Searches for Flavor-Changing Neutral Currents and Rare B decays

Andrew Ruland The University of Texas at Austin (For the BABAR Collaboration)

> SUSY-2010 Bonn, Germany

The BaBar Detector & Dataset

- + Analyses presented here are based on the full $\Upsilon(4S)$ dataset
- $\boldsymbol{\cdot}$ Corresponds to 467 million BB pairs

SUSY 2010 - 24 Aug.2010

200

100

2

 $\Upsilon(4S)$

Flavor-Changing Neutral Currents and Rare B Decays

- Flavor-changing neutral currents are forbidden at tree level in the standard model (SM).
 - Excellent avenue for searches for new physics.
 - Non-SM particles can appear inside loops at same order as SM particles and enhance observables.

Search for $B \to \gamma \gamma$

Event Selection	Variable	Cut Value
	Number of Tracks / event	> 2
• Two high energy photons: $E_{\gamma}^* \in [1.15, 3.5]$ GeV	Total Event Energy	< 15.0 GeV
• High energy γ background rejection	Cluster Time	150 ns window
	Number of cluster crystals	> 10
• π^0 / η vetos	Cluster isolation	> 25 cm
out-of-time photons	Cluster Lateral Moment	$0.15 \le f_{LAT} \le 0.5$
	Photon momentum angle	0.4 $< heta <$ 2.4 radians
 Continuum Rejection using neural network 	Merged π^0 consistency	< 0.01
 19 event shape variables 	$\pi^0 LR$	≤ 0.84
	ηLR	≤ 0.84
	Neural Network	≥ 0.54

Ref.

Aubert et al. PRL 87, 24, 2001

Villa et al. PRD 73, 2006

Þ	SM theoretical prediction:	$\mathcal{B}(B^0 \to \gamma \gamma) \simeq 3 \times 10^{-8}$

B($B \rightarrow \gamma \gamma$)¹

 $< 1.7 \times 10^{-6}$

 $< 6.1 \times 10^{-7}$

Motivation and Event Selection

• Heavy non-SM particles in loop can enhance BF up to order of magnitude

Dataset (fb⁻¹)

19

104

Previous searches

Experiment

BaBar

Belle

B

Aliev and Turin, PRD 48(3) 1993

1: limits are given at 90% CL

Background Suppression

- Major source of backgrounds are photons produced in high-energy π^0 / η decays
 - Signal photons (γ) are paired with other photons in event (γ ').
 - Invariant mass M(γγ') and energy of other photon
 E_{γ'} are used to compute a likelihood

$$L_{i} = \frac{\mathcal{P}_{i}(m_{\gamma\gamma'}, E_{\gamma'})}{\mathcal{P}_{\text{sig}}(m_{\gamma\gamma'}, E_{\gamma'}) + \mathcal{P}_{i}(m_{\gamma\gamma'}, E_{\gamma'})}$$
$$i = \pi^{0}/\eta$$

 Continuum background suppression done using a neural network with 19 event shape variables as inputs

Maximum Likelihood Fit

- Extract signal yield from on-resonance data using unbinned extended maximum likelihood fit.
- Signal and combinatoric background yields, slope and power of combinatoric $m_{\rm ES}$ ARGUS PDF are floated in the fit.

Component	$m_{ m ES}$ Shape ΔE Shape	
Signal ¹	Crystal Ball	Asym. Gaussian
Continuum Bkg	ARGUS	Polynomial O(1)
$B\overline{B}$ Bkg	2D Histogram PDF	
1: Signal PDF parameters fixed from MC		

Projection of PDF onto m_{ES} for -0.3 $\leq \Delta E \leq 0.13$ Projection of PDF onto ΔE for $m_{ES} \ge 5.27$ **On-resonance data** Events / (0.003 GeV/c²] 45 Events / (0.04 GeV Total 25 Background Signal 20 **BB** Background 30E 25 20 10 15 BABAR 10E BABAR Preliminary Preliminary 5 -----5.27 5.28 5.29 m_{ES} (GeV/c²) 5.22 5.24 5.25 5.26 5.27 5.21 5.230.2 -0.3 -0.2 -0.1 -0 0.1 0.3 0.4 0.5 ∆ E (GeV) • Signal Yield: $N_{\rm sig} = 21.3^{+12.8}_{-11.8}$

$$\mathcal{B}(B \to \gamma \gamma) = (1.7 \pm 1.1) \times 10^{-7} \implies \text{Statistical Sig.} = 1.9 \sigma$$

Andrew Ruland

SUSY 2010 - 24 Aug.2010

 $B \to \gamma \gamma$

Systematic Uncertainties

Source	Uncertainty on N_{sig} (%)
$B^0\overline{B}^0$ counting	1.7
Tracking efficiency	0.2
Photon efficiency	4.0
Cluster time	0.7
L_{π^0} and L_{η}	2.0
Neural network	3.0
Fit systematic	3.5
Sum in quadrature	6.7

$$\implies N_{\text{sig}} = 21.3^{+12.8}_{-11.8}(stat.) \pm 1.4(syst.)$$

B

 $\mathcal{B}(B \to \gamma \gamma) = (1.7 \pm 1.1(stat.) \pm 0.1(syst.)) \times 10^{-7}$

