g0
V | < 10−6 & |g1

V | < 5 × 10−5 . (50)

In terms of our parameters, we find

g0
V = η!12

(

−
1

3
sin2 θ

)

(51)

g1
V = η!12

(

1 − sin2 θ
)

, (52)

and |g0
V | yields the comparable constraint

|η!12| < 1.3 × 10−5 . (53)

2. Bound on η!13

Corresponding to the bound BR(τ → eµµ) < 2.3 × 10−8 at 90% CL, we have

BR(τ → eµµ)

BR(τ → eντ ν̄e)
=

[

η!13

2

(

−
1

2
+ sin2 θ

)]2

<
2.3 × 10−8

BR(τ → eντ ν̄e)
. (54)

Using the fact that BR(τ → eντ ν̄e) $ 18%, we find

|η!13| < 2.7 × 10−3 (90% CL) (55)

$ 3.4 × 10−2(εideal
L )2

(

MW ′

400 GeV

)2

. (56)

8 Here the factor of 1

2
accounts for the identical particles in the µ → 3e final state.

9 There are more recent and stronger constraints, but this one was the easiest to extract

ηlepton ≈ (εideal
L )2

(
400GeV
MW ′

)2



1 < 0.00013 < 0.034

< 0.00013 1 < 0.036
< 0.034 < 0.036 1
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Left-handed FCNC

9

1. Bounds on η!12

We begin with limits arising from searches for the decay µ → 3e, where BR(µ− → e−e+e−) < 1.0 × 10−12 at 90%
CL [11]. This is easy to scale from ordinary muon decay, where the interaction

Lµ−decay = 2
√

2GF (µ̄LγµνLµ)(ν̄Leγ
µeL) (44)

yields the width

Γ(µ → eνµν̄e) =
G2

F m5
µ

192π3
. (45)

Hence, since BR(µ → eνµν̄e) $ 100%, from eqn. (43) we find8

BR(µ → 3e)

BR(µ → eνµν̄e)
≈

1

2
·
[

η!12

2

(

−
1

2
+ sin2 θ

)]2

< 1.0 × 10−12 . (46)

This yields the bound

|η!12| < 1.05 × 10−5 (90% CL) (47)

$ 1.3 × 10−4(εideal
L )2

(

MW ′

400 GeV

)2

. (48)

A similar bound can be obtained from µ Pb → e Pb conversion9 [16]. In terms of the effective Lagrangian

Lµ−e = −
√

2GF (ēLγµµL)

[

g0
V + g1

V

2
ūγµu +

g0
V − g1

V

2
d̄γµd

]

, (49)

these authors quote

|g0
V | < 10−6 & |g1

V | < 5 × 10−5 . (50)

In terms of our parameters, we find

g0
V = η!12

(

−
1

3
sin2 θ

)

(51)

g1
V = η!12

(

1 − sin2 θ
)

, (52)

and |g0
V | yields the comparable constraint

|η!12| < 1.3 × 10−5 . (53)

2. Bound on η!13

Corresponding to the bound BR(τ → eµµ) < 2.3 × 10−8 at 90% CL, we have

BR(τ → eµµ)

BR(τ → eντ ν̄e)
=

[

η!13

2

(

−
1

2
+ sin2 θ

)]2

<
2.3 × 10−8

BR(τ → eντ ν̄e)
. (54)

Using the fact that BR(τ → eντ ν̄e) $ 18%, we find

|η!13| < 2.7 × 10−3 (90% CL) (55)

$ 3.4 × 10−2(εideal
L )2

(

MW ′

400 GeV

)2

. (56)

8 Here the factor of 1

2
accounts for the identical particles in the µ → 3e final state.

9 There are more recent and stronger constraints, but this one was the easiest to extract

10

3. Bound on η!23

Finally, the bound BR(τ → µee) < 2.7 × 10−8 at 90% CL yields

BR(τ → µee)

BR(τ → eντ ν̄e)
=

[

η"23

2

(

−
1

2
+ sin2 θ

)]2

<
2.7 × 10−8

BR(τ → eντ ν̄e)
. (57)

and hence we find

|η"23| < 2.9 × 10−3 (90% CL) (58)

$ 3.6 × 10−2(εideal
L )2

(

MW ′

400 GeV

)2

. (59)

D. Summary

Combining all of these 90% CL bounds, we find that the matrix η" is of the form:

η" = (εideal
L )2

(

MW ′

400 GeV

)2




1 < 0.00013 < 0.034
< 0.00013 0.937 − 1.043 < 0.036
< 0.034 < 0.036 0.89 − 1.012



 (60)

and is therefore essentially constrained to be proportional to the identity.

V. FLAVOR STRUCTURE OF THE QUARK SECTOR AT TREE LEVEL

We now investigate the size and flavor structure of tree-level neutral- and charged-current processes in the quark
sector. Without loss of generality, we may write the most general quark mass matrices as

Mu = m1M
−1

m2u = Λu∆uP †
u , (61)

for up-quarks, and

Md = m1M
−1

m2d = Λd∆dP
†
d , (62)

for down-quarks. Here ∆u,d are the diagonal up- and down-quark mass matrix, with all masses positive, and Λu,d and
Pu,d are arbitrary unitary matrices.10 Just as in the standard model, the SU(3)L × SU(3)uR × SU(3)dR subgroup
of the three-site flavor symmetry group is sufficient to diagonalize either the mass matrix of up-quarks but not both
simultaneously. For the purposes of this section, we will follow the lead of [1] and work in a basis in which the down-
quark mass matrix is diagonal: this choice is convenient for analyzing the flavor-changing neutral currents among
down-quarks, and therefore for K and B mixing. In this basis, from eqn. (5), we have

Md = ∆d (63)

Mu = (Λ†
dΛu)∆u ≡ V †

CKM∆u , (64)

where VCKM is the usual quark-mixing matrix.

A. Restricted Scenario: Flavor-Universal m1

Before considering the general case we consider what happens when, as assumed in [7], m1 is proportional to the
identity. In this case, using eqn. (63) we see that the matrix

M
−1

m2d ∝ ∆d , (65)

10 Here and throughout this note we assume the freedom to make arbitrary phase redefinitions of the quark fields. In principle, due to the
axial anomaly, these redefinitions will be accompanied by a change in the QCD θ parameter.
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Lepton sector


