Gauge-mediated supersymmetry breaking with generalized messenger sector at LHC JHEP 1001:027, 2010 [arXiv:0910.5555 [hep-ph]] Hidetoshi Kawase (Nagoya Univ.)

Collaborated with

Nobuhiro Maekawa (Nagoya Univ.) Kazuki Sakurai (Cambridge Univ.)

Outline

- 1. Introduction
- 2. Generalized messenger fields
- 3. $X + \bar{X}$ messenger scenario
- 4. $Q + \bar{Q}$ messenger scenario
- 5. Summary

1. Introduction

```
Low-energy supersymmetry (SUSY)
```

Standard model \Rightarrow Minimal SUSY standard model (MSSM)

Appealing points:

- Cancellation of the quadratic divergence
- Dark matter (R-parity)
- Gauge coupling unification

Unsolved problem: SUSY breaking mechanism

The mass spectrum of the sparticles is highly dependent on the mechanism which provides the soft SUSY breaking terms!

Gauge-mediated SUSY breaking (GMSB)

The SUSY breaking effects are communicated to the MSSM fields through the interaction with the messenger fields.

Gaugino mass

$$M_a \simeq n_a \left(\frac{\alpha_a}{4\pi}\right) \frac{F_\Phi}{m_\Phi}$$

$$m_{\tilde{f}}^2 \simeq \sum_{a=1}^3 n_a C_a^f \left(\frac{\alpha_a}{4\pi}\right)^2 \frac{F_{\Phi}^2}{m_{\Phi}^2}$$

n_a: Dynkin index

 n_a is determined by the quantum number of the messenger field.

2. Generalized messenger fields

The messenger fields affect the running of the gauge couplings.

$$\frac{d}{d\ln Q}\alpha_a^{-1} = -\frac{b_a}{2\pi} + \mathcal{O}(\alpha^2) \qquad b_a \to b_a' = b_a + n_a$$

 \Rightarrow The Gauge coupling unification may be spoiled!

How to preserve the gauge coupling unification

• If the messengers are degenerate among the SU(5) multiplet, $n_1 = n_2 = n_3$ \Rightarrow GUT relation $M_1(m_Z) : M_2(m_Z) : M_3(m_Z) \sim 1 : 2 : 6$

• Another scenario:

If the masses of messenger fields are controlled by some symmetry, coupling unification may be retained even with different n_a s.

Anomalous U(1) GUT (GUT with anomalous U(1) gauge symmetry)

Under the assumptions;

- The (simple) unification group $G \supset SU(3)_C \times SU(2)_L \times U(1)_Y$.
- G-singlet operator O_i with anomalous U(1) charge o_i obtains the VEV

$$\langle O_i \rangle \sim \begin{cases} \lambda^{-o_i} \Lambda & \text{for } o_i \leq 0 \\ 0 & \text{for } o_i > 0 \end{cases} \qquad (\lambda \ll 1, \Lambda: \text{ cutoff}).$$

• At low-energy, the MSSM is realized.

the gauge coupling unification is naturally explained, even if the mass spectrum of superheavy fields does not respect SU(5) symmetry.

N. Maekawa and T. Yamashita, Phys. Rev. Lett. 90, 121801 (2003).

 \Rightarrow If one of the messengers gives the larger contribution compared with others, the situation of different n_a s is naturally realized in anomalous U(1) GUT.

Typical multiplets in SU(5) GUT

$$\bar{\mathbf{5}} = \bar{D} + L, \ \mathbf{10} = Q + \bar{U} + \bar{E}, \ \mathbf{24} = G + W + X + \bar{X}$$

If the SU(5) multiplets are degenerated, $n_1 = n_2 = n_3$ is satisfied.

	$(SU(3)_C, SU(2)_L)_{U(1)_Y}$	n_1	n_2	n_3
$\overline{Q+\bar{Q}}$	$({f 3},{f 2})_{1/6}+(ar{f 3},{f 2})_{-1/6}$	1/5	3	2
$U + \bar{U}$	$({f 3},{f 1})_{2/3}+(ar{f 3},{f 1})_{-2/3}$	8/5	0	1
$D + \bar{D}$	$({f 3},{f 1})_{-1/3}+(ar{f 3},{f 1})_{1/3}$	2/5	0	1
$L + \bar{L}$	$({f 1},{f 2})_{-1/2}+({f 1},{f 2})_{1/2}$	3/5	1	0
$E + \bar{E}$	$({f 1},{f 1})_{-1}+({f 1},{f 1})_1$	6/5	0	0
G	$({f 8},{f 1})_0$	0	0	3
W	$(1,3)_0$	0	2	0
$X + \bar{X}$	$({f 3},{f 2})_{-5/6}+(ar{f 3},{f 2})_{5/6}$	5	3	2

We investigate the scenario where one pair of the messenger fields dominates the contribution of GMSB.

