

Measurements of CKM elements at BaBar

Martin Nagel

University of Colorado

on behalf of the BaBar collaboration

18th International Conference on Supersymmetry and Unification of Fundamental Interactions, Bonn 23rd August 2010 – 28th August 2010

Outline

Recent measurements of CKM elements from BaBar

- magnitudes :
 - inclusive $|V_{ub}|$ 468 million $B\overline{B}$ events update of PRL 100, 171802 (2008)
 - exclusive $|V_{ub}|$ from $B \to (\pi, \rho) \ell \nu$ 377 million $B\overline{B}$ events
 - exclusive $|V_{cb}|$ from $B \rightarrow D \ell \nu$ 468 million $B\overline{B}$ events
- angles:
 - γ from $B \rightarrow D^{(*)} K^{(*)}$ (three different methods) 468 million $B\overline{B}$ events

 $\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$

SUSY 2010, Bonn

Introduction

- CKM matrix is source of *CP* violation in Standard Model
- Experimental goal: overconstrain the UT by precision measurements to:
 - test unitarity
 - look for signs of new physics

SUSY 2010, Bonn

Introduction

- CKM matrix is source of *CP* violation in Standard Model
- **Experimental goal:** overconstrain the UT by precision measurements to:
 - test unitarity
 - look for signs of new physics

Experimental verification

Magnitudes most accessible in <u>semileptonic B decays</u>

• Matrix element decouples into hadronic and leptonic components:

$$\mathcal{M} = \frac{G_F}{\sqrt{2}} V_{qb} L_\mu H^\mu$$

Magnitudes most accessible in <u>semileptonic B decays</u>

• Matrix element decouples into hadronic and leptonic components:

$$\mathcal{M} = \frac{G_F}{\sqrt{2}} V_{qb} L_\mu H^\mu$$

- Quarks bound to color-singlet hadrons \rightarrow QCD corrections
- Inclusive approach
 - Study distributions from $B \rightarrow X_u \ell \nu (X_u = anything)$
 - Theory: Operator Product Expansion (OPE) -
- Exclusive approach:
 - Study a specific decay channel
 - Theory: form factors

SUSY 2010, Bonn

CKM elements at BaBar (M. Nagel)

independent theoretical uncertainties

inclusive V_{ub}

- Tag B fully reconstructed in hadronic modes; lepton on signal side
- Experimental challenge: separate rare $B \rightarrow X_{\mu} \ell \nu$ signal from dominant $B \to X_c \ell v$ background
- Select phase space regions where charm background is suppressed, measure partial branching fraction
- Increases model-dependent theoretical uncertainties ٠
- Use lepton momentum p_{ℓ}^{*} , hadronic invariant mass m_{χ} , squared ٠ momentum transfer q^2 , and $P_+ = E_X - |p_X|$ as discriminating variables

SUSY 2010, Bonn

inclusive | V_{ub}

- Determine signal yield with fit to $m_{ES} = (E_{\text{beam}}^2 |\boldsymbol{p}_B|^2)^{1/2}$ distribution
- 6 BFs corresponding to different regions of phase space
- Most precise result for full (M_X, q^2) phase space with $p^*_{\ell} > 1.0$ GeV:

 $\Delta BF (B \rightarrow X_u \ell \nu) = (1.80 \pm 0.13 \pm 0.15) \times 10^{-3}$

exclusive $|V_{ub}|$ from $B \rightarrow (\pi, \rho)$ { ν

- Reconstruct neutrino from missing 4-momentum
- Large $B \rightarrow X_c$ { v background, suppressed by multivariate techniques

Binned ML fit in m_{ES} , ΔE , and q^2 for $B \to (\pi^{\pm}/\pi^0/\rho^{\pm}/\rho^0)\ell v$ simultaneously with isospin constraint

BF $(B^{o} \rightarrow \pi^{-} \ell^{+} \nu) = (1.41 \pm 0.05 \pm 0.07) \times 10^{-4}$

SUSY 2010, Bonn

CKM elements at BaBar (M. Nagel)

BABAR

signal

 $B \rightarrow X_u l v$

other $B\overline{B}$

exclusive $|V_{cb}|$ from $B \rightarrow D \ell \nu$

$$\frac{d\Gamma(B \to D\ell\nu)}{dw} = \frac{G_F^2 |V_{cb}|^2}{48\pi^3\hbar} M_D^3 (M_B + M_D)^2 (w^2 - 1)^{3/2} \mathcal{G}^2(w)$$

