

Search for neutral supersymmetric Higgs bosons in di-tau and bbb(b) final states in ppbar collisions at $\sqrt{s} = 1.96$ TeV

Fabrice Couderc For the DØ Collaboration

23rd of August 2010

SUSY 2010 Bonn, Deutschland

- ✓ Introduction
- ✓ MSSM Higgs searches
 - inclusive $h \rightarrow \tau \tau$ search
 - associated hb production
 - bbb final state
 - TTb final state
 - DØ combination
- ✓ Conclusions & Prospects

- MSSM: exactly 2 Higgs doublets coupling to down quarks (vev v_d), and up quarks (vev v_u). $\tan\beta = v_u/v_d$ NB: $\tan\beta \sim 35 = m_t/m_b$ is appealing (large $\tan\beta$)
- After EW breaking: 5 physical states
 - 3 neutral Higgs bosons: h/H (CP-even) and A (CP-odd)
 convention: m_h < m_H, h/H/A generically denoted Φ
 - 2 charged Higgs bosons: H[±]
- At tree level: EW breaking controlled by M_A and tanβ.
 Radiative corrections make it more model dependent
- High tanβ regime:
 - h/A or H/A are degenerate in mass
- $\sigma_{\text{prod}} \ge 2!$
- coupling to b quarks enhanced by $tan\beta$
- neutral Higgs: $\mathcal{B}(\phi \to b\overline{b}) \approx 90 \%$ and $\mathcal{B}(\phi \to \tau^+ \tau^-) \approx 10 \%$

Susy Higgs production

Fabrice Couderc

Golden modes

 $h \rightarrow \tau \tau$ modes are much less sensitive to radiative corrections (i.e. less model dependent) than $h \rightarrow bb$

Fabrice Couderc

Golden modes

 $h \rightarrow \tau \tau$ modes are much less sensitive to radiative corrections (i.e. less model dependent) than $h \rightarrow bb$

Fabrice Couderc

di-tau mode challenges

 τ -lepton channels peculiarities:

- several channels to combine
- relatively "soft" decay products (multijet background, triggering...)

di-tau mode challenges

 τ -lepton channels peculiarities:

- several channels to combine
- relatively "soft" decay products (multijet background, triggering...)

Fabrice Couderc

di-tau mode challenges

- several channels to combine
- relatively "soft" decay products (multijet background, triggering...)

Need to reconstruct τ hadronic decay (τ_h)

type 1: trk + cal (no EM cluster)

type 2: trk + cal (with EM cluster)

di-tau mode challenges

τ -lepton channels peculiarities:

- several channels to combine
- relatively "soft" decay products (multijet background, triggering...)

Need to reconstruct τ hadronic decay (τ_h)

type I:	
trk + ca	al
<mark>(no EM</mark>	cluster)

<mark>type 2:</mark> trk + cal (with EM cluster)

large jet q background π^0

 NN_{τ} based on isolation, shower shape, trk-cal consistency variables

 NN_{τ} performances (not including τ -reco efficiency) @ DØ

- efficiency (τ leptons): 60/75/65 %
- fake rate (light jets): 3.0/2.5/2.5 %

Fabrice Couderc

glilli

g XXXXXXX

• Combine the following channels: $\tau_{\mu}\tau_{h}$ (2.2 fb⁻¹), $\tau_{e}\tau_{h}$ (1.0 fb⁻¹), $\tau_{\mu}\tau_{e}$ (1.0 fb⁻¹)

run2a (1fb⁻¹) result: Phys. Rev. Lett. **101**, 071804 (2008)

- $\tau_h \tau_h$: not considered, difficult to trigger on and overwhelmed by multijets background
- Search for 2 high p_T isolated leptons, opposite sign
- Escaping neutrinos info is partially recovered by using ET
- Look for a bump in:

DØ Preliminary (1-2.2 fb⁻¹)

7

- Data are compatible with background
- Set limits: higgs width effect negligible

$bh \rightarrow bbb search$

• $b\Phi \rightarrow bbb$ selection:

