Radiative Penguin B Decays at BABAR

David Doll

Today's Talk

- 2 recent results presented using entire dataset:
- $b \rightarrow d\gamma$ transitions
- $B^+ \rightarrow K^+ \tau \tau$

<u>Final Dataset</u> 433 fb⁻¹ at Y(4S) 470 x 10⁶ BB pairs 54 fb⁻¹ at 40 MeV below Y(4S)

8/23/2010 - 8/29/2010

SUSY 10 - Bonn, Germany

Radiat"ing" decays at BABAR

- $b \rightarrow s\gamma$ and $b \rightarrow d\gamma$ transitions
- FCNC decays opportunity to place constraints on NP
- Many Analysis Strategies

	u/d u/d		
Method	Current BABAR results	Luminosity (fb ⁻¹)	
Inclusive $B \rightarrow X_s \gamma$	$A_{CP(s+d)} = -0.11 \pm 0.115 \pm 0.017$	81.5	
B. Aubert <i>et al.,</i> Phys. Rev. Lett. 97, 171803 (2006)	BF(E _{γ} >1.6 GeV)* = (3.94±0.31±0.36±0.21)x10 ⁻⁴	81.5	
Sum of Exclusives $B \rightarrow X_s \gamma$	$A_{CP} = -0.011 \pm 0.030 \pm 0.014$	343.5	
B. Aubert <i>et al.,</i> Phys. Rev. D72 , 052004 (2005) B. Aubert <i>et al.,</i> Phys. Rev. Lett. 101, 171804 (2008)	$BF(E_{\gamma} > 1.6 \text{ GeV}) = (3.35 \pm 0.19^{+0.56}_{-0.41} + 0.04) \times 10^{-4}_{-0.41}$	81.9	
Recoil Reconstruction $B \rightarrow X_s \gamma$	BF(E_{γ} >1.6 GeV) = (3.91±0.91±0.64) x10 ⁻⁴	210	
B. Aubert <i>et al.,</i> Phys. Rev. D77 , 051103 (2008)	$A_{CP(s+d)} = 0.10 \pm 0.18 \pm 0.05$	210	
Sum of Exclusives $B \rightarrow X_{\rm d} \gamma$	This Talk	429.1	
B. Aubert <i>et al.,</i> arXiv:1005.4087 (2010)		n	
8/23/2010 - 8/29/2010	SUSY 10 - Bonn, Germany	tod demand on 3	

χ-

W

 H^{-}

photon spectrum model

$B \rightarrow X_d \gamma$ Analysis

- $b \rightarrow d\gamma$ suppressed by a factor ~20 w.r.t. $b \rightarrow s\gamma$
- "Sum of exclusives":

 $X_{\rm s}$ and $X_{\rm d}$ related by kaon-pion substitution

Charge conjugation implied throughout

- Analysis measures $b \rightarrow s\gamma$ as well to extract a value for $|V_{td}/V_{ts}|$
 - independent check of value from B_s vs. B_d mixing

- Lower theoretical uncertainties than ratio of specific final states*

$$\frac{BF(B \to (\rho, \omega)\gamma)}{BF(B \to K^*\gamma)} \Rightarrow \frac{|V_{td}|}{|V_{ts}|} = 0.199^{+0.022}_{-0.025}(\exp) \pm 0.014(\th) \ddagger \nabla$$

*A. Ali, H. Asatrian and C. Greub, Phys. Lett. **B429** 87 (1998) † P. Ball, G. Jones and R. Zwicky, Phys. Rev. **D75**, 054004 (2007) lower with inclusive determination

8/23/2010 - 8/29/2010

- $X_{d/s}$ mass spectrum split into two bins (4 total yields measured)
 - $0.5 < M(X_{d/s}) < 1.0 \text{ GeV/c}^2 \text{low mass bin}$
 - Modeled exclusively by $\rho/\omega\gamma$ (*K**(892) γ) MC for the X_d (X_s) signal events though all 7 final states reconstructed
 - $1.0 < M(X_{d/s}) < 2.0 \text{ GeV/c}^2 \text{high mass bin}$
 - final state composition modeled "generically" via phase space in JETSET no explicit resonances
- Background levels suppressed through use of a neural net as well as requirements on event shape and *X*-candidate variables
- Fit for signal yield and correct for missing modes and spectrum
 - Yield determined from simultaneous fit to $m_{\rm ES}$ (below) and ΔE