G(w) = form factor : Caprini et al., Nucl. Phys **B530**, 153 (1998)

$$w = \frac{M_B^2 + M_D^2 - q^2}{2M_B M_D}$$
 ... *D*-boost in *B* rest frame

- $B \rightarrow D \ell v$ with hadronic tag
- Reconstruct neutrino from missing 4-momentum
- significant background from $B \rightarrow D^* \ell v$ (larger BF, undetected slow π^0)
- inclusive $B \rightarrow X_c \ \ell \ v$ used as normalization sample
- most precise measurement of $B \rightarrow D \ell v$

$${\cal B}(\bar{B}\to D\ell\bar{\nu})=(2.15\pm 0.06\pm 0.09)\%$$

• unquenched lattice calculation of FF to extract $|V_{cb}|$: Okamoto et al., Nucl. Phys. **B**, Proc. Suppl. **140**, 461 (2005)

 $|V_{cb}| = (39.2 \pm 1.8 \pm 1.3 \pm 0.9_{FF}) \times 10^{-3}$

• good agreement with $|V_{cb}|$ from exclusive $B \rightarrow D^* \ell \nu$

 $|V_{cb}| = (39.1 \pm 0.6 \pm 0.8_{FF}) \times 10^{-3}$

PRD 79, 014506 (2009)

SUSY 2010, Bonn

CKM elements at BaBar (M. Nagel)

angle $\gamma \neq 0, \pi \Leftrightarrow$ direct CP violation

- measure interference between tree amplitudes $b \rightarrow u\overline{c}s$ and $b \rightarrow c\overline{u}s$
- use final states accessible from both D^0 and $\overline{D}{}^0$
- clear theoretical interpretation in terms of γ
- observables depend on γ , r_{B} , and δ_{B}

$$\begin{array}{l} \gamma = \text{relative weak phase} \\ r_B = \left| \frac{A(b \rightarrow u)}{A(b \rightarrow c)} \right| \\ = \text{magnitude ratio} \\ \delta_B = \text{relative strong phase} \end{array}$$

SUSY 2010, Bonn

- small BFs due to CKM- and/or color-suppression
- disparate magnitudes

 \Rightarrow Measurements are statistics limited

γ from $B \rightarrow D^{(*)} K^{(*)}$: three approaches

Giri, Grossman, Soffer, Zupan, PRD 68, 054018 (2003)

GGSZ: Dalitz analysis of *D* decays into 3-body self-conjugate states Interference term in decay rates proportional to , e.g. $D \to K_s \pi^+ \pi^-$

$$x_{\mp} = r_B \cos(\delta_B \mp \gamma)$$
 $y_{\mp} = r_B \sin(\delta_B \mp \gamma)$

... large in some regions of the Dalitz plot

Atwood, Dunietz, Soni, PRL **78**, 3357 (1997) ADS: $D^{0} \rightarrow K^{+} \pi^{-}$ (doubly Cabibbo suppressed); $\overline{D}^{0} \rightarrow K^{+} \pi^{-}$ (Cabibbo favored) branching fraction ratio $R_{ADS} = \frac{1}{2}(R^{+} + R^{-}) = r_{B}^{2} + r_{D}^{2} + 2r_{B}r_{D}\cos(\delta_{B} + \delta_{D})\cos\gamma$ $A_{ADS} = \frac{R^{-} - R^{+}}{R^{-} + R^{+}} = 2r_{B}r_{D}\sin(\delta_{B} + \delta_{D})\sin\gamma/R_{ADS}$

Gronau, London, Wyler, PLB **253**, 483 (1991); PLB **265**, 172 (1991) GLW: $D \rightarrow CP$ -even $(K^+K^- \dots)$ and CP-odd $(K_s \pi^0 \dots)$ eigenstates both D and \overline{D} are Cabibbo suppressed $R_{CP\pm} = 1 + r_B^2 \pm 2r_B \cos \delta_B \cos \gamma$ $A_{CP\pm} = \frac{\pm 2r_B \sin \delta_B \sin \gamma}{1 + r_B^2 \pm 2r_B \cos \delta_B \cos \gamma}$

Updates based on complete BaBar data sample (468 million *BB* pairs \Leftrightarrow 426 fb⁻¹)

SUSY 2010, Bonn

CKM elements at BaBar (M. Nagel)

γ: Dalitz plot analysis (of D decay)

CP violation parameters are extracted from simultaneous unbinned ML fit to $B^{\pm} \rightarrow D^{(*)} K^{(*)\pm}$ data using m_{ES} , ΔE , *Fisher* and the Dalitz plot distributions (*s*+,*s*-)