- ▶ 3 to 5 high pT jets
- at least 3 b-tagged jets

- trigger on multijets events + impact parameter b-tag (60-70% efficient)
- Need a powerful b-tagger to reject the abundant multijet background

b-tagging performances @ DØ

- efficiency (b quarks): 50% / 70%
- fake rate (light jets): 0.5% / 4.5%

Background modelling

- ✓ total normalisation unknown, signal to background discrimination relies only on dijet mass shape.
- ✓ background shape obtained from data using the 2 b-tagged sample (no signal contamination) via:

$$S_{3tag}^{exp}(M_{bb}, \mathcal{D}) = \frac{S_{3tag}^{MC}(M_{bb}, \mathcal{D})}{S_{2tag}^{MC}(M_{bb}, \mathcal{D})} \times S_{2tag}^{DATA}(M_{bb}, \mathcal{D})$$

Fabrice Couderc

Data samples:

- Run 2a: I fb⁻¹ PRLI01, 221802 (2008)
- Run 2b: I.6 fb⁻¹

- likelihood-discriminant cut to improve sensitivity.
- use dijet mass distribution as final variable

Data compatible with background. Place limits:

narrow width approximation + tree level enhancement (model independent limit):

$$\frac{\sigma_{MSSM}}{\sigma_{SM}} = 2 \times tan^2\beta$$

^{/c²]} SuSy 2010, MSSM Higgs searches @ DØ

MSSM interpretation

1.2

0.8

max mixing, μ =0 GeV _____ tan β =40 : Γ =5 GeV

 $\tan\beta=60$: $\Gamma^{\text{P}}=12$ GeV

 $\tan\beta=80:\Gamma^{\phi}=22 \text{ GeV}$

tanβ=100 : Γ =34 GeV

Very sensitive to radiative correction High $tan\beta$: signal width effect not negligible (compared to the experimental mass resolution).

In some scenarios bbb competitive with $h \rightarrow \tau \tau$

Fabrice Couderc

Fabrice

- Channel complementary to
 - bΦ→bbb: lower Br but much lower background, less sensitive to radiative correction
 - $\Phi \rightarrow \tau \tau$: more sensitive near the Z peak
- Specific discriminant against main backgrounds: t t (D_{tt}), multijets (D_{MJ}) and $Z \rightarrow \tau \tau$ (NN_b)
- Final variable: $D_f = (NN_b \times D_{tt} \times D_{MJ})^{1/3}$

 $b\phi \rightarrow b\tau\tau$ search

[update]: $b\tau_{\mu}\tau_{h}$: 4.3 fb⁻¹

bφ→bττ results

model independent limit

Data compatible with background

Narrow width approximation + Tree level enhancement (remember ττ channels are little sensitive to radiative corrections)

At low mass: most stringent limits to date obtained in a direct search

published result PRL 2.7 fb⁻¹: 104, 151801 (2010)

Fabrice Couderc

DØ combo: limits

	Integrated		
Channel	Run IIa	Run IIb	Final Variable
$h ightarrow au_e au_{ m had}$	1.0	-	visible mass
$h ightarrow au_\mu au_{ m had}$	1.0	1.2	visible mass
$h ightarrow au_e au_\mu$	1.0	-	visible mass
$bh o b au_\mu au_{ m had}$	-	1.2	1D-discriminant
$bh ightarrow bb \overline{b}$	1.0	1.6	M_{bb}

Reaching the interesting region of $tan\beta \approx 40$

Fabrice Couderc

- Results with up to 4.3 fb⁻¹ reported here
- DØ reaching the interesting region of tan $\beta \approx 40,$ down to tan $\beta \approx 30$ at low $M_A.$
- Expected soon:
 - $hb \rightarrow bbb search update$
 - inclusive $h \rightarrow \tau \tau$ update
- SM searches can also be used to constrain SM-like Higgs in MSSM:
 - See P. Draper et al. arXiv:0905.4721v2
 - Potential to probe a significant region of the MSSM phase space

Much more statistics to come (10 fb⁻¹ by end of 2011), stay tuned!

combination update improved technique (new b-tagger with better performances...)

