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LHC has started taking data

Search for new physics has already started.  
Alves, Izaguirre, Wacker (arXiv:1008.0407)

ATLAS-CONF 2010-065
ATLAS-CONF 2010-066
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New physics at the LHC

• Dark Matter Symmetry

SM (neutral) BSM (charged)• Pair Production

• two missing particles

• many jets (and leptons)

These make it difficult to extract the 
informa5on of the underlying theory.

coloured BSM particle

DM particle (colourless, invisible)



Measuring Mass (1)
• Invariant Mass
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Hinchliffe, Paige, Shapiro, Soderqvist, Yao (hep-ph/9610544),
Bachacou, Hinchliffe, Paige (hep-ph/9907518),
Allanach, Lester, Parker, Webber (hep-ph/9907519),
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error on the endpoint for three years at low luminosity was estimated [20-25] using a Kol-
mogorov test to be GeV, where the first error is statistical and the second is
systematic, coming mainly from the 0.1% uncertainty in the electromagnetic energy scale.

The size of the peak relative to the continuum and its distribution can provide informa-
tion on the masses and mixings of the heavier gauginos, albeit in a model dependent way. A full
analysis would require generating many samples of events varying all the parameters of the
minimal SUGRA or other SUSY model. To get an approximate indication of the sensitivity, only
the mass was varied holding the other masses fixed. A Kolmogorov test was then used to
determine the sensitivity of the distribution of the to the mass. This analysis gave

 for  [20-25].

At Point 5 the right-handed sleptons are relatively light, so the decay is open;
this is characteristic of SUGRA points that give an amount of cosmological cold dark matter
consistent with the universe having the critical density, , as predicted by inflation. Since
the sleptons are light, the dilepton signal comes from a two-body intermediate state, not from a
direct three-body decay. The signal comes mainly from squarks, either directly produced or
from gluino decay, so the SUSY events also contain hard jets. Events were therefore selected to
have [20-26]

• ;

• exactly two opposite-sign, same-flavour electrons or muons with and
;

• at least two jets with .

Figure 20-11 Dilepton signal at

Point 5 (solid), background from other SUSY sources

(dashed), and sum of Standard Model backgrounds

(dotted) after cuts.

Figure 20-12 Minimum- fit to flavour-subtracted

dilepton signal for Point 5 for an integrated luminosity
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Lester, Summers (hep-ph/9906349),
,

Tovey (arXiv:0802.2879),
Barr, Ross, Serna (arXiv:0806.3224)
W.S.Cho, J.E.Kim, J.H.Kim (arXiv:0912.2354)
...

Measuring Mass (2)
• Kinematical Variables (MT2, MCT, M2C, MCT2, ...)
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FIG. 10: (CASE 6v) As for Fig. 7 but plotting the variable mT2 for a pair of three-daughter decays. m0,5 =

500, m1,6 = 100, and m2,3,7,8 = 0.

ZPT maxima of 5/13 ∼ 0.38 and 1, respectively. Note that, despite the presence of non-zero pT ,

we find that the observed values correspond very closely to the ZPT maxima, suggesting that the

relevant events are very close to threshold.

For the ZPT case we also generate events each containing a pair of virtual three-body decays,

but this time we use the toy Monte Carlo to impose the requirement that the sum of the parent

particles has zero transverse momentum Fig. 10c. Again we see a kink.

Notice that the CASE 6v results contrast with those from CASE 4. In CASE 4 a kink was only

seen in SPT, whereas in CASE 6v kinks are seen in both SPT and ZPT. This means that events

containing pairs of three-body decays stand a better chance of generating observable kinks at the

LHC than do events containing pairs of two-body decays, for the former can generate kinks without
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Barr, Gripaios, Lester (hep-ph/0711.4008) 



Measuring Mass (3)
• Event reconstruction ,

Kawagoe, Nojiri, Polesello (hep-ph/0410160),
Cheng, Engelhardt, Gunion, Han, McElrath (arXiv:0802.4290),
Webber (arXiv:0907.5307),
...

Two DMs’ momenta               can be determined by

NXY
Z

p1 p2 p3

p3̄p2̄p1̄

N̄X̄Ȳ
Z̄

PN , PN̄

we solve. To be experimentally realistic, we now include
the following.

(1) Wrong combinations. For a given event a ‘‘combi-
nation’’ is a particular assignment of the jets and
leptons to the external legs of Fig. 2. For each event,
there is only one correct combination (excluding
1357 $ 2468 symmetry). Assuming that we can
identify the two jets that correspond to the two
quarks, we have 8 (16) possible combinations for
the 2!2e (4! or 4e) channel. The total number of
combinations for a pair of events is the product of
the two, i.e., 64, 128, or 256. Adding the wrong
combination pairings for the ideal case yields the
mass distributions of Fig. 4. Compared to Fig. 3,
there are 16 times more (wrong) solutions, but the "-
function-like mass peaks remain evident.

(2) Finite widths. For SPS1a, the widths of the inter-
mediate particles are roughly 5 GeV, 20 MeV, and

200 MeV for ~qL, ~#
0
2, and

~‘R. Thus, the widths are
quite small in comparison to the corresponding
masses.

