QCD corrections to dark matter annihilation: Recent developments

Björn Herrmann

Deutsches Elektronen-Synchrotron (DESY) Hamburg / Germany

In collaboration with M. Klasen and K. Kovařík

SUSY 2010, 23-28 august 2010, Bonn

Outline

- I. Introduction and Motivation
- 2. Radiative corrections to neutralino pair annihilation
- 3. Few numerical examples
- 4. Conclusion and Outlook

Introduction

New physics provides interesting candidates for cold dark matter

Consider Minimal Supersymmetric Standard Model (MSSM) with R-parity conservation Assume that lightest neutralino is the LSP and therefore the DM candidate

Introduction

New physics provides interesting candidates for cold dark matter

Consider Minimal Supersymmetric Standard Model (MSSM) with R-parity conservation Assume that lightest neutralino is the LSP and therefore the DM candidate

Boltzmann equation allows to predict relic density for a given scenario

$$\frac{\mathrm{d}n}{\mathrm{d}t} = -3Hn - \langle \sigma_{\mathrm{ann}}v \rangle \left(n^2 - n_{\mathrm{eq}}^2\right) \longrightarrow \Omega_{\mathrm{CDM}}h^2 \propto n_0 \propto \frac{1}{\langle \sigma_{\mathrm{ann}}v \rangle}$$

Cosmology allows to identify (dis)favoured regions of parameter space

 $\left(0.1053 < \Omega_{
m CDM} h^2 < 0.1193
ight)$ [Komatsu et al. (WMAP) 2010]

Introduction

New physics provides interesting candidates for cold dark matter

Consider Minimal Supersymmetric Standard Model (MSSM) with R-parity conservation Assume that lightest neutralino is the LSP and therefore the DM candidate

Boltzmann equation allows to predict relic density for a given scenario

$$\frac{\mathrm{d}n}{\mathrm{d}t} = -3Hn - \langle \sigma_{\mathrm{ann}}v \rangle \left(n^2 - n_{\mathrm{eq}}^2\right) \longrightarrow \Omega_{\mathrm{CDM}}h^2 \propto n_0 \propto \frac{1}{\langle \sigma_{\mathrm{ann}}v \rangle}$$

Cosmology allows to identify (dis)favoured regions of parameter space

$$0.1053 < \Omega_{
m CDM} h^2 < 0.1193$$

[Komatsu et al. (WMAP) 2010]

Public program packages

DarkSUSY [Gondolo et al. 2000-2010], micrOMEGAs [Bélanger et al. 2003-2010], SuperIso Relic [Arbey and Mahmoudi 2009], ... All (co)annihilation processes are implemented in public codes at leading order

Motivation: Why radiative corrections...?

All (co)annihilation processes are implemented in public codes at leading order

Higher order corrections included only for a few very sensitive quantities, e.g. bottom Yukawa coupling

$$h_{Abb} \propto \frac{\overline{m}_b(Q)}{1+\Delta_b} \tan \beta$$

All (co)annihilation processes are implemented in public codes at leading order

Higher order corrections included only for a few very sensitive quantities, e.g. bottom Yukawa coupling

$$h_{Abb} \propto \frac{\overline{m}_b(Q)}{1+\Delta_b} \tan \beta$$

Higher order corrections have important impact on cross-sections Planck satellite delivers more precise cosmological data since may 2009 Better theoretical precision needed to keep up with experimental improvements All (co)annihilation processes are implemented in public codes at leading order

Higher order corrections included only for a few very sensitive quantities, e.g. bottom Yukawa coupling

$$h_{Abb} \propto \frac{\overline{m}_b(Q)}{1+\Delta_b} \tan \beta$$

Higher order corrections have important impact on cross-sections Planck satellite delivers more precise cosmological data since may 2009 Better theoretical precision needed to keep up with experimental improvements

QCD corrections numerically most important due to strong coupling constant, but also electroweak corrections can have a sizeable impact

In "mSUGRA-like" scenarios, annihilation into heavy quarks is dominant

In "mSUGRA-like" scenarios, annihilation into heavy quarks is dominant

Higgs-exchange dominant in mSUGRA

- Low m_{1/2} (if not excluded by LEP) $\tilde{\chi}\tilde{\chi} \rightarrow h^0 \rightarrow b\bar{b}$
- A-Funnel at high tanβ

$$\tilde{\chi}\tilde{\chi} \to A^0 \to b\bar{b}$$

Focus point region (for $m_X > m_t$) $\tilde{\chi} \tilde{\chi} \to H^0 \to t \bar{t}$

[B. Herrmann and M. Klasen, PRD 76 (2007)] [B. Herrmann, M. Klasen and K. Kovařík, PRD 79 (2009)]