SUSY 10 - Bonn, Germany

5

Systematic Errors

Systematic	$M(X_s)$		$M(X_d)$	
Error Source	0.5 - 1.0	1.0-2.0	0.5 - 1.0	1.0-2.0
Track selection	0.3%	0.4%	0.3%	0.4%
Photon reconstruction	1.8%	1.8%	1.8%	1.8%
π^0/η reconstruction	0.9%	1.1%	1.4%	1.6%
Neural network	1.1%	4.9%	1.1%	4.9%
B counting	0.6%	0.6%	0.6%	0.6%
PID (*)	2.0%	2.0%	2.0%	2.0%
Fit bias (*)	0.1%	0.9%	4.9%	6.5%
PDF shapes (*)	2.3%	0.6%	3.7%	3.4%
Histogram binning (*)	0.8%	0.2%	1.8%	1.8%
Background (*)	0.8%	1.2%	5.9%	7.0%
Fragmentation (*)	-	3.3%	-	5.1%
Signal model	-	5.8%	-	6.0%
Error on partial \mathcal{B}	4.0%	9.0%	9.3%	14.2%
$Missing \ge 5 \text{ body}$		9.6%		18.2%
Other missing states		7.5%		15.3%
Spectrum Model		1.8%		1.6%
Error on inclusive \mathcal{B}	4.0%	15.2%	9.3%	27.7%
Signal modelError on partial \mathcal{B} Missing ≥ 5 bodyOther missing statesSpectrum ModelError on inclusive \mathcal{B}	- 4.0%	5.8% 9.0% 9.6% 7.5% 1.8% 15.2%	- 9.3% 9.3%	6.0% 14.2% 18.2% 15.3% 1.6% 27.7%

- Obtained through MC/data comparison
- For the partial branching fractions, largest sources are fit bias, background estimation, fragmentation and signal model
- The entire mass range requires accounting for both unreconstructed modes and the spectrum model of $X_{s/d}$ -mass

$B \rightarrow X_d \gamma$ Results

• Consistent with previously measured results

- FCNC occurs in SM through both box and penguin processes
- $BF(B^+ \rightarrow X_s \tau \tau)$ comparable to $\overline{BF}(B^+ \rightarrow X_s ll) \ (l = \{e, \mu\})$ at high momentum transfer, q^2
 - Exclusive mode, $B^+ \rightarrow K^+ \tau \tau$, is 50-60% of the entire rate
- New Physics couplings proportional to mass squared, could enhance $BF(B^+ \rightarrow \bar{X}_s \tau \tau)$ over $BF(B^+ \rightarrow X_s ll)$ levels*

* G. Hiller, Phys. Rev. D70 034018 (2004)

SUSY 10 - Bonn, Germany

h

 \overline{q}

- "Tagged Analysis" reconstruct the recoiling *B*
 - 2-4 neutrinos in the final state
 - Use Hadronic final states to reconstruct "tag *B*"

"Tagged Analysis" – reconstruct the recoiling B-2-4 neutrinos in the final state - Use Hadronic final states to reconstruct "tag B" Tag B Modes Reconstructed: $B \rightarrow D^{(*)} + X$ X can be up to 6 extra hadrons $\{K, K_{o}, \pi, \pi^{0}\}$ $D^{(*)}$ is reconstructed in D several final states *B*-Y(4S) Tag efficiency ~0.2% 42000 Data X Continuum-MC ₩000 Total Fit Continuum PDF 35000 Combinatoric Fit Hadronic Tag Events 30000 25000 $m_{\rm ES} = \sqrt{E_{\rm Beam}^2}$ 20000 15000 10000 5000 5.25 5.255 5.26 5.265 5.27 5.275 5.28 5.285

- "Tagged Analysis" reconstruct the recoiling *B*
 - 2-4 neutrinos in the final state
 - Use Hadronic final states to reconstruct "tag *B*"

Signal Modes: $\tau \rightarrow \{evv, \mu vv, \pi v\}$

~46% of τ final states

Always 3 charged particles on the signal side

Signal Selection

 $|\cos \theta_{\rm T}| < 0.8$, the angle between the tag-*B*'s thrust and the thrust of the signal side, is used to reject continuum backgrounds – the only tag-side variable cut on after tag identification

•Exactly 3 charged Tracks

- One *K*⁺ from Particle ID
 - $0.44 < p_K < 1.40 \text{ GeV/c}$
 - Charge opposite tag-*B*
- One neutral pair of {*e*, μ, π}
 *p** < 1.59 GeV/c
 M_{pair} < 2.89 GeV/c²
- $q^2 = (p_{Y4S} p_{tag} p_K)^2 > 14.23 \ (GeV/c)^2$
- 1.39 < Missing Energy < 3.38 GeV calculated from 4-vectors of detected particles
- Extra neutral energy < 0.74 GeV