BABAR

SUSY 2010, Bonn

CKM elements at BaBar (M. Nagel)

14

γ: Dalitz plot analysis (of D decay)

CP violation parameters are extracted from simultaneous unbinned ML fit to $B^{\pm} \rightarrow D^{(*)} K^{(*)\pm}$ data using m_{ES} , ΔE , *Fisher* and the Dalitz plot distributions (*s*+,*s*-)

BABAR

SUSY 2010, Bonn

γ from $B \rightarrow D^{(*)} K$: ADS method

SUSY 2010, Bonn

γ from $B \rightarrow D K$: GLW method

•Use frequentist interpretation (similar to Dalitz plot method) to obtain weak phase γ and hadronic parameters r_B , δ_B from observables $R_{CP\pm}$ and $A_{CP\pm}$

$$x_{\mp} = \frac{R_{CP+}(1 \pm A_{CP+}) - R_{CP-}(1 \pm A_{CP-})}{4}$$
$$x_{\pm} = -0.057 \pm 0.039 \pm 0.015$$
$$x_{\pm} = +0.132 \pm 0.042 \pm 0.018$$

8-fold ambiguity and large uncertainty:

- no constrain on γ
- improved accuracy of Dalitz plot results

Summary of γ measurements

First sign of an ADS signal in $B^{\pm} \rightarrow DK^{\pm}$ and $B^{\pm} \rightarrow D^{*}K^{\pm}$

Compelling evidence of direct CPV in $B^{\pm} \rightarrow D^{(*)}K^{(*)\pm}$ decays

4.4s significance of CPV in $B^{\pm} \rightarrow DK^{\pm}$ only, Dalitz+GLW combined

All methods combined : $\gamma = (70^{+14}_{-21})^{\circ}$ From the global fit : $\gamma = (67.7^{+3.6}_{-4.1})^{\circ}$ (68%CL)

SUSY 2010, Bonn

- inclusive $|V_{ub}|$: $|V_{ub}| = (4.31 \pm 0.35) \times 10^{-3}$ M. Sigamani – ICHEP 732 (2010) **BABAR** preliminary
- exclusive $|V_{ub}|$ from $B \rightarrow (\pi, \rho)$ ℓv : $|V_{ub}| = (2.95 \pm 0.31) \times 10^{-3}$ arXiv:1005.3288[hep-ex] BABAR preliminary
- exclusive $|V_{cb}|$ from $B \to D \ell \nu$: $|V_{cb}| = (39.2 \pm 1.8 \pm 1.3 \pm 0.9_{FF}) \times 10^{-3}$ PRL 104, 011802 (2010)
- $\gamma \operatorname{from} B \to D^{(*)} K^{(*)}$: $\gamma = (68 \pm 14 \pm 4 \pm 3)^{\circ}$ arXiv:1005.1096 arXiv:1006.4241 arXiv:1007.0504

Backup slides

The linac and PEP-II at SLAC

An of 2008/04/11 00:0

PEP-II Asymmetric *B*-Factory

- collides 9.0 GeV e^- beams and 3.1 GeV e^+ beams
- operates at the $\Upsilon(4S)$ resonance at $E_{\rm CM} = 10.58$ GeV
- lightest $b\bar{b}$ resonance above $B\bar{B}$ threshold
- B(Υ(4S) → BB) ≈ 100%, B mesons almost at rest in CM frame
- boost $\beta \gamma = 0.56$ allows measurement of *B* decay times
- peak luminosity $> 10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1} \Rightarrow B\overline{B}$ production ~ 10 Hz

SUSY 2010, Bonn

The BaBar detector

SUSY 2010, Bonn

Summary on $|V_{ub}|$ and $|V_{cb}|$

Discrepancy between inclusive and exclusive measurements of both $|V_{ub}|$ and $|V_{cb}|$ (also between $|V_{ub}|$ from $B \to \tau v$ and from semileptonics)

 \rightarrow more insight from future B-Factories (Super-B?)

SUSY 2010, Bonn

CKM elements at BaBar (M. Nagel)

Summary on $|V_{ub}|$ and $|V_{cb}|$

$$|V_{cb}|_{inc} = 41.85 \pm 0.43 \pm 0.59$$

 $|V_{cb}|_{exc} = 38.85 \pm 0.77 \pm 0.84$

 $|V_{ub}|_{ave} = 3.92 \pm 0.09 \pm 0.45$ $|V_{cb}|_{ave} = 40.89 \pm 0.38 \pm 0.59$ with all values $\times 10^{-3}$