

Searches for SUSY in All-Hadronic Events and Studies of MET

Christopher Rogan California Institute of Technology

On Behalf of the CMS Collaboration

SUSY 10, 23-28 Aug 2010, University Bonn, Bonn

SUSY in All-Hadronic + MET Final State

Consider R-parity Conserving SUSY:

- Strongly interacting sparticles (squarks, gluinos) dominate production
- ♦ If Heavier than sleptons, gauginos etc.
 ⇒ cascade decays to LSP
- Long decay chains and large mass differences between SUSY states ⇒ Many high p_T objects observed (leptons, jets)
- ♦ R-parity conservation ⇒ LSP stable (DM candidate) and sparticles pairproduced

MET + jets + X final state

Consider R-parity Conserving SUSY:

 Strongly interacting sparticles (squarks, gluinos) dominate production The Search:

- ♦ Require high p_T jets
 - At least three jets with $p_T > 50 \text{ GeV/c}$
- ♦ If Heavier than sleptons, gauginos etc.
 ⇒ cascade decays to LSP
- Long decay chains and large mass differences between SUSY states ⇒ Many high p_T objects observed (leptons, jets)
- ♦ R-parity conservation ⇒ LSP stable (DM candidate) and sparticles pairproduced

MET + jets + X final state

- Veto isolated leptons
 - Rejects $W(\ell\nu) + X$ backgrounds with real MET while maintaining efficiency for non-isolated leptons from SUSY decays
- Require azimuthal angle of MET to point away from jets
 - Reduces QCD background with MET resulting from jets mis-measurements
- Require high H_T and MET

Consider R-parity Conserving SUSY:

The Search:

- ♦ Require high p_T jets
 - At least three jets with p_T > 50 GeV/c
- Veto isolated leptons
 - Rejects $W(\ell\nu) + X$ backgrounds with real MET while maintaining efficiency for non-isolated leptons from SUSY decays
- Require azimuthal angle of MET to point away from jets
 - Reduces QCD background with MET resulting from jets mis-measurements
- Require high H_T and MET

Discovery Potential

Measuring/predicting SM backgrounds

• $Z(\nu\nu) + \text{jets}, W(\ell\nu) + X \text{ (including } top + X), QCD, \cdots$

Understanding lepton, jets and MET reconstruction

- Angular resolution of jets/MET reconstruction in context of QCD rejection
- Controlling/predicting MET tail in presence of instrumental backgrounds, noise, calorimeter non-compensation

Jets and MET in CMS

Calorimeter Jets:

Jets clustered from ECAL and HCAL combined cells (CaloTowers)

Calo MET:

Calculated from vectorial sum of CaloTowers

Track Jets:

Jets clustered from tracks of charged particles, independent of calorimetric measurement

Missing transverse momentum (MPT):

Calculated from charged particle tracks

JME-10-006

Default Jet Clustering Algorithm: Anti- K_T with R = 0.5				
lat Dive Track Late				

<u>Jet-Plus-Track Jets</u> (JPT):

Tracks matched with Calo jets ⇒ expected calorimeter responses subtracted ⇒ replaced with track measurement

Track corrected (Tc) MET:

Calo MET appended with tracks' momentum, minus expected calo depositions

JME-09-002 JME-09-010

10

Particle Flow (PF) Jets:

Geometric linking between tracks and calorimeter depositions ⇒ "particle candidates" ⇒ calibrations applied depending on "particle" hypothesis ⇒ jets clustered from particles

PF MET:

MET calculated from "particle" list

PFT-10-002

Orthogonal sub-detector measurements used to cross-check results and combined to improve reconstruction performance

MET Event Cleaning

Basic event cleaning strategy identifies anomalous signals based on (see back-up slide):

- Unphysical charge sharing of neighboring channels
- Timing/pulse-shape information

Effective cleaning procedure removes anomalous signals in MET distribution tail

MET Transverse Thrust Decomposition

Event transverse thrust axis calculated using reconstructed tracks in event

$$\text{TT} = \max_{\phi_{\text{TT}}} \frac{\sum_{i} p_{T}^{i} \cos(\phi_{\text{TT}} - \phi_{i})}{\sum_{i} p_{T}^{i}}$$

