

Searches for SUSY in All-Hadronic Events with Exclusive Jets

Christian Autermann, Universität Hamburg on behalf of the CMS collaboration

SUSY10, Bonn, August 24, 2010

Bunde für Bild und Fo

Bundesministerium für Bildung und Forschung

UH CMS

Searches for SUSY in Exclusive Jet Final States:

Overview

- Introduction: SUSY in all-hadronic final states
- α_{T} definition: di-jets and multi-jet final states
- $_{\bullet}$ Validation: the $\alpha_{_{T}}$ variable in the 7 TeV data
- Background: estimation from data using eta-uniformity

Christian Autermann SUSY10

The CMS detector

3

Introduction

4

SUSY topology: (example)

- Pair production of SUSY sParticles,
 - e.g. \tilde{q} \tilde{q} , requires m(\tilde{q})<m(\tilde{g})
- Assumed R-parity conservation leads to 2 jets + MET
- Squark and neutralino massmeasurements in this channel possible with high luminosity
- In general, longer cascades with more than one jet (+MET)

Analysis requirements: At least two jets.

5

Traditional SUSY searches require large MET and search for an excess over the SM in the tail

- → requires extraordinary good understanding of detector and SM-background
- \rightarrow previous talk by C. Rogan

- Alternative analysis not based on MET:
- Dimension-less variable $\alpha_T = \frac{P_{T2}}{M_T}$
- characterizes momentum balance in the event
- allows to suppress multi-jet QCD background based on L. Randall, D. Tucker-Smith, PRL **101** 221803 (2008).

→ CMS follows both strategies

CMS PAS SUS-2010-001

0.5

0.5

1.5

3+x JPT jets

2.5

2.5

 α_{τ}

QT.

E

data/sim

0.5

0.5

2.5

2.5

 α_{T}

 α_{T}

data/sim

1.5

1.5

2 JPT jets

uncertainties!

CMS PAS SUS-2010-001

Œ

CMS

Background prediction using the eta-uniformity

11

- SUSY events tend to be more central compared to the SM-background (QCD multi-jet, tt̄, Z→vv̄)
- The fraction of SM-events surviving the α_{τ} >0.55 cut compared to the rejected is uncorrelated to η of the leading jet

This allows to factorize the SM-background in the signal region:

Measure $f(\alpha_{\tau} > 0.55)$ at high eta and extrapolate to the central region.

12

Closure test: Comparing estimation with MC simulation.

Standard Model background only (QCD multijet, $t\bar{t}$, $Z \rightarrow v\bar{v}$)

Standard Model + Low mass SUSY (SUSY LM1, QCD multijet, tī, Z→vv)

CMS PAS SUS-2008-005

UΗ

CMS

Even if randomly jets are removed (ID inefficiencies) the eta-uniformity of the fraction of QCD events that fail the α_{-} >0.55 cut is preserved

Christian Autermann

SUSY10

13

Analysis requires HT>350 GeV, but for the background-factorization, events with low HT could be used:

- → higher statistics, especially in region $\alpha_{\tau} > 0.55$, since the steepness of falloff of α_{τ} depends on HT.
- → however, the failure-fraction $f(\alpha_{\tau} > 0.55)$ of QCD events must be a decreasing function of HT, so that the low HT control sample gives an upper bound on the background prediction

Validate HT dependence in data

An exponential decrease of $f(\alpha_{\tau} > 0.55)$ in dependence of H_{τ} is observed:

• The jet spectrum itself is exponential

E

CMS

- The jet-loss probability (which leads to $\alpha_{\tau} > 0.55$) decreases with pT
- perturbation of α_{T} by a lost jet of given pT decreases with H_{T}

→ Decrease of the failure fraction f as a function of H_{τ} allows to obtain a strong upper limit on the background, from a lower H_{τ} (and therefore high statistic) control sample

15

Conclusion

- α_{T} is a powerful variable to suppress QCD multi-jet background to all-hadronic SUSY
- $\alpha_{_{\rm T}}$ behavior in data up to HT<200 GeV is as expected
- Failure fraction f(α_{τ} >0.55) uniform in η , even when additional jet-failures are induced
- Background can be estimated and validated using data
- Sensitivity to new physics beyond the Standard Model (and Tevatron) already with few 10 pb⁻¹ expected.

http://lpc.web.cern.ch/lpc/lumiplots.htm

CMS mSUGRA benchmark points

Ш

CMS

17

CMS Physics TDR, Volume II: CERN-LHCC-2006-021, 25 June 2006