In "mSUGRA-like" scenarios, annihilation into heavy quarks is dominant

Higgs-exchange dominant in mSUGRA

- Low m_{1/2} (if not excluded by LEP) $\tilde{\chi}\tilde{\chi} \rightarrow h^0 \rightarrow b\overline{b}$
- Focus point region (for $m_X > m_t$) $\tilde{\chi}\tilde{\chi} \rightarrow H^0 \rightarrow t\bar{t}$

[B. Herrmann and M. Klasen, PRD 76 (2007)] [B. Herrmann, M. Klasen and K. Kovařík, PRD 79 (2009)]

Relax scalar or gaugino mass unification

- Non-universal Higgs masses (NUHM) or
 "compressed SUSY" (non-univ. gaugino masses)
- \blacktriangleright A-Funnel already at low tanß
- ▶ Larger higgsino-comp. favours Z⁰-exchange

$$\tilde{\chi}\tilde{\chi} \to Z^0 \to t\bar{t}$$

In "mSUGRA-like" scenarios, annihilation into heavy quarks is dominant

Higgs-exchange dominant in mSUGRA

- Low m_{1/2} (if not excluded by LEP) $\tilde{\chi}\tilde{\chi} \rightarrow h^0 \rightarrow b\overline{b}$
- A-Funnel at high $tan\beta$

 $\tilde{\chi}\tilde{\chi} \to A^0 \to b\bar{b}$

Focus point region (for $m_X > m_t$) $\tilde{\chi} \tilde{\chi} \to H^0 \to t \bar{t}$

[B. Herrmann and M. Klasen, PRD 76 (2007)] [B. Herrmann, M. Klasen and K. Kovařík, PRD 79 (2009)]

Relax scalar or gaugino mass unification

- Non-universal Higgs masses (NUHM) or
 "compressed SUSY" (non-univ. gaugino masses)
- \blacktriangleright A-Funnel already at low tanß
- ▶ Larger higgsino-comp. favours Z⁰-exchange

$$\tilde{\chi}\tilde{\chi} \to Z^0 \to t\bar{t}$$

Large mass splitting favours squark exchange

Large trilinear coupling A₀

 $\tilde{\chi}\tilde{\chi} \to t\bar{t}$

[Herrmann, Klasen, Kovařík, PRD 80 (2009)]

One-loop contributions combined with real gluon emission using dipole subtraction method

Numerical implementation can serve as extension for micrOMEGAs or DarkSUSY

Virtual corrections at the one-loop level

Diagrams calculated in the DR renormalization scheme (preserving Supersymmetry)

Ultraviolet divergences (showing up as poles) removed by on-shell renormalization

Virtual corrections at the one-loop level

Diagrams calculated in the \overline{DR} renormalization scheme (preserving Supersymmetry) Ultraviolet divergences (showing up as poles) removed by on-shell renormalization

Real gluon emission from final state quarks

Poles in gluon emission diagrams cancel remaining infrared divergences Dipole subtraction method allows for separate numerical integration

$$\sigma_{\rm NLO} = \int_2 \left[d\sigma^{\rm V} + \int_1 d\sigma^{\rm A} \right] + \int_3 \left[d\sigma^{\rm R} - d\sigma^{\rm A} \right]$$

[Catani et al. 2000-2002]

Virtual corrections at the one-loop level

Diagrams calculated in the \overline{DR} renormalization scheme (preserving Supersymmetry) Ultraviolet divergences (showing up as poles) removed by on-shell renormalization

Real gluon emission from final state quarks

Poles in gluon emission diagrams cancel remaining infrared divergences Dipole subtraction method allows for separate numerical integration

$$\sigma_{\rm NLO} = \int_2 \left[d\sigma^{\rm V} + \int_1 d\sigma^{\rm A} \right] + \int_3 \left[d\sigma^{\rm R} - d\sigma^{\rm A} \right]$$

[Catani et al. 2000-2002]

Improvements for Yukawa couplings relevant for Higgs-exchanges Decays of Higgs-bosons to quarks known up to $O(\alpha_s^4)$

SUSY-QCD resummation known to be relevant at large $tan\beta$

$$h_{Abb} \propto \frac{\overline{m}_b(Q)}{1+\Delta_b} \tan\beta$$

[Braaten & Leveille 1980, Chetyrkin et al. 1995, Chetyrkin 1997, Chetyrkin et al. 2005] [Carena et al. 2000, Guasch et al. 2003]