(3) Mass splitting between flavors. The masses for up
and down type squarks have a small difference of
6 GeV. Since it is impossible to determine flavors for
the light jets, the mass determined should be viewed
as the average value of the two squarks (weighted by
the parton distribution functions).

(4) Initial/final state radiation. These two types of ra-
diation not only smear the visible particles’ mo-
menta, but also provide a source for extra jets in
the events. We will apply a pT cut to get rid of soft
jets.

(5) Extra hard particles in the signal events. In SPS1a,
many of the squarks come from gluino decay (~g !
q~qL), which yields another hard q in the event.
Fortunately, for SPS1a m~g !m~qL ¼ 40 GeV is

much smaller than m~qL !m~#0
2
¼ 380 GeV.

Therefore, the q from squark decay is usually
much more energetic than the q from ~g decay. We
select the two jets with highest pT in each event after
cuts. Experimentally, one would want to justify this
choice by examining the jet multiplicity to ensure
that this analysis is dominated by 2-jet events, and
not 3 or 4 jet events.

(6) Background events. The SM backgrounds are neg-
ligible for this signal in SPS1a. There are a few
significant backgrounds from other SUSY pro-
cesses:

(a) ~qL ! q~#0
2 ! q$~$ ! q$$~#0

1 for one or both decay
chains, with all $’s decaying leptonically. Indeed,
~#0
2 ! $~$ has the largest partial width, being 14

times that of ~#0
2 ! ! ~!. However, to be included

in our selection the two $’s in one decay chain must
both decay to leptons with the same flavor, which
reduces the ratio. A cut on lepton pT also helps to
reduce this background, since leptons from $ decays
are softer. Experimentally, one should perform a
separate search for hadronically decaying tau’s or
nonidentical-flavor lepton decay chains to explicitly
measure this background.

(b) Processes containing a pair of sbottoms, which have
different masses from the first two generations.
Since b jets are distinguishable, a separate analysis
should be performed to determine the b squark
masses. However, this presents a background to
the light squark search since b-tagging efficiency
is only about 50% at high pT .

(c) Processes that contain a pair of ~#0
2’s, not both com-

ing from squark decays. For these events to fake
signal events, extra jets need to come from initial
and/or final state radiation or other particle decays.
For example, direct ~#0

2 pair production or ~#0
2 þ ~g

production. These are electroweak processes, but,
since ~#0

2 has a much smaller mass than squarks, the
cross section is not negligible. In our SPS1a analy-
sis, the large jet pT cut reduces this kind of back-
ground due to the small m~g !m~qL .

(7) Experimental resolutions. In order to estimate this
experimental effect at the LHC, events in both signal
and the aforementioned SUSY backgrounds are fur-
ther processed with pretty good simulation (PGS)
[33]. Note that in [7], we used ATLFAST [42] for the
detector simulation. Compared with ATLFAST, PGS
has more stringent lepton isolation cuts, therefore
we obtain fewer events. Nevertheless, as shown
below, the results turn out to be similar. All objects
including jets, isolated leptons, and missing pT are
taken directly from PGS.

The cuts used to isolate the signal are:
(I) Four isolated leptons with pT > 10 GeV, j%j< 2:5,

and matching flavors and charges consistent with our

assumed ~#0
2 ! ~‘ ! ~#0

1 decay.
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FIG. 4. Number of mass solutions vs mass after including all
combination pairings for 100 events. Signal events only, with
only combinatoric ambiguities included.

CHENG, GUNION, HAN, AND MCELRATH PHYSICAL REVIEW D 80, 035020 (2009)
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mass-shell conditions and missing momentum. 

All masses can be determined 
at the same time.

All events contribute to  
determining masses.

Cheng, Gunion, Han, McElrath ‘09
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events.
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error on the endpoint for three years at low luminosity was estimated [20-25] using a Kol-
mogorov test to be GeV, where the first error is statistical and the second is
systematic, coming mainly from the 0.1% uncertainty in the electromagnetic energy scale.

The size of the peak relative to the continuum and its distribution can provide informa-
tion on the masses and mixings of the heavier gauginos, albeit in a model dependent way. A full
analysis would require generating many samples of events varying all the parameters of the
minimal SUGRA or other SUSY model. To get an approximate indication of the sensitivity, only
the mass was varied holding the other masses fixed. A Kolmogorov test was then used to
determine the sensitivity of the distribution of the to the mass. This analysis gave

 for  [20-25].

At Point 5 the right-handed sleptons are relatively light, so the decay is open;
this is characteristic of SUGRA points that give an amount of cosmological cold dark matter
consistent with the universe having the critical density, , as predicted by inflation. Since
the sleptons are light, the dilepton signal comes from a two-body intermediate state, not from a
direct three-body decay. The signal comes mainly from squarks, either directly produced or
from gluino decay, so the SUSY events also contain hard jets. Events were therefore selected to
have [20-26]

• ;

• exactly two opposite-sign, same-flavour electrons or muons with and
;

• at least two jets with .

Figure 20-11 Dilepton signal at

Point 5 (solid), background from other SUSY sources

(dashed), and sum of Standard Model backgrounds

(dotted) after cuts.