$B^+ \rightarrow K^+ \tau \tau$ Results

Largest source of background in b→sll is B→DX
 Suppressed by requiring m(Kπ)>1.96 GeV/c²

• "Cut and Count" procedure to establish an upper limit

Number of events expected = 64.7 Number of events seen =47

 $BF(B^+ \rightarrow K^+ \tau \tau) < 3.3 \times 10^{-3} (90\% \text{ CL})$

Summary

- Two recent results involving Flavor Changing Neutral Currents presented
- Both use the entire *BABAR* dataset
 Further improvement only possible at a Super *B* factory
- BF($b \rightarrow d\gamma$) ($m_{Hadron} < 2.0 \text{ GeV/c}^2$)=(9.15±2.01±1.24±1.88) × 10⁻⁶

 $\left|\frac{V_{td}}{V_{ts}}\right| = 0.199 \pm 0.022(stat.) \pm 0.012(syst.) \pm 0.027(extrap.) \pm 0.002(th.)$

• BF($B^+ \rightarrow K^+ \tau \tau$) < 3.3 × 10⁻³ (90% CL)

Bonus Material

Systematic Errors

$M(X_s)$		$M(X_d)$	
0.5 - 1.0	1.0-2.0	0.5 - 1.0	1.0-2.0
0.3%	0.4%	0.3%	0.4%
1.8%	1.8%	1.8%	1.8%
0.9%	1.1%	1.4%	1.6%
1.1%	4.9%	1.1%	4.9%
0.6%	0.6%	0.6%	0.6%
2.0%	2.0%	2.0%	2.0%
0.1%	0.9%	4.9%	6.5%
2.3%	0.6%	3.7%	3.4%
0.8%	0.2%	1.8%	1.8%
0.8%	1.2%	5.9%	7.0%
-	3.3%	-	5.1%
-	5.8%	-	6.0%
4.0%	9.0%	9.3%	14.2%
	9.6%		18.2%
	7.5%		15.3%
	1.8%		1.6%
4.0%	15.2%	9.3%	27.7%
	M(0.5-1.0 0.3% 1.8% 0.9% 1.1% 0.6% 2.0% 0.1% 2.3% 0.8% 0.8% - - 4.0%	$\begin{array}{c c} M(X_s) \\ 0.5-1.0 & 1.0-2.0 \\ 0.3\% & 0.4\% \\ 1.8\% & 1.8\% \\ 0.9\% & 1.1\% \\ 1.1\% & 4.9\% \\ 0.6\% & 0.6\% \\ 2.0\% & 2.0\% \\ 0.6\% & 0.6\% \\ 2.0\% & 2.0\% \\ 0.1\% & 0.9\% \\ 2.3\% & 0.6\% \\ 0.8\% & 0.2\% \\ 0.8\% & 0.2\% \\ 0.8\% & 1.2\% \\ - & 3.3\% \\ - & 5.8\% \\ 4.0\% & 9.0\% \\ 4.0\% & 9.0\% \\ 1.8\% \\ 4.0\% & 15.2\% \\ 1.8\% \\ \end{array}$	$M(X_s)$ $M(.$ $0.5-1.0$ $1.0-2.0$ $0.5-1.0$ 0.3% 0.4% 0.3% 1.8% 1.8% 1.8% 0.9% 1.1% 1.4% 1.1% 1.4% 1.1% 0.6% 0.6% 0.6% 2.0% 2.0% 2.0% 0.1% 0.9% 4.9% 2.3% 0.6% 3.7% 0.8% 0.2% 1.8% 0.8% 0.2% 1.8% 0.8% 0.2% 1.8% 0.8% 0.2% 1.8% 0.8% 1.2% 5.9% $ 3.3\%$ $ 5.8\%$ $ 4.0\%$ 9.0% 9.3% 9.6% $ 5.8\%$ 4.0% 9.0% 9.3%

- DetriportathroughemGrédata foasparisge requires
- For the partial branching fractions, largest sources are fit bias, background and mass range
- Lind siknalan Neubert"
- **Inadewford** Xnon assurption **spectrum with spair** ameters $(m_b \approx 4! 65; el \neq 1 \approx 0.52)$ [17] ays expected • assume X mass
 - assume X mass signal model not used in the strum identical

$B^+ \rightarrow K^+ \tau \tau$ Results

Largest source of background in b→sll is B→DX
 Suppressed by requiring m(Kπ)>1.96 GeV/c²

• "Cut and Count" procedure to establish an upper limit