MET components parallel and perpendicular to TT axis probe different contributions to MET resolution:

> Perpendicular component more sensitive to calorimetric noise

 <u>Parallel</u> component more sensitive to detector response to particles

Both components well-modeled for calorimetric MET in simulation

MET resolution parallel and perpendicular to TT axis

Christopher Rogan - SUSY 10, 23-28 Aug 2010, Bonn

Christopher Rogan - SUSY 10, 23-28 Aug 2010, Bonn

MET in Events with Pile-up

MET distribution wider in MET in 1- and 2- vertex events with 2 primary minimum bias events vertices (pile-up) Number of Events / GeV 2 Vertices, Data Vertex, Data 104 Re-weight 2-vertex 2 Vertex Data, reweighted wrt. ΣE_r events events such that CMS preliminary 2010 $\sqrt{s} = 7TeV$ 10^{3} the SumE_T distribution matches that of 1-vertex 10² events 10 After re-weighting, MET distribution agrees 20 60 80 100 40 0 between 1-vertex and Calo ∉_T [GeV] 2-vertex events MET distribution's dependence on SumE_T consistent between 1-vertex and 2-vertex events

JME-10-003

Jet p_T Resolution

CMS preliminary

√s=7 TeV L=73 nb⁻¹

Di-jet Asymmetry Method $\sqrt{s}=7$ TeV L=73 nb⁻¹ CMS preliminary Entries CaloJets (Anti-k_R=0.5) p₊^{3rd} < 10 GeV _ 0 < lηl < 1.4 100 < p^{ave} < 130 GeV 0.3 1 $0 < |\eta| < 1.4$ CaloJets(Anti-k_ R=0.5) α(p₁/b_{REF}) / φ₁/b₇^{FEF}> 1.0 Select QCD di-jet events MC Calo Jets and calculate - data Asymmetry (MC) 10⁻¹ Asymmetry (data) <u>"Di-jet asymmetry", A, as a</u> function of p_T^{ave}: 10⁻² iet1 10⁻³ A = $\overline{p_T^{ ext{jet1}}}$ (data-MC) data [%] 20 10 -10 -20 10-4 -0.5 0.5 $p_T^{\text{ave}} \equiv (p_T^{\text{jet1}} + p_T^{\text{jet2}})/2$ 50 100 200 300 400 1000 Asymmetry p_ [GeV] $\sqrt{s}=7$ TeV L=73 nb⁻¹ **CMS** preliminary √s=7 TeV L=73 nb⁻¹ A distribution can be used CMS preliminary Entries 0 < hl < 1.4 100 $< p_{-}^{ave} < 130 \text{ GeV}$ $p_{-}^{3rd} < 10 \text{ GeV}$ PFJets (Anti-k_R=0.5) to infer p_{τ} resolution PFJets (Anti-k_ R=0.5) 0.3 0 < |m| < 1.4MC $r(p_T/p_T^{REF}) / < p_T/p_T^{REF}$ data Jets p_T 10⁻¹ Asymmetry (MC) = $\sqrt{2\sigma_A}$ Asymmetry (data) 0.2 p_T Ц 10⁻² 0.1 QCD background in MET tail 10⁻³ can be estimated by using measured jet resolution (data-MC) data [%] 20 10 10-4 function to smear events -0.5 0.5 -10 -20 1000 p_{_} [GeV] 300 400 Asymmetry 50 100 200 and then re-calculating MET 14 Christopher Rogan - SUSY 10, 23-28 Aug 2010, Bonn

CMS expects to have sensitivity to SUSY in the MET+jets+X final state surpassing that of TEVATRON quite soon

- Data-driven approaches for measuring/predicting SM backgrounds in place and already being executed with 7 TeV data
- Performance of jet and MET reconstruction under active study, with preliminary results showing excellent agreement with expectations
- STAY TUNED: already > 10x more data than presented here recorded - potentially exciting times are approaching rapidly...