Figure 20-12 Minimum- fit to flavour-subtracted

dilepton signal for Point 5 for an integrated luminosity
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error on the endpoint for three years at low luminosity was estimated [20-25] using a Kol-
mogorov test to be GeV, where the first error is statistical and the second is
systematic, coming mainly from the 0.1% uncertainty in the electromagnetic energy scale.

The size of the peak relative to the continuum and its distribution can provide informa-
tion on the masses and mixings of the heavier gauginos, albeit in a model dependent way. A full
analysis would require generating many samples of events varying all the parameters of the
minimal SUGRA or other SUSY model. To get an approximate indication of the sensitivity, only
the mass was varied holding the other masses fixed. A Kolmogorov test was then used to
determine the sensitivity of the distribution of the to the mass. This analysis gave

 for  [20-25].

At Point 5 the right-handed sleptons are relatively light, so the decay is open;
this is characteristic of SUGRA points that give an amount of cosmological cold dark matter
consistent with the universe having the critical density, , as predicted by inflation. Since
the sleptons are light, the dilepton signal comes from a two-body intermediate state, not from a
direct three-body decay. The signal comes mainly from squarks, either directly produced or
from gluino decay, so the SUSY events also contain hard jets. Events were therefore selected to
have [20-26]

• ;

• exactly two opposite-sign, same-flavour electrons or muons with and
;

• at least two jets with .

Figure 20-11 Dilepton signal at

Point 5 (solid), background from other SUSY sources

(dashed), and sum of Standard Model backgrounds

(dotted) after cuts.

Figure 20-12 Minimum- fit to flavour-subtracted

dilepton signal for Point 5 for an integrated luminosity

of .

0

100

200

300

400

0 50 100 150 200

mll (GeV)

e
v
e
n
ts

/4
 G

e
V

/3
0
 f
b
!
1

signal

SM backg

SUSY backg

0

100

200

300

400

0 50 100 150

  205.7    /   197

P1   2209.

P2   108.7

P3   1.291

M
ll
 (GeV)

E
v
e
n
ts

/0
.5

 G
e
V

/1
0
0
 f
b

-1

"̃
2
0 l̃R

± l+
!

"̃
1
0l+l-## "2

100 fb 1–

68.13
1.0–
+0.5 0.07±( )

Z p
T

"̃
2
±

p
T

Z "̃
2
±

M "̃
2
±( ) 315 21 9 GeV±±= 30 fb 1–

"̃
2
0 l̃R

± l+
!

"̃
1
0l+l-##

$ 1=

E
T
miss 300 GeV>

p
T

10 GeV>

% 2.5<

p
T

150 GeV>

Event reconstruction

include the addi,onal info.



How to incorporate constraints effec7vely?
• give priority to dilepton edge constraints 
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N X Y Z

χ̃0
1 ẽR χ̃0

2 ũL
96 143 177 537

Table 1: Mass spectrum in GeV for Snowmass point SPS 1a
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Figure 2: Stereoscopic views of the true parton-level solution curves for three events. The ball
shows the true mass point.

using HERWIG version 6.5 [6–8]. Some of the squarks are produced directly and some

come from gluino decay; the production mechanism affects their momentum and rapidity

distributions but is otherwise irrelevant for our purposes.

Third-generation squarks are excluded, as their different masses prevent a good fit

with a single squark mass. Experimentally, this would involve vetoing events with a tagged

b-jet. At SUSY point SPS 1a only left-squarks have significant branching ratios into the

mode (1.1) and so the left-right squark mass splitting is not a problem here. The d̃L − ũL
mass difference is 5.8 GeV. Therefore the assumption that the masses in the two decay

chains are identical should be a good approximation.

Figure 2 shows the parton-level solution curves for three typical SPS1a events, using

the correct combinations of quarks and leptons in the decay chains.2 The curves all pass

close to the “true” mass point (TMP)

M1 = 257040 , M2 = 10880 , M3 = 11233 , (3.1)

all in GeV2, corresponding to the SUSY mass spectrum in Table 1. The curves do not

precisely intersect, even with exact kinematics, owing to Breit-Wigner smearing of unstable

particle masses. However, we see that the density of solution curves is high only in the

vicinity of the TMP (3.1).

Figure 3 shows the effect of combinatorial ambiguities for the same three events, viewed

from a different angle for clarity. Here the interchanges of near and far leptons (2 ↔ 3 and

6 ↔ 7) and of quarks (1 ↔ 5) are included, making eight combinations per event. Three-

dimensional viewing reveals that incorrect combinations either have no real solutions or

tend to give curves that do not congregate to form regions of high density.

2The two images can be merged into a three-dimensional display by directing each eye at the corre-

sponding image.

– 5 –

• each event-assignment gives a curve

• curves from different events 
intersect at the true mass point 
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• give priority to dilepton edge constraints 

transform variables

mZ , mY , mX , mN

M1 = m2
Z −m2

Y

M2 = m2
Y −m2

X

M3 = m2
X −m2

N

Mll =
(m2

Y −m2
X)(m2

X −m2
N )

m2
X

fix by dilepton edge

3 unknowns 
(can be visualise)

• each event-assignment gives a curve

• curves from different events 
intersect at the true mass point 

!500000

!400000

!300000

!200000

!100000

M1
2!GeV2" !20000

!15000

!10000

!5000

0
M2

2!GeV2"

!20000

!15000

!10000

!5000

0

M3
2!GeV2"
• kill wrong solutions and 
assignments efficiently True

Wrong

How to incorporate constraints effec7vely?