SuSy 2010, MSSM Higgs sea

- Results with up to 4.3 fb⁻¹ reported here
- DØ reaching the interesting region of tan $\beta \approx 40,$ down to tan $\beta \approx 30$ at low $M_A.$
- Expected soon:
 - $hb \rightarrow bbb search update$
 - inclusive $h \rightarrow \tau \tau$ update
- SM searches can also be used to constrain SM-like Higgs in MSSM:
 - See P. Draper et al. arXiv:0905.4721v2
 - Potential to probe a significant region of the MSSM phase space

Much more statistics to come (10 fb⁻¹ by end of 2011), stay tuned!

improved technique (new b-tagger with better performances...)

combination update

SuSy 2010, MSSM Higgs sea

- SM searches can be used as well:
 - h has SM like couplings on a large portion of the MSSM phase space
 - ► H becomes increasingly SM-like when M_A decreases.
 - based on the work by P. Draper et al. arXiv:0905.4721v2:
 - they consider SM Higgs exclusion and translate it into MSSM constraints for 4 MSSM scenarii
 - furthermore they combined with $\Phi \rightarrow \tau \tau$ searches
 - use 10 fb⁻¹ + improvements in SM anlysis (25%)

Fabrice Couderc

Wine & Cheese seminar

Multi purpose detector: μ id, EM id, jets, taus, \not{E}_T , b-jets tagging

High tanß regime

MSSM dedicated Higgs searches at the TeVatron usually takes place in the high tan β regime:

- h/A or H/A are degenerate in mass $\sigma_{\text{prod}} \times 2!$
- coupling to b quarks enhanced by $tan\beta$

High tanß regime

MSSM dedicated Higgs searches at the TeVatron usually takes place in the high tan β regime:

- h/A or H/A are degenerate in mass $\sigma_{\text{prod}} \times 2!$
- coupling to b quarks enhanced by tanβ
- neutral Higgs: $\mathcal{B}(\phi \to b\overline{b}) \approx 90 \%$ and $\mathcal{B}(\phi \to \tau^+ \tau^-) \approx 10 \%$
- charged Higgs: if $m_{H^+} < m_{top}$: $\mathcal{B}(H^+ \to \tau^+ \nu_{\tau}) \approx 1$

Why looking to the MSSM?

Fabrice Couderc

Best channel: $T_{\mu}T_{h}$

• Multijets estimated from 2 samples:

Best channel: $T_{\mu}T_{h}$

- Multijets estimated from 2 samples:
 - I. non isolated leptons: either one or both

Best channel: $T_{\mu}T_{h}$

- Multijets estimated from 2 samples:
 - I. non isolated leptons: either one or both

2. like sign sample
T⁺

- Multijets estimated from 2 samples:
 - I. non isolated leptons: either one or both

 In W MC, T_h fake is also corrected for

$h \rightarrow \tau \tau$ selections:

1. $\tau_{\mu}\tau_{h}$ and $\tau_{e}\tau_{h}$:

opposite charged leptons $p_T[h] > 15 \text{ GeV/c } \& |\eta_h| < 2$ NN_{τ} cuts applied $p_T[\mu/e] > 16.5 \text{ GeV/c } \& |\eta_{\mu}| < 2; |\eta_e| < 2.5$ μ/e isolated $M_T[W] < 40 \text{ GeV/c}^2$ + additional kinematic cuts to remove W

- + additional cuts to remove $Z \rightarrow ee$
- + muon veto to kill $Z \rightarrow \mu \mu$

2. $\tau_{\mu}\tau_{e}$:

opposite charged leptons $p_T[e] > 12 \text{ GeV/c } \& |\eta_{\mu}| < 1.6$ $p_T[\mu] > 10 \text{ GeV/c } \& |\eta_e| < 2.0$ μ/e isolated $M_T[W]min < 10 \text{ GeV/c}^2$ $p_T[e] + p_T[\mu] + mE_T > 65 \text{ GeV/c}$ $\Delta \phi min[e/\mu ; mE_T] < 0.3$ $H_T < 70 \text{ GeV/c}$