Typical multiplets in SU(5) GUT

$$\bar{\mathbf{5}} = \bar{D} + L, \ \mathbf{10} = Q + \bar{U} + \bar{E}, \ \mathbf{24} = G + W + X + \bar{X}$$

If the SU(5) multiplets are degenerated, $n_1 = n_2 = n_3$ is satisfied.

	$(SU(3)_C, SU(2)_L)_{U(1)_Y}$	n_1	n_2	n_3
$Q + \bar{Q}$	$({f 3},{f 2})_{1/6}+(ar{f 3},{f 2})_{-1/6}$	1/5	3	2
$U + \bar{U}$	$({f 3},{f 1})_{2/3}+(ar{f 3},{f 1})_{-2/3}$	8/5	8	1
$D + \bar{D}$	$({f 3},{f 1})_{-1/3}+(ar{f 3},{f 1})_{1/3}$	2/5	8	1
$L + \bar{L}$	$({f 1},{f 2})_{-1/2}+({f 1},{f 2})_{1/2}$	3/5	1	8
$E + \bar{E}$	$({f 1},{f 1})_{-1}+({f 1},{f 1})_1$	6/5	8	8
G	$({f 8},{f 1})_0$	8	8	3
W	$(1,3)_0$	8	2	8
$X + \bar{X}$	$({f 3},{f 2})_{-5/6}+(ar{f 3},{f 2})_{5/6}$	5	3	2

We investigate the scenario where one pair of the messenger fields dominates the contribution of GMSB.

 $\Rightarrow X + \overline{X}$ and $Q + \overline{Q}$ are the candidates.

The impact of the different n_a s is apparent for the gaugino masses. Bino: M_1 Wino: M_2 Gluino: M_3

GUT relation: $M_1: M_2: M_3 \simeq 1:2:6$

- $X + \overline{X}$ messenger scenario $n_1 = 5, n_2 = 3, n_3 = 2 \implies M_1 : M_2 : M_3 \simeq 5 : 6 : 12$
- $Q + \bar{Q}$ messenger scenario $n_1 = 1/5, n_2 = 3, n_3 = 2 \implies M_1 : M_2 : M_3 \simeq 1/5 : 6 : 12$

By the measurement of gaugino masses at LHC, it may be possible to discriminate these models from the one which satisfy the GUT relation.

- $M_1 \simeq m_{\tilde{\chi}_1^0}$ (Bino \tilde{B}) \simeq (Lightest neutralino $\tilde{\chi}_1^0$)
- $M_2 \simeq m_{\tilde{\chi}_2^0}$ (Wino \tilde{W}) \simeq (Second lightest neutralino $\tilde{\chi}_2^0$)
- $M_3 \simeq m_{\tilde{g}}$ (Gluino \tilde{g})

3. $X + \overline{X}$ messenger scenario

 $n_1 = 5, \quad n_2 = 3, \quad n_3 = 2$ $\Rightarrow M_1(m_Z) : M_2(m_Z) : M_3(m_Z) \sim 5 : 6 : 12$

Mild hierarchy among the gaugino masses is achieved. (GUT relation: $M_1(m_Z): M_2(m_Z): M_3(m_Z) \sim 1:2:6$)

Discrimination of the model at the LHC

The lightest SUSY particle (LSP) is gravitino in GMSB model.

- \Rightarrow The next to LSP (NLSP) is important in collider physics.
- Case 1. and Case 2. Neutralino $\tilde{\chi}_1^0$ NLSP
- Case 3. Stau $\tilde{\tau}_1$ NLSP

In our model points, NLSP is long-lived. \Rightarrow NLSPs penetrate the detector.

Model points

If we measure the smallness of the difference between M_1 and M_2 compared with the overall mass scale of the sparticles, the deviation from the GUT relation can be checked!