• take account of detector resolution
For each observed event, we generate 1000 “fake” events whose 
momenta of jets and missing are deviate from observed ones.

The devia>ons are followed by Gaussian func>ons with the same 
error as the detector resolu>ons 

How to incorporate constraints effec7vely?



• take account of detector resolution
For each observed event, we generate 1000 “fake” events whose 
momenta of jets and missing are deviate from observed ones.

The devia>ons are followed by Gaussian func>ons with the same 
error as the detector resolu>ons 

P (M) ∝
∏

i

fi(M) ∝
∏

ρi(M)

fi(M) ∝ ρi(M)

for Nfake →∞

We can reasonably estimate errors.

How to incorporate constraints effec7vely?

fi(M): probability dens. of event i

ρi(M): dens. of curves of event i

P (M): probability dens. of the total evemts



MC simulation

• 3 model points are examined

m0 m1/2 A0 χ̃0
1 ẽR χ̃0

2 ũL

Point A 110 220 0 86 142 161 504

Point B 100 250 −100 99 141 186 563

Point C 140 260 0 103 174 193 592

Table 2: Parameters and mass spectra in GeV for non-CMSSM model points A, B and C. Param-
eters common to all points are m3rd gen.

0 = 300 GeV, tanβ = 10, sign(µ) = +.

is larger than the others, so that the branching ratio (1.1) is increased by suppressing

the χ̃0
2 → τ̃±1 τ∓ mode. The sparticle spectra at these points are shown in Table 2. The

generated samples of 500,000 events correspond to about 10, 15 and 20 fb−1 of integrated

luminosity, respectively.

The following cuts are applied in order to select signal events:

(i) Meff ≡
∑4

i=1 p
jet,i
T +

∑4
i=1 p

lep,i
T + Emiss

T > 400GeV ;

(ii) Emiss
T > max(200GeV, 0.2Meff ) ;

(iii) At least two jets with pjet,1T > 100GeV and pjet,2T > 50GeV within |η| < 2.5 ;

(iv) Two pairs of opposite sign same flavour leptons with pT > 20GeV and |η| < 3 ;

(v) No b jet with pT > 30GeV and |η| < 3 .

The b tagging efficiency is assumed to be 60%. In the cut (iv), we select not only

opposite-flavour lepton pairs (e+e−µ+µ−) but also the same-flavour pairs (e+e−e+e− and

µ+µ−µ+µ−) to have larger samples, although the latter have double the combinatorial

background of the former. If an event contains more than two hard jets, we take the three

hardest jets as candidates for the jets from the signal decay chains (1.1), and try all possible

combinations. The number of combinations is 8 (16) for two candidate jets and 24 (48) for

three with opposite (same) flavour lepton pairs. The numbers of events that survive the

above cuts are shown in the first row in Table 3 together with signal/background ratios

for each model point. The background is rather mixed, coming mainly from direct χ̃0
2

productions associated with squarks or gauginos as well as modes containing q̃R → χ̃0
2j,

b̃1 → χ̃0
2b and χ̃0

2 → χ̃0
1l

+l−. For model point C, the three-body decay χ̃0
2 → χ̃0

1l
+l− is

enhanced because mχ̃0
2
$ mχ̃0

1
+mZ and turns out to be the main background. Standard

Model background is expected to be negligible after the above selection cuts. According to

ref. [12], the potential background comes from tt̄ → bb̄W+W− → 4l. Based on HERWIG

6.5 simulation of this process, we confirmed that it is indeed negligible after cuts.

If the detector and jet properties are well understood, from the observed jet momentum,

pjet, we may stochastically estimate the original parton momentum, ppar, with a gaussian

distribution ε(ppar|pjet). In this situation, we can built a confidence region in the (M1, M2,

M3) space [4]. For each signal event combination, iev, a probability density function may

be constructed as

fiev(M) =
1

Niev

∫

dppar1 dppar2 ε(ppar1 |pjet1 )ε(ppar2 |pjet2 )δ(p24 −m2
N )δ(p28 −m2

N ), (3.2)
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m3rd gene.
0 = 300 GeV

to forbid χ̃0
2 → τ̃1τ → χ̃0

1τ
+τ−

• 500,000 inclusive SUSY events are generated by Herwig, corresponding 
to 10, 15 and 20 fb-1 for Points A, B and C, respectively  

• Effects of SUSY BG, hadronisation, parton shower, underlying events 
and detector resolution (AcerDET) are included

• The parameter space is divided into cells:  

χ̃0
1 ẽR χ̃0

2 ũL

Point A 68.2+16.2
−5.8 127.9+12.6

−4.2 146.1+13.0
−4.4 493.8+11.5

−3.8

Point B 94.5+8.5
−2.8 137.2+9.1

−3.1 181.7+8.5
−2.8 561.7+9.4

−3.1

Point C 95.6+5.1
−5.3 167.4+3.9

−3.9 186.1+4.0
−4.0 593.4+3.4

−3.4

Table 4: Estimated sparticle masses with their errors in GeV.

In the following analysis, we generate 1000 Monte Carlo fake events for each event.

