Stochastic supersymmetry

Archil Kobakhidze

A.K., N. Pesor, R. R. Volkas, Phys. Rev. D 79, 075022 (2009) Phys. Rev. D 81, 095019 (2010)

> 18th INTERNATIONAL CONFERENCE ON SUPERSYMMETRY AND UNIFICATION OF FUNDAMENTAL INTERACTIONS SUSY 2010

> > 23-28 AUGUST 2010, BONN, GERMANY

Plan of the talk:

- Stochastic superspace
- MSSM with stochastic supersymmetry
- Models incorporating neutrino masses:
 - R-parity violating SSM
 - SSM with type I see-saw
- Conclusion & outlook

Supersymmetry & superspace

Relativistic invariance

• The concept of space-time:

 $x^{\mu} = (t, x, y, z)$

• 4 dimensions, coordinates are cnumbers,

 $x^{\mu}x^{\nu} - x^{\nu}x^{\mu} = 0$

• 10 parameter Poncare group:

 $ds^2=\eta_{\mu
u}dx^\mu dx^
u$ $\eta_{\mu
u}=(1,-1,-1-1)$

 Quantum field F(x) Particle – representation of the Poincare group

Supersymmetry

• The concept of superspace:

 $X^M = \left(x^\mu, \theta^lpha, ar{ heta}^{\dot{lpha}}
ight)$

• 8 dimensions (N=1 case), θ 's are the Grassmann-numbers,

 $\theta^{lpha}\theta^{eta} + heta^{eta} heta^{lpha} = 0, \ e.g., \theta^{lpha} heta^{\gamma} heta^{\delta} = 0$

- 14 parameter super-Poincare group: $dS^{2} = G_{MN} dX^{M} dX^{N}$ $G_{MN} = (\eta_{\mu\nu}, \epsilon^{\alpha\beta}, \epsilon_{\dot{\alpha}\dot{\beta}})$
- Superfield $S(x, \theta, \overline{\theta})$ describes particles with different spins which form reps of super-Poincare group

Supersymmetry & superspace

- Taylor expansion: $S(x, \theta, \overline{\theta}) = \phi(x) + \theta \psi_1(x) + \overline{\theta} \overline{\psi}_2(x) + \theta^2 M(x) + \overline{\theta}^2 N(x)$ $\theta \sigma^\mu \overline{\theta} A_\mu(x) + \theta^2 \overline{\theta} \overline{\lambda}_1(x) + \overline{\theta}^2 \theta \lambda_2(x) + \theta^2 \overline{\theta}^2 D(x)$
- Basic features: Number of fermionic and bosonic degrees of freedom are equal; Fermions and bosons in the same superfield are degenerate in mass.
- Good thing: Improved high energy behavior supersymmetric QFT are logarithmically divergent at most – might play the role in stabilizing the electroweak scale against quantum corrections.
- Bad things: We do not see such spectrum of elementary particles supersymmetry must be softly broken – more than 100 extra soft breaking parameters, potentially large contributions to FCNC processes, CP violation etc.
- Accepted picture: Supersymmetry is spontaneously broken in some hidden sector and it is transmitted to the visible sector through some interactions – gravity, extra gauge interactions, superconformal anomaly.

Stochastic superspace

- Stochastic superspace is simply understood as a superspace where the anti-commuting Grassmannian coordinates are stochastic variables
- Generic distribution describing stochasticity of Grassmannian coordinates is:

$$\mathcal{P}(\theta,\bar{\theta}) = A + \theta^{\alpha}\Psi_{\alpha} + \bar{\theta}_{\dot{\alpha}}\bar{\Xi}^{\dot{\alpha}} + \theta^{\alpha}\theta_{\alpha}B + \bar{\theta}_{\dot{\alpha}}\bar{\theta}^{\dot{\alpha}}C + \theta^{\alpha}\sigma^{\mu}_{\ \alpha\dot{\beta}}\bar{\theta}^{\dot{\beta}}V_{\mu} + \theta^{\alpha}\theta_{\alpha}\bar{\theta}_{\dot{\alpha}}\bar{\Lambda}^{\dot{\alpha}} + \bar{\theta}_{\dot{\alpha}}\bar{\theta}^{\dot{\alpha}}\theta^{\alpha}\Sigma_{\alpha} + \theta^{\alpha}\theta_{\alpha}\bar{\theta}^{\dot{\alpha}}\bar{\theta}_{\dot{\alpha}}D$$

