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Phenomenological Aspects
of Toric Singularities

Model Building, Yukawa Couplings and Flavour Physics



Perspective: Local Brane Models (within IIB)

... bottom-up model building

e.g.: aldazabal, ibanez, quevedo, uranga (10 years ago),
verlinde, wijnholt (5 years ago)



1. Model Building: Standard (like) Models with fractional
                      (D3/D7) branes at singularities.

2. General properties for gauge theories of toric  
                      singularities via dimer techniques. 

and what can we get?



Motivation for branes at singularities

Local models -> a lot of information without addressing 
moduli stabilisation

Effective field theory well under control
(tree-level Kähler potential can be flavour diagonal)

Gauge coupling unification (in principle)

Powerful (dimer) techniques for toric singularities

Gauge theories highly restricted (unlike intersecting 
branes in IIA)
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Gauge theories probing toric singularities

Toric CY-cone: represented as T3 fibration
over rational polyhedral cone (-> toric diagram)
[non-compact but embeddable in global manifold]

Gauge theory of branes at tip of cone 
(bound states of D7, D5, D3) is a quiver 
gauge theory 

Gauge theory of bound states is always a 
quiver gauge theory (rank of gauge group 
only freedom)

Gauge theory obtained via T-dual D5/NS5 
brane system wrapping T2. This system on 
T2 is the dimer and encodes the whole 
gauge theory.
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addition of fractional branes
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Dimers visualise the gauge theory of toric singularities.

Geometry: Toric Diagram Gauge Theory: Dimer
inverse slopes in toric diagram

winding numbers of toric diagram
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The Dimer Language
Dimers visualise the gauge theory of toric singularities.

Geometry: Toric Diagram Gauge Theory: Dimer
inverse slopes in toric diagram

winding numbers of toric diagram

(-2, 1)
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Reading off the gauge theorry

Faces 
   = gauge groups

Intersection of zigzag paths
   = bi-fundamental matter

Vertices (faces orbited by zigzag paths) 
   = superpotential terms
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Dimer Language II
Reading off the gauge theorry

Faces 
   = gauge groups

Intersection of zigzag paths
   = bi-fundamental matter

Vertices (faces orbited by zigzag paths) 
   = superpotential terms

W = X13X32X21 −X14X43X32X21



merge zigzag paths according 
to cutting of toric diagram

caveat: additional crossings, 
concrete prescription to be 
avoided by precise operations

Dimer Language III: How do I get a dimer?

this is the inverse problem 
(following Gulotta)

embed toric singularity in 
orbifold of conifold whose 
dimer is known (chess-board).

collaps cycles in singularity
(= cutting toric diagram)

Gulotta 0807.3012
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e.g. del Pezzo 3
1 2 1

3 4

5 6 5

1 2 1

2 6

! !

" " "

! !

" "

! !

WdP3 = −X12Y31Z23 −X45Y64Z56 + X45Y31Z14ρ53 + X12Y25Z56Φ61

+X36Y64Z23Ψ42 −X36Y25Z14ρ53Φ61Ψ42

=
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Restricting the # of families
The dimers obtained with the operations 
of Gulotta are highly restricted 
(otherwise: inconsistent dimers)

example: additional crossing (-> mass term)

without add. crossings 3 (left),
with add. crossings 4 but unique (right)
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Restricting the # of families
The dimers obtained with the operations 
of Gulotta are highly restricted 
(otherwise: inconsistent dimers)

example: additional crossing (-> mass term)

without add. crossings 3 (left),
with add. crossings 4 but unique (right)

A B

e.g.
1 2

3 4

4 6

7 8

! !

" "

! !

" "

maximum of 4 fields
(no add. branches)

between 2 gauge groups

-> 4 families
(unique F0)



2R2 2R

32L

Turning to model building

focus on toric delPezzo singularities for concreteness

Superpotential, matter content known via your 
favourite technique 

Kähler potential (hard): overall moduli weights and 
can be guaranteed to be flavour diagonal due to 
additional gauge groups (e.g. dP3)

non-GUT (SU(5), SO(10)), e.g. left-right extensions of 
MSSM

extended Higgs sector

what can we say about fermion masses and flavour 
physics

Disclaimer: no dynamical way of obtaining vevs yet...

... we have a non-trivial 
superpotential (Yukawa structure) 
in these singularity models. What 

does this imply for model 
building?

3

2L

2L2

2R

2R2

1

2

4

35

6

dP1

dP2

dP3



Mass Hierarchies

Known result: dP0 (0, M, M);
                 dP1 (0, m, M)

(0, m, M) generic to models at toric 
singularities
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W = εijk Qi
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CMQ: 0810.5660
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Φ61
Λ 0 X12

Φ61
Λ
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 .

M = |X12|2 + |Y62|2 + |Z12|2

m = |Y62|2 +
|Φ61|2

Λ2
(|X12|2 + |Z12|2)



Flavour mixing: CKM
Aim: construct models with the correct flavour 
mixing among quarks

2 types of models: 
a) up & down from D3D3 states

... we have a non-trivial 
superpotential (Yukawa 

structure) in these 
singularity models. 

What does this imply 
for model building?

VCKM =




1 ε ε3

ε 1 ε2

ε3 ε2 1



 .

b) up from D3D3 states 
   & down from D3D7 states
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A left-right model
with the right CKM
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After breaking of U(2)R
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A left-right model
with the right CKM

The CKM is given in terms of ratios of Higgs vevs. 
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In dP1 we get almost the right CKM.
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A left-right model
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The CKM is given in terms of ratios of Higgs vevs. 

After breaking of U(2)R

W =




XL

23

Y L
23

ZL
23








0 Zu

12 −Y u
62

−Zu
12

ϕ
Λ 0 Xu

12
ϕ
Λ

Y u
62 −Xu

12 0








Xu

36

Y u
31

Zu
36



 +




Xd

23

Y d
23

Zd
23








0 Zd

12 −Y d
62

−Zd
12

vd
Λ 0 0

Y d
62 0 0








Xd

36

Y d
31

Zd
36
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In dP1 we get almost the right CKM.
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A left-right model
with the right CKM

The CKM is given in terms of ratios of Higgs vevs. 
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In dP1 we get almost the right CKM. In dP2 we get the right CKM.
CP violation: with correct CKM, Jarlskog invariant J≈ε6

dP2:



Summary

D-branes at toric singularities interesting class of models:

Upper bound of 3 families in toric singularities

Mass Hierarchies are possible, generic structure (0, m, M).

Sufficient structure for realistic CKM-matrix & CP-violation 
(concrete models with this structure)

Open questions: compact models,
                   a completely realistic local model...
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Seiberg duality in quivers and dimers
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Mass hierarchies II

How do we choose “quarks”?
one left & right handed quark in every 
coupling with quarks.
-> every superpotential term has two 
quarks
-> quarks aligned in closed lines

Connected or disconnected lines?
connected to be able to higgs to common 
gauge group

Maximal or non-maximal number of quarks?
after Higgsing the same result of vanishing 
determinant
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Gulotta’s dimers = Traditional dimers