For the smearing of jets and the missing transverse momentum, we use gaussian functions

with the following standard deviations, obtained by parametrizing the AcerDET results:

σE
E

=
0.5√
E

+ 0.03, σφ =
0.4√
E

+ 0.015, ση =
0.3√
E

+ 0.02, (3.5)

for jets and

σE
E

=
0.5√
E

+ 0.03, σφ =
0.8√
E

+ 0.06, (3.6)

for the missing transverse momentum. We do not smear the lepton momenta because

mismeasurement of lepton momenta is negligible compared to the jet smearing.

Figure 4 shows the ∆χ2(M) distribution obtained by the above procedure for each

model point. The cell size is ∆M1 = 5000, ∆M2 = 400, ∆M3 = 600 in GeV2. The

distribution has only one sharp minimum, which is close to the TMP, as can be seen in

Table 3. Backgrounds from wrong combinations and different decay chains do not produce

local minima at other places, and the effect of those backgrounds may be less significant

around the true mass point.

The second row in Table 3 shows how many different events share the best-fit cell;

the signal/background ratios in that cell are also shown in parentheses. The ratios are

improved significantly. For each model point the ratio is about twice that for the whole

sample.

In the third to fifth row of Table 3, we show the central values of the best-fit cells

compared to the TMP at each model point. As can be seen, the best-fit points are slightly

biased towards lower masses. This may result from the following systematic errors in the

present analysis. First, the AcerDET jets that we use are defined as massless, whereas

the 4-momenta defined by ppar = p(q̃) − p(χ̃0
2) have masses of around 10-100 GeV after

fragmentation and hadronization. Second, we have parametrized the probability distribu-

tions of parton momenta by gaussian functions. However, the difference between a parton

momentum in the event record and the AcerDET jet momentum deviates slightly from a

gaussian distribution, due to the underlying event, hadronization effects and high-pT gluon

emission from the original parton. A better jet algorithm with jet masses and a more

refined parametrization will be needed to reduce these systematic errors.

Table 4 shows the sparticle masses estimated from our analysis. The errors are obtained

from 1σ regions assuming the errors in M1, M2 and M3 are uncorrelated, where the 1σ

region is defined by ∆χ2 < 3.53. We neglect the error from the mismeasurement of the

dilepton endpoint because of its expected good accuracy. The 1σ errors at Point C are
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Cut

• The following cuts have been applied to reduce BG

m0 m1/2 A0 χ̃0
1 ẽR χ̃0

2 ũL

Point A 110 220 0 86 142 161 504

Point B 100 250 −100 99 141 186 563

Point C 140 260 0 103 174 193 592

Table 2: Parameters and mass spectra in GeV for non-CMSSM model points A, B and C. Param-
eters common to all points are m3rd gen.

0 = 300 GeV, tanβ = 10, sign(µ) = +.
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(v) No b jet with pT > 30GeV and |η| < 3 .

The b tagging efficiency is assumed to be 60%. In the cut (iv), we select not only

opposite-flavour lepton pairs (e+e−µ+µ−) but also the same-flavour pairs (e+e−e+e− and

µ+µ−µ+µ−) to have larger samples, although the latter have double the combinatorial

background of the former. If an event contains more than two hard jets, we take the three

hardest jets as candidates for the jets from the signal decay chains (1.1), and try all possible

combinations. The number of combinations is 8 (16) for two candidate jets and 24 (48) for

three with opposite (same) flavour lepton pairs. The numbers of events that survive the

above cuts are shown in the first row in Table 3 together with signal/background ratios

for each model point. The background is rather mixed, coming mainly from direct χ̃0
2

productions associated with squarks or gauginos as well as modes containing q̃R → χ̃0
2j,

b̃1 → χ̃0
2b and χ̃0

2 → χ̃0
1l

+l−. For model point C, the three-body decay χ̃0
2 → χ̃0

1l
+l− is

enhanced because mχ̃0
2
$ mχ̃0

1
+mZ and turns out to be the main background. Standard

Model background is expected to be negligible after the above selection cuts. According to

ref. [12], the potential background comes from tt̄ → bb̄W+W− → 4l. Based on HERWIG

6.5 simulation of this process, we confirmed that it is indeed negligible after cuts.

If the detector and jet properties are well understood, from the observed jet momentum,

pjet, we may stochastically estimate the original parton momentum, ppar, with a gaussian

distribution ε(ppar|pjet). In this situation, we can built a confidence region in the (M1, M2,

M3) space [4]. For each signal event combination, iev, a probability density function may

be constructed as

fiev(M) =
1

Niev

∫

dppar1 dppar2 ε(ppar1 |pjet1 )ε(ppar2 |pjet2 )δ(p24 −m2
N )δ(p28 −m2

N ), (3.2)
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• The main SM-BG is                                                     .tt̄→ bb̄W+W− → 2l+2l−2j + Emiss
T

It is negligible after the cut.  (about 10% of SUSY-BG)
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Point A Point B Point C

Events (S/B) 326 (4.2) 499 (4.5) 292 (2.8)

Sharing (S/B) 219 (8.1) 341 (9.7) 172 (4.9)

M1 (True ; Best) 231890 ; 222500 286157 ; 282500 316274 ; 317500

M2 (True ; Best) 5624 ; 5000 14520 ; 14200 6815 ; 6600

M3 (True ; Best) 12872 ; 11700 10293 ; 9900 19812 ; 18900

Table 3: First row: number of events (signal/background) after cuts. Second row: number of
events that contribute to the best-fit cell in the ∆χ2 distribution. Third to fifth rows: true mass
and the central value of the best-fit cell in GeV2.