Relativistic invariance requires that all Lorentz non-invariant moments must vanish:

$$egin{aligned} &\langle heta
angle = \langle heta ar{ heta}
angle = \langle heta ar{ heta}^2
angle = 0, &\Longrightarrow \Psi = ar{\Xi} = V_\mu = ar{\Lambda} = \Sigma = 0 \ &\langle ...
angle \stackrel{ ext{def.}}{\equiv} \int d^4 heta \mathcal{P} \left[...
ight] \end{aligned}$$

Bonn, Aug 2010

Stochastic superspace

Lorentz invariant moments are:

where $\boldsymbol{\xi}$ is the stochasticity parameter with dimension of mass

Normalization:

$$d^2\theta d^2\bar{\theta}\mathcal{P}(\theta,\bar{\theta}) = 1, \implies D = 1$$

Probability distribution is:

 $\mathcal{P}(\theta,\bar{\theta})|\xi|^2 \equiv \tilde{\mathcal{P}}(\theta,\bar{\theta}) = 1 + \xi^*(\theta\theta) + \xi(\bar{\theta}\bar{\theta}) + |\xi|^2(\theta\theta)(\bar{\theta}\bar{\theta})$

$$P=1+\xi^* heta^2,\ ar{P}=1+\xiar{ heta}^2\ ,$$

 $ilde{\mathcal{P}}=Par{P},\ \int d^2 heta rac{1}{\xi^*}P=\int d^2ar{ heta}rac{1}{\xi}ar{P}=1$

Bonn, Aug 2010

Wess-Zumino model in stochastic superspace

The probaility distribution is a spurion field with non-zero F and D terms:

$$[P]_{\rm F} = \xi^* \neq 0, \ [\tilde{\mathcal{P}}]_{\rm D} = |\xi|^2 \neq 0$$

• Consider a chiral superfield:

$$\Phi(x, heta,ar{ heta}) = \phi(x) + \sqrt{2} heta\psi(x) + heta^2 F(x)
onumber \ + i heta\sigma^\muar{ heta}\partial_\mu\phi(x) + rac{i}{\sqrt{2}} heta^2\partial_\mu\psi(x)\sigma^\muar{ heta} - rac{1}{4} heta^2ar{ heta}^2\partial_\mu\partial^\mu\phi(x)$$

Super-Lagrangian density of the Wess-Zumino model:

$$\mathcal{L}_{WZ} = \mathcal{L}_{kin} + [W + h.c.]$$

 $\mathcal{L}_{kin} = \Phi^+ \Phi \quad (D - density)$
 $W = rac{m}{2} \Phi^2 + rac{h}{3} \Phi^3 \quad (F - density)$
A. Kobakhidze (U. of Melbourne)

Bonn, Aug 2010

Wess-Zumino model in stochastic superspace

The Lagrangian density of WZ model in stochastic superspace is the averaged WZ sper-Lagrangian density:

$$L = \langle \mathcal{L}_{\mathrm{WZ}} \rangle$$

Explicitly, we have

$$L_{\rm kin} = \int d^2\theta d^2\bar{\theta} P\bar{P}\Phi^+\Phi = L_{\rm kin-SUSY} + |\xi|^2\phi^*(x)\phi(x) + \xi^*\phi(x)F^*(x) + \xi\phi^*(x)F(x) ,$$
$$V = \int d^2\theta PW + {\rm h.c.} = V_{\rm SUSY} + \left(\frac{\xi^*m}{2}\phi^2 + \frac{\xi^*h}{3}\phi^3 + {\rm h.c.}\right)$$

- Solve for the auxiliary field: $F = -\xi^* \phi + m^* \phi^* + h^* \phi^{*2}$
- We obtain: $L = L_{\text{on-shell}-\text{SUSY}} \left(\frac{\xi^* m}{2}\phi^2 + \frac{2\xi^* h}{3}\phi^3 + \text{h.c.}\right)$

Mass spectrum: $m_{\phi_1} = \sqrt{|m|^2 - |\xi^*m|}$, $m_{\phi_2} = \sqrt{|m|^2 + |\xi^*m|}$, $m_{\psi} = |m|$ note: $STrM^2 = 0$. 8

Bonn, Aug 2010

Gauge theory in stochastic superspace

 Super-Yang-Mills theory is described by a real superfield (D-density, written in the WZ gauge)

$$V(x, heta,ar{ heta})=- heta\sigma^\muar{ heta}A_\mu(x)+i heta^lpha heta_lphaar{ heta}_{\dotlpha}ar{\lambda}^{\dotlpha}(x)-iar{ heta}_{\dotlpha}ar{ heta}^lpha \partial^lpha\lambda_lpha(x)+rac{1}{2} heta^2ar{ heta}^2D(x)\;,$$