351	TUTE OF	
3		3
2 1891	¥.	HN
E.	6部	3
15	MPC	Ĭ
7	UV	

References

- CMS NOTE-2010-008 -- The CMS physics reach for searches at 7 TeV
- CERN-LHCC-2006-021 -- CMS Physics TDR: Volume II, Physics Performance
- CMS DP-2010-014 -- Jet and MET Commissioning Results from 7 TeV Collision Data
- JME-10-003 -- CMS Jet Performance in pp Collisions at 7 TeV
- JME-10-004 -- Missing Transverse Energy Performance in Minimum-Bias and Jet Events from Proton-Proton Collisions at 7TeV
- JME-10-006 -- Commissioning of Track Jets in pp Collisions at 7 TeV
- JME-09-002 -- The Jet Plus Tracks Algorithm
- JME-09-010 -- Performance of Track Corrected Missing ET in CMS
- SUS-10-001 -- Performance of Methods for Data-Driven Background Estimation in SUSY Searches
- SUS-08-002 -- Data-Driven Estimation of te Invisible Z Background to the SUSY MET Plus Jets Search
- EWK-10-002 -- Measurements of Inclusive W and Z Cross Sections in pp Collisions
- EWK-09-006 -- W+Njets/Z+Njets ratio
- EWK-08-006 -- Measurement of the production of Z bosons in association with jets in pp Collisions at 10 TeV
- PFT-10-002 -- Commissioning of the Particle-flow Event Reconstruction in Minimum-Bias and Jet Events from pp Collisions at 7 TeV

http://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults

BACK-UP SLIDES

Anomalous Signal Cleaning

ECAL spikes

- Remove rechits with ET > 5 GeV and "1-E4/E1 < 0.95"</p>
- ➡ Remove out-of-time rechits (t ∈ [-4, +2] ns)

HF anomalous signals

- Cut on (L-S)/(L+S) for short fibers
- Topological isolation cut for long fibers based on S9/S1
- Remove rechits with "faulty" pulse-shape

HBHE noise in RBX/HPD

Rejects events with high energy/high hit multiplicity anomalous noise

JME-10-004 ∫ *L* dt = 11.7 nb⁻¹

Beam Halo MET

CaloMET for events before the beam-halo filter is applied and for beam-halo tagged events in MinBias or Jet15 trigger events

Beam halo tagged event with highest CaloMET (224 GeV)

CSC beam halo filter:

Efficiency 65% for MET > 15 GeV (beam halo MC)

Mis-tag efficiency 1.5 x 10⁻⁷ (minimum bias MC)

Christopher Rogan - SUSY 10, 23-28 Aug 2010, Bonn

Christopher Rogan - SUSY 10, 23-28 Aug 2010, Bonn

MET Reconstruction in CMS

EWK-09-006

W+jets/top separation

• In the W fit, two different 'categories' are defined: a 'heavy flavor' (hf) enriched $(\theta_{hf} = 1)$ and depleted region $(\theta_{hf} = 0)$, dominated by signal and single top + $t\bar{t}$, respectively.

$$L_W = \frac{e^{-(N_S + N_B + N_t)}}{(N_S + N_B + N_t)!} \prod_i^{N_{evt}} \{(1 - \theta_{hf})[\epsilon_S \cdot N_S \cdot P_S(m_{T,i}^W) + \epsilon_B \cdot N_B \cdot P_B(m_{T,i}^W) + \epsilon_t \cdot N_t \cdot P_t(m_{T,i}^W)] + \theta_{hf}[\epsilon_S \cdot N_S \cdot P_S(m_{T,i}^W) + \epsilon_B \cdot N_B \cdot P_B(m_{T,i}^W) + \epsilon_t \cdot N_t \cdot P_t(m_{T,i}^W)] \}$$

 The hf enriched region is defined by a cut on variables related to the impact parameters of tracks matched to jets in the event, D_{xy}^{evt} and D_{sz}^{evt}. Control samples designed to measure these distributions

Z(vv)+jets Background Estimation

Christopher Rogan - SUSY 10, 23-28 Aug 2010, Bonn