Cosmic Ray Anomalies from the MSSM?

Cotta, Conley, Gainer, Hewett, Rizzo 1007.5520

"Anomalies" in the Data

Pamela e+ Fraction

Pamela anti-p Fraction

Fermi e⁻ + e⁺

- Could be due to astrophysical objects, such as pulsars...
- Could be detector effects

"Anomalies" in the Data: Could be Dark Matter!

Pamela e+ Fraction

Pamela anti-p Fraction

Fermi e⁻ + e⁺

Could it be MSSM?

• Thermal Cosmology: $\langle \sigma v \rangle \sim 10^{-26} \text{ cm}^3 \text{ s}^{-1}$

This is too small!!!

- Requires a Fudge Boost Factor ~ 10⁴ (Halo uncertainties not that large...)
- Other possibilities (within SUSY)
 - Resonances, Sommerfeld enhancement
 - Non-thermal Cosmology
 - NMSSM
- The Goal for Today:
 - Explore uncertainties in CR propagation
 - Explore broader MSSM parameter space

Electron CR Spectra

Fermi e⁻ + e⁺

Pamela e+ Fraction

Parameterizing CR Propagation

We scan over these parameters

Par. Type	Par. Names	Constrained By	Also Note These are fixed at the beginning and never floated thereafter z _h and D _{0xx} are "degenerate," we scan z _h . Radio clocks: z _h >~2Kpc. ô expected in ~ 0.3-0.8. Here ô=0.33		
Proton Source	N _n , γ _n	Proton Abs. Flux (AMS01,ATIC,BESS, CAPRICE)			
Diffusion	z _h , D _{0m} , ô, V _A , V _e	B/C (HEAO-3, ATIC, CREAM)			
Electron Source	Ne, ye	e+/(e++e-), (e++e-)			
B-Field	N _B	e+/(e ⁺ +e ⁻), (e ⁺ +e ⁻) Diffuse γ's	N _B ~ few μG		
ISRF	(u _{FIR} +u _{optical}), u _{optical} /u _{FIR}	e+/(e ⁺ +e ⁻), (e ⁺ +e ⁻) Diffuse γ's	(u _{FIR} ,u _{optical}) ~ default, Scan similar to Blandford et al. (0908.1094)		

e+/(e++e), (e++e), pbar/p, fit above 10GeV

Consistency with Data: Best-fit 524 CR Models

Consistency with Data: Best-fit 524 CR Models

Supersymmetry Without Prejudice

Berger, Gainer, JLH, Rizzo, arXiv:0812.0980

- Study Most general CP-conserving MSSM
 - Minimal Flavor Violation
 - Lightest neutralino is the LSP thermal cosmology
 - First 2 sfermion generations are degenerate w/ negligible Yukawas
 - No GUT, SUSY-breaking assumptions
- → pMSSM: 19 real, weak-scale parameters scalars:

```
m_{Q_1}, m_{Q_3}, m_{u_1}, m_{d_1}, m_{u_3}, m_{d_3}, m_{L_1}, m_{L_3}, m_{e_1}, m_{e_3} gauginos: M_1, M_2, M_3
```

tri-linear couplings: A_b , A_t , A_τ

Higgs/Higgsino: μ , M_A , tan β

Perform Random Scan in pMSSM

Linear Priors

10⁷ points – emphasize moderate masses

```
100 \text{ GeV} \le m_{sfermions} \le 1 \text{ TeV}
50 \text{ GeV} \le |M_1, M_2, \mu| \le 1 \text{ TeV}
100 \text{ GeV} \le M_3 \le 1 \text{ TeV}
\sim 0.5 M_Z \le M_A \le 1 \text{ TeV}
1 \le tan\beta \le 50
|A_{t,b,\tau}| \le 1 \text{ TeV}
```

<u>Theory + Exp't</u> <u>Constraints</u>

- Theoretical requirements on spectra
- EW Precision observables
- B-Physics
- Collider searches
- Astrophysical measurements

68.5k models survive these constraints!

X² Fit to CR Data

SUSY improves the quality of the fit!

Minimum Boost for Best-Fit

Best Fits:

 X^2 /dof = 1.54 With boosts of ~ 70-150

CR Data with Best-Fit pMSSM/CR Model

DM Annihilation properties of top ten pMSSM models

Leptophillic!

Mod	$m_{\tilde{\chi}_1^0} \; (\mathrm{GeV})$	R	B	$B\langle\sigma v\rangle R^2$	$\langle \sigma v \rangle_{\tau} / \langle \sigma v \rangle$	$\langle \sigma v \rangle_b / \langle \sigma v \rangle$	$\langle \sigma v \rangle_Z / \langle \sigma v \rangle$	$\langle \sigma v \rangle_W / \langle \sigma v \rangle$
1	101	0.64	115	1.23	0.46	0.03	0.13	0.37
2	107	0.99	72	1.27	0.71	0.09	0.05	0.14
3	132	0.91	99	1.55	0.68	0.11	0.08	0.11
4	122	0.73	102	1.39	0.81	0.07	0.05	0.07
5	116	0.64	163	1.27	0.85	0.02	0.05	0.08
6	105	0.67	104	1.15	0.90	0.05	0.01	0.02
7	114	0.74	187	1.21	0.95	0.05	< 0.01	< 0.01
8	103	0.80	119	1.07	0.997	< 0.01	< 0.01	< 0.01
9	105	0.68	179	1.08	0.999	< 0.01	< 0.01	< 0.01
10	132	1.03	156	1.34	0.996	< 0.01	< 0.01	< 0.01

Spin-Independent Direct Detection Predictions

Sample Best-Fit pMSSM Spectra

Conclusions

- We have performed a scan over the variables parametrizing the uncertainties inherent in CR propagation
- We coupled this scan with a broad scan over the 19-dimensional pMSSM parameter space
- We found that the addition of the pMSSM improved the fit to the CR data
- The requisite thermal Boost factors are lowered to ~100
- Best fit models are leptophillic with large annihilation rates to tau pairs