- For the stau $\tilde{\tau}_1$ NLSP scenario, (Case 3.) 4-momentum of $\tilde{\tau}_1$ can be measured by the muon system.
 - G. Polesello and A. Rimoldi, ATL-MUON-99-006
 - \Rightarrow The invariant masses of sparticles can be measured directly.

• For the neutralino NLSP scenario, (Case 1. and Case 2.) NLSP is invisible and we need some technique to measure the masses of the sparticles. The endpoint of the invariant mass is determined from the kinematics.

1) Dilepton invariant mass measurement

Small m_{ll}^{\max} is characteristic in the $X + \bar{X}$ messenger scenario. $(m_{\tilde{\chi}_1^0} \simeq M_1, m_{\tilde{\chi}_2^0} \simeq M_2 \text{ and } (M_2 - M_1)/M_1 \ll 1)$ The mass scale of the sparticles can be roughly measured by m_{T2} variable.

2) m_{T2} measurement

For the process $p p \rightarrow Y Y \rightarrow N j N j$, the maximal value of m_{T2} variable is given as a function of the masses of Y and N.

(Y: Parent particle, N: invisible particle, j: visible particle)

4. $Q + \bar{Q}$ messenger scenario

$$n_1 = 1/5, \quad n_2 = 3, \quad n_3 = 2$$

 $\Rightarrow M_1(m_Z) : M_2(m_Z) : M_3(m_Z) \sim 1 : 30 : 60$

Sparticles with only $U(1)_Y$ charge (i.e., bino and right-handded slepton) are very light compared with other sparticles.

Model point

 $M_1\simeq m_{\tilde{\chi}^0_1}\ll m_{\tilde{\chi}^0_2} \text{ is characteristic} \\ \text{in } Q+\bar{Q} \text{ messenger scenario.} \\$

(1) Dilepton invariant mass measurement

 $\Rightarrow M_1 \ll M_2$ can be checked!

5. Summary

- Most of the GMSB models considered so far are based on messengers which respect SU(5) sym. $(n_1 = n_2 = n_3)$
- We consider the models of messengers with different n_a s.
- For $X + \overline{X}$ messenger scenario, small mass splitting between bino and wino is predicted.
- For $Q + \overline{Q}$ messenger scenario, all sparticles other than bino and right-handded slepton are considerably heavier.
- These scenario may be discriminated from the models which satisfy the GUT relation of the gaugino masses through the search at the LHC.

	Case 1	Case 2	Case 3
${ ilde g}$	910	1049	1054
\tilde{u}_L	1017	1168	1163
\tilde{u}_R	946	1086	1089
$ ilde{d}_L$	1022	1173	1169
\tilde{d}_R	905	1047	1063
${ ilde b}_1$	894	1036	1053
\tilde{b}_2	929	1073	1085
\tilde{t}_1	704	831	879
\tilde{t}_2	957	1097	1107
$ ilde{ u}_l$	564	621	556
$\tilde{ u}_{ au}$	562	619	555
\tilde{e}_L	569	626	561
\tilde{e}_R	478	497	403
$ ilde{ au}_1$	473	492	399
$ ilde{ au}_2$	568	625	561
$ ilde{\chi}_1^0$	395	464	459
$ ilde{\chi}_2^0$	439	514	508
$ ilde{\chi}^0_3$	530	595	562
$ ilde{\chi}_4^0$	571	640	621
$\tilde{\chi}_1^{\pm}$	433	506	496
$\tilde{\chi}_2^{\pm}$	568	636	618
h^0	114	115	114
H^0	766	852	783
A^0	765	851	783
H^{\pm}	770	856	787

\tilde{g}	1181	$\tilde{\chi}_1^0$	16
$ ilde{u}_L$	1326	$ ilde{\chi}_2^0$	586
\tilde{u}_R	1165	$ ilde{\chi}_3^0$	682
\tilde{d}_L	1331	$ ilde{\chi}_4^0$	720
\tilde{d}_R	1163	$\tilde{\chi}_1^{\pm}$	586
$ ilde{b}_1$	1150	$\tilde{\chi}_2^{\pm}$	720
\tilde{b}_2	1221	h^0	116
\tilde{t}_1	867	H^0	954
\tilde{t}_2	1240	A^0	954
$ ilde{ u}_l$	680	H^{\pm}	958
$\tilde{\nu}_{\tau}$	679		
\tilde{e}_L	684		
\tilde{e}_R	118		
$\tilde{ au}_1$	96		
$\tilde{ au}_2$	682		