The chiral field-strength superfield (F-density):

$$W^lpha = -i\lambda^lpha(y) + heta^lpha D(y) + heta^lpha \sigma^{\mu
u \,\,eta}_lpha F_{\mu
u}(y) - heta^2 ar\sigma^{\mu \,\,\doteta} \Delta_{\doteta} D_\mu ar\lambda_{\doteta}(y)$$

The Lagrangian density for the stochastic super-Yang-Mills:

$$L_{\text{gauge}} = \langle \frac{1}{2} \text{Tr} W^{\alpha} W_{\alpha} \rangle + \text{h.c.} = \left[\frac{1}{2} \text{Tr} W^{\alpha} W_{\alpha} \right]_{F} - \frac{\xi^{*}}{2} \text{Tr} \lambda \lambda + \text{h.c.}$$

Gaugino mass: $m_{1/2} = 0.5 |\xi|$

• $L_{
m kin-gauge} = \langle {
m Tr} \Phi^+ e^{2gV} \Phi
angle$ no breaking terms are produced

Bonn, Aug 2010 A. Kobakhidze (U. of Melbourne)

MSSM with stochastic SUSY

- Matter fields (quarks and leptons) are residing in chiral superfields, while SU(3) × SU(2) × U(1) gauge fields are placed in real superfields.
- MSSM superpotential

 $W_{\rm MSSM} = \mu H_u H_d + \hat{y}^{\rm up} Q U^c H_u + \hat{y}^{\rm down} Q D^c H_d + \hat{y}^{\rm lept} L E^c H_d$

 $L_{\text{soft-scalar}} = -\xi^* \mu H_u H_d - 2\xi^* \left[\hat{y}^{\text{up}} \tilde{Q} \tilde{U}^c H_u + \hat{y}^{\text{down}} \tilde{Q} \tilde{D}^c H_d + \hat{y}^{\text{lept}} \tilde{L} \tilde{E}^c H_d \right] + \text{h.c.}$

- Soft breaking terms in stochastic MSSM:
 - The bilinear Higgs soft term with $B_{\mu} = \xi^*$.
 - The trilinear scalar soft terms proportional to the Yukawa couplings, with the universal constant $A_0 = 2\xi^*$.
 - The universal gaugino masses, $m_{1/2} = \frac{1}{2} |\xi|$.
 - The scalar soft masses are absent, $m_0^2 = 0$.

MSSM with stochastic SUSY

- Soft terms are defined at some high energy scale Λ . Soft parameters at low energies $\sim M_Z$ are defined as through the solutions to the RG equations.
- Predictions:
- $\tan \beta \approx 4 5$ (very mild dependence on ξ and Λ)
- $m_h \approx 112 115 \text{ GeV}$ (enhanced due to the near "maximal mixing")
- Light stop, $m_{\tilde{t}_1} \approx 150 250$ GeV, for $\xi < -500$ GeV (favourable for baryogenesis). $\theta_t \approx 0.3 0.4$ (determine from backward-forward asymmetry of leptonic and hadronic decays of polarized top from $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$).
- stau– co-annihilation region: $m_{\tilde{\tau}_1} \approx 5 10 \cdot m_{\chi_1}$, for $\Lambda > 6 \cdot 10^{17}$ GeV (dark matter abundance, $(g-2)_{\mu}$)

For $\Lambda \lesssim 6 \cdot 10^{17}$ GeV, $m_{\tilde{\tau}_1} < 250$ GeV is the LSP (excluded by the CDF CHAMP search)

Bonn, Aug 2010 A. Kobakhidze (U. of Melbourne)

FIG. 1: Sparticle spectra computed using SOFTSUSY3.0, for various values of the parameters Λ and ξ . Bonn, Aug 2010 A. Kobakhidze (U. of Melbourne)

12

RPV SSM with stochastic supersymmetry

$$W_{\mathcal{R}_p} = \epsilon_{mn} \left[\mu_i L_i^m H_2^n + \frac{1}{2} \lambda_{ijk} L_i^m L_j^n E_k^c + \lambda'_{ijk} L_i^m Q_j^n D_k^c \right] + \frac{1}{2} \epsilon^{\alpha\beta\gamma} \lambda''_{ijk} U_{i\alpha}^c D_{j\beta}^c D_{k\gamma}^c$$

