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Plan of the talk:Plan of the talk:

� Stochastic superspace

� MSSM with stochastic supersymmetry

� Models incorporating neutrino masses: 

� R-parity violating SSM

� SSM with type – I  see-saw

� Conclusion & outlook 
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SupersymmetrySupersymmetry & & superspacesuperspace

Relativistic invariance

• The concept of space-time:

• 4 dimensions, coordinates are c-
numbers,

• 10 parameter Poncare group:

• Quantum field F(x)

Particle – representation of the 
Poincare group

Supersymmetry

• The concept of superspace: 

• 8 dimensions (N=1 case), θ’s are 
the Grassmann-numbers,  

• 14 parameter super-Poincare group:

• Superfield – describes 
particles with different spins which 
form reps of super-Poincare group
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SupersymmetrySupersymmetry & & superspacesuperspace

� Taylor expansion: 

� Basic features:  Number of fermionic and bosonic degrees of freedom are equal;               

Fermions and bosons in the same superfield are degenerate in       

mass.

� Good thing: Improved high energy behavior – supersymmetric QFT are 

logarithmically divergent at most – might play the role in stabilizing the 

electroweak scale against  quantum corrections. 

� Bad things: We do not see such spectrum of elementary particles –

supersymmetry must be softly broken – more than 100 extra soft breaking 

parameters, potentially large contributions to FCNC processes, CP violation etc.

� Accepted picture: Supersymmetry is spontaneously broken in some hidden 

sector and it is transmitted to the visible sector through some interactions –

gravity, extra gauge interactions, superconformal anomaly.
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Stochastic Stochastic superspacesuperspace

� Stochastic superspace is simply understood as a superspace where 

the anti-commuting Grassmannian coordinates are stochastic variables

� Generic distribution describing stochasticity of Grassmannian

coordinates is:

� Relativistic invariance requires that all Lorentz non-invariant  moments 

must vanish: 
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Stochastic Stochastic superspacesuperspace

� Lorentz invariant moments are: 

where ξ is the stochasticity parameter with dimension of mass

� Normalization:

� Probability distribution is:
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WessWess--ZuminoZumino model in stochastic model in stochastic superspacesuperspace

� The probaility distribution is a spurion field with non-zero F and D 
terms:

� Consider a chiral superfield: 

� Super-Lagrangian density of the Wess-Zumino model:
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WessWess--ZuminoZumino model in stochastic model in stochastic superspacesuperspace

� The Lagrangian density of WZ model in stochastic superspace is the 
averaged WZ sper-Lagrangian density:

� Explicitly, we have

� Solve for the auxiliary field: 

� We obtain:

Mass spectrum: 
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Gauge theory in stochastic Gauge theory in stochastic superspacesuperspace

� Super-Yang-Mills theory is described by a real superfield (D-density, written in 

the WZ gauge)

� The chiral field-strength superfield (F-density):

� The Lagrangian density for the stochastic super-Yang-Mills:

Gaugino mass:

� no breaking terms are produced 
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MSSM with stochastic SUSYMSSM with stochastic SUSY

� Matter fields (quarks and leptons) are residing in chiral superfields, 
while SU(3)× SU(2)× U(1) gauge fields are placed in real superfields. 

� MSSM superpotential

� Soft breaking terms in stochastic MSSM:
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MSSM with stochastic SUSYMSSM with stochastic SUSY

� Soft terms are defined at some high energy scale Λ. Soft parameters 
at low energies ~MZ are defined as through the solutions to the RG 
equations. 

� Predictions:
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MSSM with stochastic SUSYMSSM with stochastic SUSY
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RPV SSM with stochastic RPV SSM with stochastic supersymmetrysupersymmetry

� R-parity violation – neutrino mass generation 

� Simplified assumption: the dominant set of couplings 
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RPV SSM with stochastic RPV SSM with stochastic supersymmetrysupersymmetry

� Tribimaximal mixing:
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RPV SSM with stochastic RPV SSM with stochastic supersymmetrysupersymmetry
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SeeSee--saw SSM with stochastic saw SSM with stochastic supersymmetrysupersymmetry

� Type I see-saw model:

� Type I see-saw works for 
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ConclusionsConclusions

� Field theories on stochastic superspace are equivalent to softly broken 
supersymmetric theories with a specific and rather  constrained pattern 
of soft breaking terms. 

� With this pattern of soft breaking parameters no large contributions to 
FCNC processes are generated.

� Specific mass spectrum and collider signatures are predicted for
MSSM, RPV and type I see-saw models

� Other promising extensions of the minimal model are currently under 
the investigation, e.g. stochastic supergravity. 

� The models with stochastic supersymmetry are generally very 
predictive, and can be falsified in upcoming experiments at LHC.


