

Searches for physics beyond the standard model in final states with long lived particles.

Sudeshna Banerjee Tata Institute of Fundamental Research For the DØ Collaboration

18th International Conference on Supersymmetry and Unification of Fundamental Interactions

23 – 28 August 2010

The DØ Detector

Collider Run II Integrated Luminosity

Outline

Slow moving, escapes the detector

• Long-lived Staus / Charginos

Delayed Decay

- Long Lived particles decaying to b jets
- Long Lived Neutralinos decaying to electrons/photons
- Stopped Gluinos
- Long Lived Neutralinos decaying to dimuons

Charged Massive Stable Particles

Stau, Charginos (Higgsino and Gaugino)

GMSB with stau NLSP (if stau → gravitino decays suppressed)

Long-lived charginos are expected If there is a "wino-LSP" (small $\widetilde{\chi}_1^+ - \widetilde{\chi}_1^0$ mass difference)

They would appear like slow moving muons -> Make use of the Time of Flight information

Dimuon Triggers

Event Signature: Two muon like objects

speed – velocity

speed significance - speed / error in speed
speed significance product - product of the
significance for the two muons

Charged Massive Stable Particles

Data set – 1.1 fb-1 Cross section limit for Stable staus – 0.31 pb to 0.04 pb in the mass range 60 to 300 GeV

Mass limit for

Chargino (gaugino type) – 206 GeV Charginoh (Higgsino type) – 171 GeV

Published - PRL 102 , 161802 (2009)

SUSY10 August 2010

Sudeshna Banerjee Tata Institute of Fundamental Research

Long Lived Particles decaving to bb pairs

Proposed in Hidden Valley Models – v meson may prefer to couple to heavy fermions (helicity suppression) •Could be a novel way to find Higgs (SM Higgs couples to HV Higgs to give mass to v mesor

Event Selection:

>1 jet, p_T>10 GeV
 >≥1 jet with a muon, p_T>4 GeV
 > 1 Primary Vertex (PV)
 >≥ 2 Secondary Vertex (SV)

SV invariant Mass: Assume all tracks are pions Use their 4-momenta

SV Collinearity: Cosine of angle between vector sum of momenta of attached tracks and the direction of SV to PV

Sudeshna Banerjee Tata Institute of Fundamental Research

Secondary Vertex

•SV from 1.6 cm to 20 cm w.r.t. PV

•SV with ≥ 4 tracks

10^{2 •SV} outside busy region

(SV map in Silicon tracker)

Long Lived Particles decaying to bb pairs

Three possible Hidden Valley (HV) scenarios coming from a Higgs decay:

mH = 120 GeV, mHV = 15 GeV, decay length = 50 mm
mH = 120 GeV, mHV = 40 GeV, decay length = 50 mm
mH = 90 GeV, mHV = 15 GeV, decay length = 50 mm
No significant excess is observed
Limits are set on

 σ (H+X) x BR(H \rightarrow HV HV) x BR2 (HV \rightarrow bb) vs. Higgs mass and v-hadron decay length

PRL 103, 071801 (2009)

Sudeshna Banerjee Tata Institute of Fundamental Research

Long Lived Particle decaying to e/γ pairs

Theoretical models: GMSB, Hidden Valley, b'

Event Selection: Trigger: Single EM Offline Criteria: •2 good, isolated EM clusters (originating from the same point in space) • $|\eta| < 1.1$, $p_T > 20$ GeV •Primary vertex obtained from γ pointing •Reconstructed primary vertex radius

 $b' \rightarrow Z + jets, Z \rightarrow ee$

v (Hidden Valley models) meson \rightarrow ee

Precisely reconstruct EM shower direction

Use the shower direction to reconstruct the common vertex. No track is required. Analysis is valid for both electrons and photons

GMSB

Long Lived Particle decaying to e/γ pairs

Stopped Gluinos

In "Split SUSY", squarks are ultra-heavy and gauginos are light -> Long Lived gluinos.

Such gluinos form R-hadrons (carry R-parity) by combining with light quarks. R-hadrons can be both charged and neutral. Neutral R-hadrons can become charged through nuclear interactions. Charged R-hadrons lose energy by ionisation and which may stop in the calorimeter. After a while they decay into gluon + $\tilde{\chi}_1^0$ (100% branching fraction)

Gluino lifetime can be hours This analysis – lifetime > 10 μs (decays a bunch crossing later), lifetime < a few hours so that data gets recorded consistently

Event Signature: jets + missing ET (wide hadron shower, no muon) Main background is cosmic muons • At the Tevatron ~500 "stopped gluinos" expected in ~2 fb-¹ for m(gluino) = 300 GeV

SUSY10 August 2010

Stopped Gluinos - signature

Search Strategy: Look for a randomly oriented monojet In an otherwise empty event (diffractive-gap trigger)

Signal Monte Carlo

Experimental Data (candidate Event)

SUSY10 August 2010 Sudeshna Banerjee Tata Institute of Fundamental Research

Stopped Gluinos

A large theoretical uncertainty arises from the variation in the conversion cross section of a neutral Gluino-hadron to a charged Gluino-hadron (varied from 0.3 mb to 30 mb)

Cross section of ~ 1 pb for gluino stopping in D0 detector and Decaying to gluon and neutralino of mass 50 GeV is excluded

PRL 99 13801 (2007)

SUSY10 August 2010

Long Lived Particles decaying to two muons

Signature \rightarrow Two opposite sign isolated muons forming a vertex with large DCA wrt Primary V In the absence of excess signal like events, limits are set on mass and lifetime of the N⁰_{LL}

Future

 Tevatron Experiments are collecting ~2 fb-1 / year of pp collisions.
 By the end of 2011 run, the statistics of all measurements will be increased by a big factor.
 Analysis techniques are constantly improving.

Another set of new and better results expected in the near future. Tevatron Run II Integrated Luminosity and Projection

DØ public results:

http://www-d0.fnal.gov/Run2Physics/WWW/results.htm