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Perspective: Local Brane Models (within IIB)

.. bottom-up model building

e.g.: aldazabal, ibanez, quevedo, uranga (10 years ago),
verlinde, wijnholt (5 years ago)



1. Model Building: Standard (like) Models with fractional
(D3/D7) branes at singularities.

2. General properties for gauge theories of toric
singularities via dimer techniques.




Motivation for branes at singularities

@ Local models -> a lot of information without addressing
moduli stabilisation

o Effective field theory well under control
(tree-level Kahler potential can be flavour diagonal)

@ Gauge coupling unification (in principle)
@ Powerful (dimer) techniques for tforic singularities

@ Gauge theories highly restricted (unlike intersecting
branes in IIA)



Gauge theories probing toric singularities

@ Toric CY-cone: represented as T* fibration

over rational polyhedral cone (-> toric diagram)
[non-compact but embeddable in global manifold]

@ Gauge theory of branes at tip of cone
(bound states of D7, D5, D3) is a quiver
gauge theory

@ Gauge theory of bound states is always a
quiver gauge theory (rank of gauge group
only freedom)

@ Gauge theory obtained via T-dual D5/NS5
brane system wrapping T2. This system on
T2 is the dimer and encodes the whole
gauge theory.
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Dimer Language II
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N7
@ Faces \'(
= gauge groups ﬁk

o Intersection of zigzag paths (A

= bi-fundamental matter

@ Vertices (faces orbited by zigzag paths)
= superpotential terms

N
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Dimer Language III: How do I get a dimer?

@ this is the inverse problem @ merge zigzag paths according
(following Gulotta) to cutting of toric diagram

@ embed toric singularity in @ caveat: additional crossings,
orbifold of conifold whose concrete prescription to be
dimer is known (chess-board). avoided by precise operations

@ collaps cycles in singularity
(= cutting toric diagram)
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e.qg. del Pezzo 3
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@ without add. crossings 3 (left),
with add. crossings 4 but unique (right)
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@ without add. crossings 3 (left), .
with add. crossings 4 but unique (right)
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Turning to model building

focus on toric delPezzo singularities for concretenes

Superpotential, matter content known via your
favourite technique

Kahler potential (hard): overall moduli weights and
can be guaranteed fo be flavour diagonal due to

additional gauge groups (e.g. dP3)

non-GUT (SU(5), SO(10)), e.g. left-right extensions of
MSSM

extended Higgs sector

what can we say about fermion masses and flavour
physics

Disclaimer: no dynamical way of obtaining vevs yet...




Mass Hierarchies

. ._,-',-:-‘:; z :- AT \ ’f ‘*
_CMQ: 0810.5660
"l ¢ LT Rl Y E 2 S8 AR ¢/

& Known result: dPO (0, M, M);
dP1 (O, m, M)

M = |X12]? + |Yeo|® + | Z12|°

D1 |?
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m, =, [ (1 X12]* + [ Z12]%)

@ (0, m, M) generic to models at toric
singularities




¢ A

,"’ie have a non-trivia
superpotential (Yukawa
o . structure) in these
Flavour mixing: CKM | sy medes
o & ‘
What does this imply
for model building?

Aim: construct models with the correct ﬂavourk %
mixing among quarks 3
- eiste
VCKM — € 1 62
R |
2 .I-YPes of models: b) up from D3D3 states

a) up & down from D3D3 states & down from D3D7 states
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In dP1 we get almost the right CKM.
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A left-right model
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In dP1 we get almost the right CKM. In dP2 we get the right CKM
CP violation: with correct CKM, Jarlskog invariant J=~€°®



Summary

D-branes at toric singularities interesting class of models:
Upper bound of 3 families in toric singularities
Mass Hierarchies are possible, generic structure (0, m, M).

Sufficient structure for realistic CKM-matrix & CP-violation
(concrete models with this structure)

Open questions: compact models,
a completely realistic local model...






Seiberg duality in quivefs and dimers




The zeroth Hirzebruch surface
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Application of Gulotta’s algorithm
to toric del-Pezzo surfaces
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@ How do we choose “quarks”?
one left & right handed quark in every
coupling with quarks.
-> every superpotential term has two
quarks
-> quarks aligned in closed lines

® Connected or disconnected lines?
connected to be able to higgs to common

gauge group

@ Maximal or non-maximal number of quarks?
after Higgsing the same result of vanishing
determinant
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Gulotta’s dimers = Traditional dimers