(A) (B) (C)

Figure 4: Distribution of ∆χ2(M) for each model point at detector level. The true mass point is
at the intersection of the three dashed lines.

where p4, p8 and mN are the functions of M and ppar1,2 given in section 2, and Niev is a

normalization factor. Given N event-combinations, log-likelihood and ∆χ2 functions are

obtained as

lnL(M) =
N
∑

iev

ln fiev(M) (3.3)

and

∆χ2(M) = 2(lnL(M)max − lnL(M)), (3.4)

respectively, where lnL(M)max is the maximum value of lnL(M) in the space M.

We calculate lnL(M) approximately by the following procedure. For each event, we

generate Monte Carlo “fake” events whose jet momenta are shifted from the original ones

according to the probability distribution ε(ppar|pjet). The parameter space M is divided

into cells. For each cell, we count the number of fake events for which the solution curves

go through that cell. If different combinations of the same event yield two or more curves

passing through the same cell, we count only one. If the number of fake events is large and

the cell size is small, this provides fiev(Mcell) with a certain normalization. As long as we

work with lnL(M), the normalization factor Niev is irrelevant, because it only shifts the

constant term of lnL(M). We ignore cells that have fiev(Mcell) = 0 in our log-likelihood

calculation, setting lnfiev(Mcell) = 0. Finally, we sum up ln fiev(Mcell) for all combinations

of all events.
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with the following standard deviations, obtained by parametrizing the AcerDET results:

σE
E

=
0.5√
E

+ 0.03, σφ =
0.4√
E

+ 0.015, ση =
0.3√
E

+ 0.02, (3.5)

for jets and
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=
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0.8√
E

+ 0.06, (3.6)

for the missing transverse momentum. We do not smear the lepton momenta because

mismeasurement of lepton momenta is negligible compared to the jet smearing.

Figure 4 shows the ∆χ2(M) distribution obtained by the above procedure for each

model point. The cell size is ∆M1 = 5000, ∆M2 = 400, ∆M3 = 600 in GeV2. The

distribution has only one sharp minimum, which is close to the TMP, as can be seen in

Table 3. Backgrounds from wrong combinations and different decay chains do not produce

local minima at other places, and the effect of those backgrounds may be less significant

around the true mass point.

The second row in Table 3 shows how many different events share the best-fit cell;

the signal/background ratios in that cell are also shown in parentheses. The ratios are

improved significantly. For each model point the ratio is about twice that for the whole

sample.

In the third to fifth row of Table 3, we show the central values of the best-fit cells

compared to the TMP at each model point. As can be seen, the best-fit points are slightly

biased towards lower masses. This may result from the following systematic errors in the

present analysis. First, the AcerDET jets that we use are defined as massless, whereas

the 4-momenta defined by ppar = p(q̃) − p(χ̃0
2) have masses of around 10-100 GeV after

fragmentation and hadronization. Second, we have parametrized the probability distribu-

tions of parton momenta by gaussian functions. However, the difference between a parton

momentum in the event record and the AcerDET jet momentum deviates slightly from a

gaussian distribution, due to the underlying event, hadronization effects and high-pT gluon

emission from the original parton. A better jet algorithm with jet masses and a more

refined parametrization will be needed to reduce these systematic errors.

Table 4 shows the sparticle masses estimated from our analysis. The errors are obtained

from 1σ regions assuming the errors in M1, M2 and M3 are uncorrelated, where the 1σ

region is defined by ∆χ2 < 3.53. We neglect the error from the mismeasurement of the

dilepton endpoint because of its expected good accuracy. The 1σ errors at Point C are
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m0 m1/2 A0 χ̃0
1 ẽR χ̃0

2 ũL

Point A 110 220 0 86 142 161 504

Point B 100 250 −100 99 141 186 563

Point C 140 260 0 103 174 193 592

Table 2: Parameters and mass spectra in GeV for non-CMSSM model points A, B and C. Param-
eters common to all points are m3rd gen.

0 = 300 GeV, tanβ = 10, sign(µ) = +.

is larger than the others, so that the branching ratio (1.1) is increased by suppressing

the χ̃0
2 → τ̃±1 τ∓ mode. The sparticle spectra at these points are shown in Table 2. The

generated samples of 500,000 events correspond to about 10, 15 and 20 fb−1 of integrated

luminosity, respectively.

The following cuts are applied in order to select signal events:

(i) Meff ≡
∑4

i=1 p
jet,i
T +

∑4
i=1 p

lep,i
T + Emiss

T > 400GeV ;

(ii) Emiss
T > max(200GeV, 0.2Meff ) ;

(iii) At least two jets with pjet,1T > 100GeV and pjet,2T > 50GeV within |η| < 2.5 ;

(iv) Two pairs of opposite sign same flavour leptons with pT > 20GeV and |η| < 3 ;

(v) No b jet with pT > 30GeV and |η| < 3 .