R-parity violation – neutrino mass generation

$$[m_{\nu}]_{ij} = [m_{\text{tree-level}}]_{ij}^{(\mu\mu)} + [m_{\text{loop}}]_{ij}^{(\lambda\lambda)} + [m_{\text{loop}}]_{ij}^{(\lambda'\lambda')}$$

$$[m_{\text{tree-level}}]_{ij}^{(\mu\mu)} \approx \frac{\cos^2\beta}{M_{\text{SUSY}}}\mu_i\mu_j,$$
$$[m_{\text{loop}}]_{ij}^{(\lambda\lambda)} \approx \sum_{k,l} \frac{1}{8\pi^2} \lambda_{ikl} \lambda_{jlk} \frac{m_{l_k}m_{l_l}}{M_{\text{SUSY}}},$$

$$[m_{\text{loop}}]_{ij}^{(\lambda'\lambda')} \approx \sum_{kl} \frac{3}{8\pi^2} \lambda'_{ikl} \lambda'_{jlk} \frac{m_{d_k} m_{d_l}}{M_{\text{SUSY}}},$$

Simplified assumption: the dominant set of couplings

$$\{\lambda_{133}, \lambda_{233}, \lambda'_{133}, \lambda'_{233}, \lambda'_{333}\}$$

Bonn, Aug 2010

RPV SSM with stochastic supersymmetry

• Tribimaximal mixing: $U = \begin{pmatrix} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}}\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix},$

$$m_{\nu} = U \operatorname{diag}(m_1, m_2, m_3) U^T$$

= $\begin{pmatrix} \frac{1}{3} (2m_1 + m_2) & \frac{1}{3} (-m_1 + m_2) & \frac{1}{3} (-m_1 + m_2) \\ \frac{1}{3} (-m_1 + m_2) & \frac{1}{6} (m_1 + 2m_2 + 3m_3) & \frac{1}{6} (m_1 + 2m_2 - 3m_3) \\ \frac{1}{3} (-m_1 + m_2) & \frac{1}{6} (m_1 + 2m_2 - 3m_3) & \frac{1}{6} (m_1 + 2m_2 + 3m_3) \end{pmatrix}$

Parameter	Normal Hierarchy		Inverted Hierarchy	
λ_{133}	8.058×10^{-5}	- + - +	3.503×10^{-4}	- + - +
λ_{233}	1.612×10^{-4}	- + - +	0	
λ'_{133}	6.802×10^{-6}	+ +	6.339×10^{-7}	+ +
λ'_{233}	5.035×10^{-5}	+ +	6.077×10^{-5}	+ +
λ'_{333}	6.395×10^{-5}	+ +	6.077×10^{-5}	+ +

TABLE I: R-parity violating parameter sets (at weak scale) that achieve tribimaximal mixing in the normal hierarchy ($m_1 = 0$, $m_2 = 8.75 \times 10^{-12}$ GeV, $m_3 = 4.90 \times 10^{-11}$ GeV) and the inverted hierarchy ($m_1 = 4.90 \times 10^{-11}$ GeV, $m_2 = 4.98 \times 10^{-11}$ GeV, $m_3 = 0$). The columns of '+' and '-' represent the eight possible cases, indicating the sign of the corresponding parameter whose magnitude does not change for a given choice of mass hierarchy.

Bonn, Aug 2010

RPV SSM with stochastic supersymmetry

FIG. 2: These plots display the ξ -dependence of the masses of the lightest stau $(m_{\tau 1})$, lightest neutralino $(m_{\chi 1})$, lightest stop (m_{t1}) and lightest CP-even Higgs for two representative choices of the cut-off scale, Λ .

Bonn, Aug 2010

See-saw SSM with stochastic supersymmetry

Type I see-saw model:

$$\begin{split} W_{\text{seesaw}} &= \mu H_u H_d + \hat{y}^{\text{up}} Q U^c H_u + \hat{y}^{\text{down}} Q D^c H_d + \hat{y}^{\text{lept}} L E^c H_d + \hat{y}^{\text{neut}} L N^c H_u + \frac{1}{2} M_R N^c N^c, \\ M_R \sim Y_N \times 10^{17} \text{GeV}, \qquad Y_N \equiv \frac{\left(\hat{y}^{\text{neut}}\right)^2}{16\pi^2} \end{split}$$

• Type I see-saw works for $Y_N < 0.05Y_t$.

Bonn FIG. 3: LSP and NLSP masses as a function of ξ for type-1 seesaw mechanism in stochastic superspace. These figures demonstrate the increased mass gap between the lightest stau and neutralino compared to the minimal stochastic superspace model.

Conclusions

- Field theories on stochastic superspace are equivalent to softly broken supersymmetric theories with a specific and rather constrained pattern of soft breaking terms.
- With this pattern of soft breaking parameters no large contributions to FCNC processes are generated.
- Specific mass spectrum and collider signatures are predicted for MSSM, RPV and type I see-saw models
- Other promising extensions of the minimal model are currently under the investigation, e.g. stochastic supergravity.
- The models with stochastic supersymmetry are generally very predictive, and can be falsified in upcoming experiments at LHC.