• Upper Limit

- Convolve likelihood curve from ML fit with a Gaussian whose width equals systematic uncertainty
- Integrate from zero up to 90% of the curve area

$$\mathcal{B}(B^0 \to \gamma \gamma) < 3.2 \times 10^{-7} \ (@ 90\% \text{ CL})$$

Search for $B \rightarrow K v \overline{v}$

- SM prediction of branching fraction (summed over neutrino flavors)
 - $\mathcal{B}(B \to K \nu \bar{\nu}) = (4.5 \pm 0.7) \times 10^{-6}$
 - New particles can give BF enhancements up to $5 \times$ SM

Buchalla, PRD 63, 014015 (2001)

• B_{tag} is reconstructed using the semi-leptonic tag $B \rightarrow D^* l v$

- larger eff. than hadronic tag
- *D* is reconstructed from $K^{-}\pi^{+}, K^{-}\pi^{+}\pi^{+}, K^{-}\pi^{+}\pi^{+}\pi^{-}$ $K^{-}\pi^{+}\pi^{0}, K_{s}^{0}\pi^{+}, K_{s}^{0}\pi^{+}\pi^{-}$ $\Rightarrow K_{s}^{0} \to \pi^{+}\pi^{-}$
- + D^{*_0} reconstructed as $D^0\pi^0$
- D^{*+} reconstructed as $D^0\pi^+, D^+\pi^0$
- · Tag efficiency is ${\sim}1\%.$

- Look for signal B as
 - $B^+ \rightarrow K^+ v \overline{v}$
 - $B^0 \rightarrow K_{\rm s}^{\ 0} \ v \ \overline{v} \ (K_{\rm s}^{\ 0} \rightarrow \pi^+ \pi^-)$
- Signature is single *K* in rest of event
- Also measure partial BF in 2 regions of di-neutrino invariant mass

 $\sim q_{high}^2 > 0.4 m_B^2 > q_{low}^2$

partial BF in high invariant mass bin could be enhanced by new physics

Background Suppression using BDT

- Background suppressed using 20 independent Bagged
 Decision Trees (BDT) for charged and neutral modes
- $K^+(K_s^0)$ tree utilizes 26(38) discriminating variables from 4 categories.
 - Missing Energy, Event Properties, Signal side kinematics, and B_{tag} reconstruction quality
- Strongest discriminating variable is extra energy, $E_{\rm extra}$
 - Sum of of neutral particle energy not associated with tag or signal *B*.

- Branching fraction is measured after optimum BDT selection using $\mathcal{B} = (N_{obs} N_{bkg})/(\varepsilon \cdot N_{B\overline{B}})$
- $N_{\rm obs}$ is from on-resonance data, $N_{\rm bkg}$ is expected from MC, ε is signal efficiency derived from MC

Mode	$\epsilon(\%)$	N_{sig}	N_{bkg}	N_{obs}	N_{excess}
K^+	0.16	2.9 ± 0.4	$17.6\pm2.6\pm0.9$	$19.4^{+4.4}_{-4.4}$	$1.8^{+6.2}_{-5.1}$
K^0_s	0.06	0.5 ± 0.1	$3.9\pm1.3\pm0.4$	$6.1^{+4.0}_{-2.2}$	$2.2^{+4.1}_{-2.8}$
$low-q^2$	0.24	2.9 ± 0.4	$17.6\pm2.6\pm0.9$	$19.4^{+4.4}_{-4.4}$	$1.8^{+6.2}_{-5.1}$
$\mathrm{high}\text{-}q^2$	0.28	2.1 ± 0.3	$187\pm10\pm46$	164_{-13}^{+13}	-23_{-48}^{+49}

Results

Systematics

Category	Uncertainty
Signal efficiency	14%
K^+ background prediction	5%
High- $q^2 K^+$ background prediction	25%
K_{S}^{0} background prediction	10%

Results (limits are x10⁻⁵)

Mode	$\mathcal{B} imes 10^{-5}$	90% CL	95% CL
K^+	$0.2\substack{+0.8\\-0.7}$	< 1.3	< 1.6
K_s^0	$1.7^{+3.1}_{-2.1}$	< 5.6	< 6.7
Comb. K^+, K_s^0	$0.5\substack{+0.7\\-0.7}$	< 1.4	< 1.7
$low-q^2$	$0.2^{+0.6}_{-0.5}$	< 0.9	< 1.1
$\mathrm{high}-q^2$	$-1.8^{+3.8}_{-3.8}$	< 3.1	< 4.6

Previous searches

Experiment	$\mathcal{B}(B^+ \to K^+ \bar{\nu \nu})$	Dataset	Ref.
BaBar	< 5.2 x 10⁻⁵	351 x 10 ⁰ <i>BB</i> ¯	Moriond EW 08 Conference Proceedings
Belle	< 1.4 x 10 ⁻⁵	535 x 10 ⁶ $B\bar{B}$	Villa <i>et al.</i> , PRL 99, 221802 (2007)

