Stopped Gluino at CMS First Direct Search Results

F. Ratnikov - KIT, Germany for the **CMS** collaboration

SUSY'10 Bonn, Aug. 23-28, 2010

Motivation

- Inspired by physics scenarios predicting long living heavy particles
 - some SUSY flavors predict long living gluino, stop, stau...
 - Hidden valley models, certain GUTs
 - Lifetimes 10²..10³ s are of particular interest by cosmology
 - may explain ⁷Li and ⁶Li abundance discrepancy between measurement and conventional nucleosynthesis
- Strongly interacting particles form stable states with quarks/gluons

R-Hadrons

- Being charged, particles lose energy when traversing the detector
 - fraction of them eventually stop in the detector.
 - ► They will eventually decay: µs, minutes, hours, days, months after their production
- We will run a calorimeter trigger in periods when there are no collisions in the LHC, and look for energy released in these decays
- An observation of such a decay with no beam in the machine will be an unambiguous sign of physics beyond the SM

R-Hadrons Stopping in the Detector

- This search is concentrated on long living gluinos
- Significant amount of them being produced, are stopping in the calorimeter

Use "cloud model" as a baseline

Another model with the lightest R-baryon being neutral, thus escaping the detector

Calculate it using customized physics processes in GEANT

Stopping Power

- Stopping power essentially depends from details of interaction of the R-hadrons with detector material
 - It is the biggest uncertainty for the cross section measurement

Two Trigger Scenarios

- CCMS provide under the second second
- Run after a fill has been dumped inter-fill periods
- Trigger during normal run time in gaps in the beam structure

Use beam gaps for this search

(Early) 2010 LHC Beam Structures

SKIT <u>Fedor.Ratnikov@cern.ch</u>

Search for Stopped Gluino at CMS

Signal Behaviors

CMS PRELIMINAR

- Energy cluster in the calorimeter
 - Signals from single- and two-jet decays are very similar
 - Time profile of the deposited energy is the same as for signals from regular interactions, but with arbitrary offset
 - Amount of deposited energy mostly depends from the difference between gluino and neutralino masses
- No other activity in the detector

- Cosmics interacting in the calorimeter
 - veto events with track in muon system
- Instrumental noise
 - sophisticated analysis of spatial and time profiles of the energy deposition
- Both cosmics contribution and instrumental noises were measured in 2008/2009 cosmics runs and confirmed in 2009/2010 collision runs
- Beam related: early triggers, beam halo, beam-gas, parasitic bunches
 - suppress events within ±1 BX around collision/parasitic bunches

Data Selection

	Selection Criteria	Background Rate (Hz)
backgrounds	L1+HLT (HB+HE)	3.27
	Calorimeter noise filters	1.12
reject cosmics	BPTX/BX veto	1.11
	muon veto	$6.6 imes 10^{-1}$
	$E_{jet} > 50 \text{ GeV}, \eta_{jet} < 1.3$	$7.6 imes 10^{-2}$
select signal spatial profile	$n_{60} < 6$	$7.6 imes 10^{-2}$
	$n_{90} > 3$	$3.1 imes10^{-3}$
	$n_{phi} < 5$	$1.3 imes10^{-4}$
select signal time shape	$\dot{R_1} > 0.15$	$1.1 imes10^{-4}$
	$0.1 < R_2 < 0.5$	$8.5 imes10^{-5}$
	$0.4 < R_{peak} < 0.7$	$7.9 imes10^{-5}$
	$R_{outer} < 0.1$	$6.9 imes 10^{-5}$

Signal efficiency ~17% of all R-Hadrons stopped anywhere in the CMS

Selection Results

19 events selected from runs with different filling schemas

- Consistent with absence of the stopped gluino decays
 - Set 95% C.L. upper limit

- Perform counting experiment as a function of expected gluino lifetime τ
- For $\tau < T_{LHC orbit}$ select events in a window of 1.26× τ after

the closest collision

Extract expected background rate from low instantaneous luminosity runs

Lifetime [s]	Expected Background (\pm stat \pm syst)	Observed
1e-07	$0.15 \pm 0.04 \pm 0.05$	0
1e-06	$1.8\pm0.5\pm0.5$	0
1e-05	$11.7 \pm 3.2 \pm 3.5$	8
1e-04	$28.3\pm7.8\pm8.5$	19
1e-03	$28.3\pm7.8\pm8.5$	19
1e+03	$28.3\pm7.8\pm8.5$	19
1e+04	$28.3 \pm 7.8 \pm 8.5$	19
1e+05	$28.3\pm7.8\pm8.5$	19
1e+06	$28.3\pm7.8\pm8.5$	19

Set Bayesian limit taking into account systematics

 30% background uncertainty, 11% luminosity uncertainty, 10% jet energy scale uncertainty

Cross Section × Stopping Probability

- COMPARE THE REPORT OF THE REPO
- Independent from the assumptions about R-Hadrons interaction with material

Search for Stopped Gluino at CMS

- Fit expected decay timing profile + flat background to data for every expected lifetime
 - Intrinsic background evaluation
 - free from background systematics
 - Is sensitive to τ<TLHC orbit</p>

Set Bayesian limit taking into account systematics

Use R-Hadrons stopping probability for specific models

- Extend D0 result below 30 µs
- Exclude lifetimes 120 ns $<\tau < 6 \ \mu s$ for $m_{\tilde{g}}=200 \ GeV/c^2$

Gluino Mass Limit

Convert gluino production cross section limit into gluino mass limit for different lifetimes

- Direct search for particles stopped in CMS in 203-232 nb⁻¹ of data at √s=7 TeV
 - For 120 ns $< \tau < 6 \mu s$, exclude gluinos of mass up to 200 GeV/c²
 - ▶ For lifetimes of 2.6 µs, exclude gluinos of mass up to 225 GeV/c²
 - ▶ For lifetimes of 200 ns, exclude gluinos of mass up to 229 GeV/c²
- Extend D0 limit to lifetimes below 30 µs
 - One of two first LHC search results extending Tevatron limit
- More details in the CMS public analysis summary CMS-PAS-EXO-10-003
 - http://cdsweb.cern.ch/record/1280689

Backup Slides

HCAL Timing Profile Cuts

Noise Events from 2009 Cosmic Runs

SKIT <u>Fedor.Ratnikov@cern.ch</u>

Search for Stopped Gluino at CMS