The b tagging efficiency is assumed to be 60%. In the cut (iv), we select not only

opposite-flavour lepton pairs (e+e−µ+µ−) but also the same-flavour pairs (e+e−e+e− and

µ+µ−µ+µ−) to have larger samples, although the latter have double the combinatorial

background of the former. If an event contains more than two hard jets, we take the three

hardest jets as candidates for the jets from the signal decay chains (1.1), and try all possible

combinations. The number of combinations is 8 (16) for two candidate jets and 24 (48) for

three with opposite (same) flavour lepton pairs. The numbers of events that survive the

above cuts are shown in the first row in Table 3 together with signal/background ratios

for each model point. The background is rather mixed, coming mainly from direct χ̃0
2

productions associated with squarks or gauginos as well as modes containing q̃R → χ̃0
2j,

b̃1 → χ̃0
2b and χ̃0

2 → χ̃0
1l

+l−. For model point C, the three-body decay χ̃0
2 → χ̃0

1l
+l− is

enhanced because mχ̃0
2
$ mχ̃0

1
+mZ and turns out to be the main background. Standard

Model background is expected to be negligible after the above selection cuts. According to

ref. [12], the potential background comes from tt̄ → bb̄W+W− → 4l. Based on HERWIG

6.5 simulation of this process, we confirmed that it is indeed negligible after cuts.

If the detector and jet properties are well understood, from the observed jet momentum,

pjet, we may stochastically estimate the original parton momentum, ppar, with a gaussian

distribution ε(ppar|pjet). In this situation, we can built a confidence region in the (M1, M2,

M3) space [4]. For each signal event combination, iev, a probability density function may

be constructed as

fiev(M) =
1

Niev

∫

dppar1 dppar2 ε(ppar1 |pjet1 )ε(ppar2 |pjet2 )δ(p24 −m2
N )δ(p28 −m2

N ), (3.2)
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is larger than the others, so that the branching ratio (1.1) is increased by suppressing

the χ̃0
2 → τ̃±1 τ∓ mode. The sparticle spectra at these points are shown in Table 2. The

generated samples of 500,000 events correspond to about 10, 15 and 20 fb−1 of integrated
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(iii) At least two jets with pjet,1T > 100GeV and pjet,2T > 50GeV within |η| < 2.5 ;

(iv) Two pairs of opposite sign same flavour leptons with pT > 20GeV and |η| < 3 ;

(v) No b jet with pT > 30GeV and |η| < 3 .

The b tagging efficiency is assumed to be 60%. In the cut (iv), we select not only

opposite-flavour lepton pairs (e+e−µ+µ−) but also the same-flavour pairs (e+e−e+e− and

µ+µ−µ+µ−) to have larger samples, although the latter have double the combinatorial

background of the former. If an event contains more than two hard jets, we take the three

hardest jets as candidates for the jets from the signal decay chains (1.1), and try all possible

combinations. The number of combinations is 8 (16) for two candidate jets and 24 (48) for

three with opposite (same) flavour lepton pairs. The numbers of events that survive the

above cuts are shown in the first row in Table 3 together with signal/background ratios

for each model point. The background is rather mixed, coming mainly from direct χ̃0
2

productions associated with squarks or gauginos as well as modes containing q̃R → χ̃0
2j,

b̃1 → χ̃0
2b and χ̃0

2 → χ̃0
1l

+l−. For model point C, the three-body decay χ̃0
2 → χ̃0

1l
+l− is

enhanced because mχ̃0
2
$ mχ̃0

1
+mZ and turns out to be the main background. Standard

Model background is expected to be negligible after the above selection cuts. According to

ref. [12], the potential background comes from tt̄ → bb̄W+W− → 4l. Based on HERWIG

6.5 simulation of this process, we confirmed that it is indeed negligible after cuts.

If the detector and jet properties are well understood, from the observed jet momentum,

pjet, we may stochastically estimate the original parton momentum, ppar, with a gaussian

distribution ε(ppar|pjet). In this situation, we can built a confidence region in the (M1, M2,

M3) space [4]. For each signal event combination, iev, a probability density function may

be constructed as

fiev(M) =
1

Niev

∫

dppar1 dppar2 ε(ppar1 |pjet1 )ε(ppar2 |pjet2 )δ(p24 −m2
N )δ(p28 −m2

N ), (3.2)
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Results:

Input:

Nojiri, KS, Webber (1005.2532)

(10‐20 E‐1)



Summary

• We proposed a new method of the kinematic reconstruction 
in a specific type of a pair of decay chains.

• In the method, a constraint from the dilepton mass edge is 
incorporated.

• Wrong solutions and assignments are effectively removed. 

• The use of fake events enable us to estimate errors. 



Point A Point B Point C

Events (S/B) 326 (4.2) 499 (4.5) 292 (2.8)

Sharing (S/B) 219 (8.1) 341 (9.7) 172 (4.9)

M1 (True ; Best) 231890 ; 222500 286157 ; 282500 316274 ; 317500

M2 (True ; Best) 5624 ; 5000 14520 ; 14200 6815 ; 6600

M3 (True ; Best) 12872 ; 11700 10293 ; 9900 19812 ; 18900

Table 3: First row: number of events (signal/background) after cuts. Second row: number of
events that contribute to the best-fit cell in the ∆χ2 distribution. Third to fifth rows: true mass
and the central value of the best-fit cell in GeV2.