Final state	BR (%)	decay type	notation in this talk	detector properties
e υ υ	17.8 %	leptonic	Τe	EM id
μυυ	17.4 %	leptonic	τμ	muon id
π/Κ υ	11.6 %	I-prong	$\tau_{\rm h}$	l track + calo
$\pi/K \upsilon + \ge I \pi^0$	37.1 %	I-prong	τ _h	l track + calo
$\pi\pi\pi$ υ + \geq 0 π^{0}	15.2 %	3-prong	τ _h	3 tracks + calo

τ identification

T signal: distinguish 3 tau types π^{\pm} TRK + CAL Type 1 τ± no TRK, but EM sub-cluster Type 2 TRK + CAL > 1 TRK + Type 3 wide CAL cluster τ[±] NB: electrons are T_h type2

τ identification

T signal: distinguish 3 tau types π^{\pm} TRK + CAL Type 1 T[±] no TRK, but EM sub-cluster Type 2 TRK + CAL > 1 TRK + Type 3 wide CAL cluster τ= NB: electrons are T_h type2 jets mimic Ts Jet-Background FM subcluster **Fabrice Couderc**

build a NN based on shower shape and isolation variables.

NN cut effi	τ _h Ι	$\tau_h 2$	$\tau_h 3$
jets	3 %	2.5 %	2.5 %
τ	60 %	75 %	65 %

hb signal modelling

Signal simulation: pythia bg → bH but spectator b quark kinematics reweighted to NLO (MCFM)

If data are compatible with background:

- I. place limits in a model independent way
- place limits into 4 different scenarii use *FeynHiggs* or *CPSuperH* to get the MSSM cross sections

M. S. Carena, S. Heinemeyer, C. E. M. Wagner, and G. Weiglein, Eur. Phys. J. C 26, 601 (2003).

Fabrice Couderc

- Fermiophobic Higgs
 - Search channels:
 - WH \rightarrow WWW or H $\rightarrow \gamma\gamma$

• NMSSM: gg \rightarrow h \rightarrow aa, a \rightarrow $\mu\mu$ or $\tau\tau$

- If $m_a < 2m_\tau$: $h \rightarrow aa \rightarrow \mu\mu\mu\mu$
 - Two pairs of collinear muons
- If $m_a > 2m_\tau$: $h \rightarrow aa \rightarrow \mu\mu\tau\tau$
 - Back-to-back μ and τ pairs

Charged Higgs

- If $m_{H^+} < m_{top}$: t \rightarrow H⁺b opens
- H⁺ decays are very different from W⁺ decays:
 - \checkmark high tanβ: B(H⁺→τ v) = I
 - ✓ leptophobic: $B(H^+ \rightarrow c \bar{s}) = I$

- If $m_{H^+} < m_{top}$: $t \rightarrow H^+ b$ opens
- H⁺ decays are very different from W⁺ decays:
 - \checkmark high tanβ: B(H⁺→τ υ) = I
 - ✓ leptophobic: $B(H^+ \rightarrow c \bar{s}) = I$
- Changes the different channels contributions: compare all the measured cross sections

 \boldsymbol{q}

MSSM interpretation

arXiv:0908.1811, submitted to PLB

```
method based only on cross
section ratios:
arXiv:0903.5525, submitted to PLB
```

Another strategy: The topological method PRL 102, 191802 (2009)

CPX scenario

CPX benchmark scenario:

- coupling to s-quark dramatically enhanced compare to b
- strangephilic Higgs bosons
- $B(H^+ \rightarrow cs) \approx I$

Lee, Peters, Pilaftsis, and C. Schwanenberger, arXiv:0909.1749

CPX scenario

CPX benchmark scenario:

- coupling to s-quark dramatically enhanced compare to b
- strangephilic Higgs bosons
- $B(H^+ \rightarrow cs) \approx I$

Lee, Peters, Pilaftsis, and C. Schwanenberger, arXiv:0909.1749