Higgs-Funnel at high $tan\beta$

Main effects on cross-section here due to QCD and SUSY-QCD mass resummation

Higgs-Funnel at high $tan\beta$

Main effects on cross-section here due to QCD and SUSY-QCD mass resummation

Impact of corrections more important than experimental uncertainty Favoured region shifted to smaller masses in order to compensate effect on cross-section Effect reversed around the Higgs-pole due to corrections to decay width

[Herrmann and Klasen, PRD 76: 117704 (2007)]

m_0	$1500 { m ~GeV}$	$\Omega_{ ilde{\chi}}h^2$	0.104
$M_{1,2}$	$600 { m GeV}$	$t\bar{t}$	50.4%
M_3	$266 {\rm GeV}$	$m_{ ilde{\chi}}$	$235.6 \mathrm{GeV}$
A_0	0	$m_{ ilde{t}}$	$939.0 \mathrm{GeV}$
aneta	10		
$\operatorname{sgn}(\mu)$	+		

m_0	$1500 { m GeV}$
$M_{1,2}$	$600 {\rm GeV}$
M_3	$266 {\rm GeV}$
A_0	0
aneta	10
$\operatorname{sgn}(\mu)$	+

$\Omega_{\tilde{\chi}}h^2$	0.104	
$t\bar{t}$	50.4%	
$m_{ ilde{\chi}}$	$235.6~{\rm GeV}$	
$m_{ ilde{t}}$	$939.0~{\rm GeV}$	

Z⁰- and squark-exchanges related by important interference term

m_0	1500 GeV
$M_{1,2}$	$600 {\rm GeV}$
M_3	$266 {\rm GeV}$
A_0	0
aneta	10
$\operatorname{sgn}(\mu)$	+

$\Omega_{ ilde{\chi}}h^2$	0.104	
$t\bar{t}$	50.4%	
$m_{ ilde{\chi}}$	$235.6~{\rm GeV}$	
$m_{ ilde{t}}$	$939.0~{\rm GeV}$	

Z⁰- and squark-exchanges related by important interference term

One-loop corrections increase cross-section by about 50% w.r.t. tree-level approximation

[Herrmann, Klasen, Kovařík, PRD 80: 085025 (2009)]

m_0	$500 {\rm GeV}$
m_{H_u}	$1250 {\rm GeV}$
m_{H_d}	$2290~{\rm GeV}$
$m_{1/2}$	$500 { m ~GeV}$
A_0	-1200 GeV
aneta	10

$ \Omega_{\tilde{\chi}} h^2 $	0.113	
$t\overline{t}$	93.4%	
$m_{ ilde{\chi}}$	$200.7~{\rm GeV}$	
$m_{ ilde{t}}$	$259.3~{ m GeV}$	

Z⁰- and squark-exchanges related by important interference term

Z⁰- and squark-exchanges related by important interference term

One-loop corrections increase cross-section by about 25% w.r.t. tree-level approximation

[Herrmann, Klasen, Kovařík, PRD 80: 085025 (2009)]

m_0	$500 { m GeV}$
m_{H_u}	$1250 {\rm GeV}$
m_{H_d}	$2290 {\rm GeV}$
$m_{1/2}$	$500~{ m GeV}$
A_0	-1200 GeV
aneta	10

$\Omega_{\tilde{\chi}}h^2$	0.113	
tt	93.4%	
$m_{ ilde{\chi}}$	200.7 GeV	
$m_{ ilde{t}}$	259.3 GeV	

Favoured regions of parameter space

Favoured regions of parameter space

Favoured regions of parameter space

Important impact of the cosmologically favoured regions of parameter space, e.g. shift of about 50 GeV for m_A or almost 200 GeV for m_{stop}

Numerical effect larger than experimental uncertainty in relevant regions of parameter space

[Herrmann, Klasen, Kovařík, PRD 80: 085025 (2009)]

Conclusion and Perspectives

Relic density calculation allows to obtain constraints on the MSSM parameter space, that are complementary w.r.t. collider data and precision measurements

Impact of SUSY-QCD corrections to neutralino annihilation into (heavy) quarks more important than the experimental uncertainty on the relic density of dark matter

Results to be generalized to 1st and 2nd generation quarks [Herrmann, Klasen, Kovařík (in progress)]

QCD corrections also relevant for co-annihilation

with neutralinos or charginos	[Herrmann, Klasen, Kovařík (to be published)]
with lightest squark	[Freitas 2007, Herrmann et al. (in preparation)]

Corrections potentially interesting for indirect dark matter detection [Herrmann et al. (in preparation)]

Correction due to light boson exchange before annihilation [Drees et al. 2009, previous talk...] Electroweak corrections can also be relevant [Baro et al. 2008, Baro et al. 2010, next talk...] Effective coupling approaches [Kulkarni et al., next-to-next talk...]