Comparison

Measurement of $B \rightarrow \tau v$

$B \rightarrow l v$ Decays

- Reconstruct tag B through • $B \to D^{(*)0}X$, $B \to J/\psi X$
- X system contains up to 9 π^0 , $\pi^{\pm}, K^{\pm}, K_{\rm s}^{0}$
- In multi-B candidate events, smallest $|\Delta E|$ assigned as B_{tag}

- τ reconstructed using ~70% of
- Require exactly 1 charged track
- ρ decay pairs π^{\pm} with π^{0}
 - $M(\pi^0) \in [115, 155] \text{ MeV}/c^2$

Analysis Overview

Tag B Selection

 Fit m_{ES} distribution tag B sample with a Crystal Ball shape (correctly reconstructed B) + ARGUS shape (combinatorial background).

Tag *B* modes with purity P > 10% are used for signal selection.

Signal B Selection

- Continuum + combinatorial bkg suppressed using likelihood ratio of 3 kinematic B variables.
- $D^{(*)0}/J/\psi$ center-of-mass momentum,
- cosine of angle, θ , between tag B thrust and rest-of-event thrust.
- Magnitude of thrust of tag B
- Most discriminating variable is residual energy in the calorimeter:
 *E*_{extra}
 - $\,$ Sum of all neutral particle energies (> 60 MeV) not assigned to $B_{\rm tag}$ or $B_{\rm sig.}$
- Optimize selections for smallest statistical + systematic BF uncertainty.

Andrew Ruland

SUSY 2010 - 24 Aug.2010

Branching Fraction Determination

Fit Results

Decay Mode	$\epsilon imes 10^{-4}$	$\mathcal{B}(imes 10^{-4})$	Significance (σ)
$\tau^+ ightarrow e^+ \nu \bar{\nu}$	2.97	$0.39\substack{+0.89\\-0.79}$	0.5
$ au^+ ightarrow \mu^+ u ar{ u}$	3.20	$1.23\substack{+0.89\\-0.80}$	1.6
$\tau^+ ightarrow \pi^+ \nu$	1.71	$4.0^{+1.5}_{-1.3}$	3.3
$\tau^+ ightarrow ho^+ \nu$	0.93	$4.3^{+2.2}_{-1.9}$	2.6
combined	8.81	$1.80^{+0.57}_{-0.54}$	3.6

Significance calculated as:

$$\sigma = \sqrt{2 \cdot \ln(\mathcal{L}_{s+b}/\mathcal{L}_{b})}$$

$$\mathcal{L}_{\mathrm{s+b}}$$
 = Max. likelihood value

 $\mathcal{L}_{b} = Max.$ likelihood value assuming all no signal

Sources of systematic uncertainties

 Additional measurement from an independent dataset using a semi-leptonic tag.

Summary

- Search for FCNC and rare B decays \rightarrow test of SM predictions and are a probe of new physics.
- $\bullet \ B$ Factories provide high statistics and clean data samples
 - Indirect searches for NP and complementary to searches at high energy machines.
- Preliminary results of searches for FCNC rare B decays

• $\mathcal{B}(B \to \gamma \gamma) < 3.2 \times 10^{-7} \ (90\% \ \mathrm{CL})$ Preliminary

• $\mathcal{B}(B \to K \nu \bar{\nu}) < 1.4 \times 10^{-5} \ (90\% \ \text{CL})$ Preliminary

+ Updated measurement of $B \to \tau \, v$ using

Hadronic Tag

 $\mathcal{B}(B \to \tau \nu) = (1.80^{+0.57}_{-0.54} \pm 0.26) \times 10^{-4}$

Semi-leptonic Tag $\mathcal{B}(B \to \tau \nu) = (1.7 \pm 0.8 \pm 0.2) \times 10^{-4}$

Phys. Rev. D81, 051101(R) (2010)

Preliminary

• Combining these measurements we present a single BABAR measurement

 $\mathcal{B}(B \to \tau \nu) = (1.76 \pm 0.49) \times 10^{-4}$ Preliminary

• Further progress in these modes possible at high luminosity B factory

Backup Slides

B Decay Analyses

- Two methods are used to reconstruct ${\cal B}$ decays
- <u>Recoil Analysis</u>
 - Fully reconstruct a B in the event using a semileptonic or hadronic tag (B_{tag}) to constrain its kinematics
 - Search the rest of the event for the signature of the signal B (B_{sig})
 - Useful when there are undetectable particles in the signal side final state, e.g., v.

 $B_{\rm tag}$ reco efficiency ~10⁻²/10⁻³, clean sample

- Inclusive Analysis
 - Reconstruct B_{sig} decay products and constrain kinematics
 - Use extra-tracks and neutrals to reconstruct $B_{\rm tag}$ (1 v on signal side)
 - Higher efficiency but larger backgrounds

Fit Results individual modes

Andrew Ruland

SUSY 2010 - 24 Aug.2010