

ATLAS Early SUSY Searches with Photons and Missing Transverse Energy

Dongliang Zhang

Institute of Physics, Academia Sinica University of Science and Technology of China

On behalf of ATLAS collaboration

SUSY2010, 23rd-28th, Aug 2010 Bonn, Germany

Outline

- Introduction
- Results from Monte Carlo study
- Early data works
- Conclusions

SUSY Scenarios Giving $\gamma + E_{T}^{miss}$

- GMSB model when $\tilde{\chi_1^0}$ is NLSP and \tilde{G} is LSP $\tilde{\chi_1^0} \rightarrow \tilde{G}_{\gamma}$
- Various topologies can be used to search SUSY:

 $\gamma\gamma + E_T^{\text{miss}}, \gamma(\gamma) + \text{lepton(s)} + E_T^{\text{miss}}, \gamma + Z(\rightarrow II) + E_T^{\text{miss}}, \gamma(\gamma) + \text{jets} + E_T^{\text{miss}}$

- Non-pointing photon study: $\tilde{\chi_1^0}$ lifetime measurement

08/19/10

Monte Carlo Study Signal examples(14TeV):

name	NLO (LO) σ [pb]	Λ [TeV]	M_m [TeV]	C_G	<i>c</i> τ [mm]	$M_{\tilde{\chi}_1^0}$ [GeV]
GMSB1	(7.8 (5.1))	90	500	1.0	1.1	118.8
GMSB2	7.8 (5.1)	90	500	30.0	$9.5 \cdot 10^{2}$	118.8
GMSB3	7.8 (5.1)	90	500	55.0	$3.2 \cdot 10^{3}$	118.8

Backgrounds: QCD jets, W/Z+jets and ttbar

Typical SUSY cuts:

- 1. At least 4 jets must be found with $p_T > 50 \text{GeV}(p_T > 100 \text{GeV} \text{ for the leading jet})$
- 2. Missing transverse energy $E_{T}^{miss} > 100 \text{GeV}$ and $E_{T}^{miss} > 20\% \text{*}M_{eff}$

Different topologies

$\gamma\gamma$ +jets+ E_{T}^{miss} final state have the largest discovery significance

 N_{ossF} : Number of opposite sign same flavor lepton pairs Sig: signal significance. Sig=S/ \sqrt{B}

Numbers for 1fb⁻¹14TeV

Nγ	N _{OSSF}	Signal	\sum Background	Sig	N _W	N _Z	N _{tī}
0	0	1287.4	929.6	42.3	274.4	21.0	632.8
0	1	283.6	73.0	33.2	8.7	1.4	63.0
1	0	902.9	51.7	126.1	19.5	2.0	30.1
1	1	189.1	1.4	161.4	0.2	0.0	1.2
2	0	252.9	0.1	252.9	0.0	0.0	0.1
2	1	37.0	0.0	37.0	0.0	0.0	0.0

08/19/10

ATLAS Discovery Reach

 5σ discovery potential contour lines for GMSB SUSY in the Λ -tan β plane for different integrated luminosity(14TeV) with $\gamma\gamma$ +jets+ E_{T}^{miss} final state

Tevatron Limits for $\gamma\gamma + E_{T}^{miss}$

> $M = \Lambda/2$, $tan\beta = 15$, $N_5 = 1$, $sign(\mu) = +, C_{grav} = 1$

Only one free parameter: $\boldsymbol{\Lambda}$

08/19/10

Non pointing photon

GMSB3 point

C_{grav}=55, the NLSP decay length 3m

Only 12.4%(0.6%) of the reconstructed events contain one(two) photons with p_T>20GeV in the detector acceptance region

Numbers for 1fb⁻¹14TeV

Nγ	N _{OSSF}	Signal	\sum Background	Sig	N _W	NZ	N _{tī}
0	0	825.2	929.6	27.1	274.4	21.0	632.8
0	1	265.2	73.0	33.2	8.7	1.4	63.0
1	0	255.8	51.7	35.7	19.5	2.0	30.1
1	1	68.6	1.4	58.6	0.2	0.0	1.2
2	0	12.5	0.1	12.5	0.0	0.0	0.1
2	1	4.7	0.0	4.7	0.0	0.0	0.0

Two methods to measure the lifetime of neutralino 1)projected impact-parameter method

1)projected impact-parameter method

2)Calorimeter timing method

08/19/10

ATLAS Detector

08/19/10

Calorimeter

γ Reconstruction & Identification

Reconstruction:

- Seeded by energy cluster
- Track match
 - Without match->photon
 - Matched to track(s) from conversion vertex

->converted photon (~50% of p_T >15GeV photons are converted photons)

Identification:

Cut on shower shape variables

Shower shape variable is powerful to reject $\pi_0 \rightarrow \gamma \gamma$ background

Middle Layer Shower Shape

Strips shower shape

$$E_{ratio} = \frac{E_{max1} - E_{max2}}{E_{max1} + E_{max2}}$$

08/19/10

$\boldsymbol{\gamma}$ Isolation

08/19/10

γ Performance

^Dhoton efficiency >80% identification efficiency for p₇>30GeV 0.8 tight photon from 0.6 simulation 0.4 **ATLAS** Preliminary △ Loose 0.2 Simulation trigger efficiency Tight All γ 20 60 80 0 30 40 50 70 90 L1 calorimeter 0.8 E^{true} [GeV] trigger with a 5GeV threshold 0.6 >(99.70±0.04)% trigger **ATLAS** Preliminary 0.4 $\sqrt{s} = 7 \text{ TeV}, \text{ Ldt} = 15.8 \text{ nb}^{-1}$ efficiency for p_{τ} >10GeV Data 2010 tight photon 0.2 Minimum Bias MC 8 10 12 16 18 20 6 14 E^{cluster}_T [GeV] 08/19/10 Dongliang Zhang--SUSY10 15

Photon Purity Estimation

 Correction factors for both assumptions are estimated from MC and applied to the equation in final calculation

 $->(72\pm7)\%$ purity for isolated tight photon with $p_T>20GeV$

 Reverse Isolation cut and cuts on shower shape variables to select 3 background enriched samples

- Assuming:
 - No correlation between Isolation variable and these shower shape variables
 - No signal leak into control regions

E_{τ}^{miss} Performance

E_x^{miss}, E_y^{miss} resolution as function of Sum E_τ

Good agreement between data and Monte Carlo

08/19/10

Conclusions

- Various topologies based on high p_{τ} isolated $\gamma(s)$ and large $E_{\tau}^{\rm miss}$ are predicted in GMSB SUSY Models
- Monte Carlo study shows the large discovery significance
- ATLAS photon reconstruction and identification perform well

More than 1.5pb⁻¹ data has been collected and is under analysis now Dongliang Zhang--SUSY10 18

Backup

08/19/10

Prompt Photon Selection

Event selection

- L1_EM5 trigger
- ≥ 1 vertex with at least 3 tracks
- ≻ E_T>10GeV
- > |η|<1.37, 1.52<|η|<2.37</p>
- Non-overlap with non-working cells

