SUSY Mass Determination using Kinematic Fits

<u>Benedikt Mura</u>, Christian Sander, Peter Schleper, Christian Autermann **Hamburg University**

SUSY '10 Bonn 26.08.2010

Deutsche Forschungsgemeinschaft

SPONSORED BY THE

Federal Ministry of Education and Research

SFB 676 - Project B2

Outline

- Motivation
- Kinematic Constraints in SUSY Events
- Mass Determination Method
- Application to Leptonic Decays
 - Event Selection
 - Initial LSP Momenta
 - Fit Performance
 - Mass Determination
- Summary

Introduction

- First goal: Discover Supersymmetry at the LHC
- Second step: Determine model parameters
 - Necessary inputs to fitting codes: Masses or mass differences, spins, couplings ...

R-parity conserving model

- Pair production
- Cascade decay, stable LSP
 - Missing transverse energy
 - Many jets & leptons

Access to masses

- Established methods, e.g. mass edges
- Here: Full reconstruction of event kinematics

mSUGRA example event

Kinematic Constraints

One Event

- Parameters
 - Measured f_i momenta 6x3=18
 - Unmeasured LSP momenta 2x3=6
 - Unknown masses
 (A,B,C,D,A',B',C',D')
- Constraints
 - Masses (A,B,C,A',B',C')
 - pT balance
- Problem over-constrained if masses are known/assumed
- Able to determine LSP momenta

 constrained kinematic fit

Set of events with same topology:

 Unknown masses are common parameters: problem can be overconstrained

For *N* events with identical branches:

- (Nx18 measurements (6 final-states))
- 4 common unknowns (SUSY masses)
- $N \times 6$ local unknowns (2 LSPs)
- N×8 constraints

Over-constrained for N > 2

4

6

2

Mass Determination Method

- Hypothesis for unknown masses → over-constrained event
- Constrained kinematic fit to reconstruct LSP momenta
 - Including detector resolutions
 - Full combinatorics
- Quality of fit indicates compatibility of hypothesis with the event
- Combine events into a single likelihood
 - Including SUSY backgrounds
- Scan mass space to determine best fitting regions

Scenario with Leptonic Decays

 mSUGRA benchmark point SPS1a

SPS1a Parameter		Particle	Mass [GeV]
m _o	100 GeV	\widetilde{q}_L	562
m _{1/2}	250 GeV	$\widetilde{\gamma_2^0}$	180
A ₀	-100 GeV	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
tan β	10	I_R	143
sign µ	+	${ ilde \chi}_{ t 1}^{ t 0}$	97

- Leading order cross-section @14 TeV: 36 pb
- Signature:
 - 2 jets (high p_T)
 - 2x2 leptons (e,µ), same flavour, opposite charge
- Branching ratio of 1.7x10⁻³
- Max. 16 possible permutations

- Difficulties
 - Clean event selection -(SUSY) backgrounds
 - Combinatorics
 - Imperfect p_T-balance Initial/final state radiation

Event Sample

SPS1a Monte Carlo

- Code: SuSPECT + PYTHIA
- L= 140 fb-1 for LHC, \sqrt{s} =14 TeV
- For demonstration:Toy MC
 - smearing of quark/lepton four-momenta with typical detector resolution
 - neglects effects from e.g.
 - Jet clustering / overlap
 - Lepton (mis-)identification
 - Fake leptons
 - ...

• Event Selection

Ν	pT [GeV]	אן		
Jets				
2	> 30.	< 3.5		
Leptons (e, µ)				
2x2	> 10.	< 2.5		
same flavour opposite charge pairs				

- Efficiency: 53%
- Background fraction: 57%
 (all other SUSY processes, ignored leptonic tau-decays)
- Fitting technique:
 - Constrained least-squares fit with Lagrangian Multipliers

Initial LSP Momenta for the Fit

- Approximation for starting point of unmeasured LSP
- Method of Webber
 - Use 6 out of 8 constraints
 - mass constraints except on LSP
 - p_T-balance
 - Exact solution for all 6 LSP momentum components
- True masses, correct combination:
 - Initial values already close to true LSP momenta
 - Deviation due to measurement uncertainties, mass hypothesis, imperfect p_{τ} -balance

Deviation of chosen LSP momenta from true values

- Improve fit success rate: try several initial values per event
 - Smearing of final states and solving for LSP momenta
 - Fit finds a solution for 95% of selected signal events

Fit Performance

- Signal events only, using
 - central mass values
 - correct assignment of jets and leptons
- Good LSP momentum reconstruction
- Fit probability distribution nearly flat (natural width, selection)

SUSY 2010 Bonn

Fit Performance

- Combinatorics
 - Choose combination with largest fit probability

Correct combination	42%
Lepton switch on same branch	49%
Wrong leptons-jet combination	7%
Wrong lepton pairing	2%

- Very good lepton pairing
- Good assignment of lepton pairs to jets
- Distinction of lepton position difficult at SPS1a:
 - Similar kinematics due to almost degenerate mass differences

• All SUSY processes:

- Signal: combinatorics shifts fit probability to larger values
- Background: Peak at zero
 - Signal-like events distributed over entire range

Mass Determination 2D

Likelihood for N events:

$$\log \mathsf{L} = \frac{1}{2} \cdot \sum_{\mathsf{i}=1}^{\mathsf{N}} \min\left(\chi_{\mathsf{i}}^{\mathsf{2}}, \chi_{\mathsf{cut}}^{\mathsf{2}}\right)$$

(2 dof,
$$\chi^2_{cut} \cong \text{Prob}(\chi^2) = 0.001$$
)

Influence of cut negligible.

Event filtering:

- 50 different LSP initial values per event and combination
- If only very few of them converge: likely to be a false minimum
- Select point of largest overall likelihood
- Exclude events with rate < 0.1
- Improves signal to background ratio

- Scan squark and slepton mass
- Fixed neutralino and LSP mass
- Good agreement of largest likelihood with true masses (white marker).

Mass Determination 4D

- 2D hyperplane: projection of largest likelihood in other mass-dimensions
- Including SUSY background
- Standard Model backgrounds negligible
- Squark mass well met

- Correlations among masses
- Neutralino-slepton mass difference well determined
- Constraining absolute mass values in the correct region
- Systematic shift in LSP mass
- Systematic uncertainties to be evaluated

Summary

- Strategy for mass determination
 - Reconstruction of cascade decay with kinematic fit
 - Using mass hypotheses
 - Scan over mass space
 - Combination of event fit results into likelihood
- Demonstration in leptonic channel
 - LSP momenta well determined if masses are known
 - Improved combinatorics using the fit probability
 - Mass determination feasible in SPS1a scenario
 - Systematic shift in LSP mass
- Similar results with detailed detector simulation (not shown)
- Also studied much more challenging hadronic decays (arxiv:0911.2607 [hep-ph])