(A) (B) (C)

Figure 4: Distribution of ∆χ2(M) for each model point at detector level. The true mass point is
at the intersection of the three dashed lines.

where p4, p8 and mN are the functions of M and ppar1,2 given in section 2, and Niev is a

normalization factor. Given N event-combinations, log-likelihood and ∆χ2 functions are

obtained as

lnL(M) =
N
∑

iev

ln fiev(M) (3.3)

and

∆χ2(M) = 2(lnL(M)max − lnL(M)), (3.4)

respectively, where lnL(M)max is the maximum value of lnL(M) in the space M.

We calculate lnL(M) approximately by the following procedure. For each event, we

generate Monte Carlo “fake” events whose jet momenta are shifted from the original ones

according to the probability distribution ε(ppar|pjet). The parameter space M is divided

into cells. For each cell, we count the number of fake events for which the solution curves

go through that cell. If different combinations of the same event yield two or more curves

passing through the same cell, we count only one. If the number of fake events is large and

the cell size is small, this provides fiev(Mcell) with a certain normalization. As long as we

work with lnL(M), the normalization factor Niev is irrelevant, because it only shifts the

constant term of lnL(M). We ignore cells that have fiev(Mcell) = 0 in our log-likelihood

calculation, setting lnfiev(Mcell) = 0. Finally, we sum up ln fiev(Mcell) for all combinations

of all events.
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Signal / background ratios are enhanced at the best fit cell.
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obtained as
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ln fiev(M) (3.3)

and
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respectively, where lnL(M)max is the maximum value of lnL(M) in the space M.

We calculate lnL(M) approximately by the following procedure. For each event, we

generate Monte Carlo “fake” events whose jet momenta are shifted from the original ones

according to the probability distribution ε(ppar|pjet). The parameter space M is divided

into cells. For each cell, we count the number of fake events for which the solution curves

go through that cell. If different combinations of the same event yield two or more curves

passing through the same cell, we count only one. If the number of fake events is large and

the cell size is small, this provides fiev(Mcell) with a certain normalization. As long as we

work with lnL(M), the normalization factor Niev is irrelevant, because it only shifts the
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of all events.
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Point A Point B Point C

Events (S/B) 326 (4.2) 499 (4.5) 292 (2.8)
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M1 (True ; Best) 231890 ; 222500 286157 ; 282500 316274 ; 317500

M2 (True ; Best) 5624 ; 5000 14520 ; 14200 6815 ; 6600

M3 (True ; Best) 12872 ; 11700 10293 ; 9900 19812 ; 18900

Table 3: First row: number of events (signal/background) after cuts. Second row: number of
events that contribute to the best-fit cell in the ∆χ2 distribution. Third to fifth rows: true mass
and the central value of the best-fit cell in GeV2.

(A) (B) (C)

Figure 4: Distribution of ∆χ2(M) for each model point at detector level. The true mass point is
at the intersection of the three dashed lines.
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passing through the same cell, we count only one. If the number of fake events is large and

the cell size is small, this provides fiev(Mcell) with a certain normalization. As long as we

work with lnL(M), the normalization factor Niev is irrelevant, because it only shifts the

constant term of lnL(M). We ignore cells that have fiev(Mcell) = 0 in our log-likelihood

calculation, setting lnfiev(Mcell) = 0. Finally, we sum up ln fiev(Mcell) for all combinations

of all events.
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• Δχ2  is obtained from the log likelihood function as follows:         
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Table 32.2: ∆χ2 or 2∆ lnL corresponding to a coverage probability 1− α in the
large data sample limit, for joint estimation of m parameters.

(1 − α) (%) m = 1 m = 2 m = 3
68.27 1.00 2.30 3.53
90. 2.71 4.61 6.25
95. 3.84 5.99 7.82
95.45 4.00 6.18 8.03
99. 6.63 9.21 11.34
99.73 9.00 11.83 14.16

minimizes χ2 at a fixed value of θj , such as the PDG best value. This θi value lies along
the dotted line between the points where the ellipse becomes tangent to vertical, and has
statistical error σinner as shown on the figure, where σinner = (1 − ρ2

ij)
1/2σi. Instead of

the correlation ρij , one reports the dependency dθ̂i/dθj which is the slope of the dotted
line. This slope is related to the correlation coefficient by dθ̂i/dθj = ρij × σi

σj
.
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Figure 32.5: Standard error ellipse for the estimators θ̂i and θ̂j . In this case the
correlation is negative.

As in the single-variable case, because of the symmetry of the Gaussian function
between θ and θ̂, one finds that contours of constant lnL or χ2 cover the true values with
a certain, fixed probability. That is, the confidence region is determined by

ln L(θ) ≥ ln Lmax − ∆ lnL , (32.56)

or where a χ2 has been defined for use with the method of least-squares,

χ2(θ) ≤ χ2
min + ∆χ2 . (32.57)

Values of ∆χ2 or 2∆ lnL are given in Table 32.2 for several values of the coverage
probability and number of fitted parameters.
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