global analysis

SUS

Supersymmetric Flavour physics

Ulrich Nierste

Karlsruhe Institute of Technology

Federal Ministry of Education and Research

SUSY 10, Bonn, August 2010

in memory of Nicola Cabibbo (10 Apr 1935 – 16 Aug 2010)

May 14, 2010 Fermilab Wine&Cheese seminar, talk by Guennadi Borrisov:

Evidence for an anomalous like-sign dimuon charge asymmetry

May 14, 2010 Fermilab Wine&Cheese seminar, talk by Guennadi Borrisov:

Evidence for an anomalous like-sign dimuon charge asymmetry

May 17, 2010 The New York Times:

> Physicists at the Fermi National Accelerator Laboratory are reporting that they have discovered a new clue that could help unravel one of the biggest mysteries of cosmology: why the universe is composed of matter and not its evil-twin opposite, antimatter.

May 14, 2010 Fermilab Wine&Cheese seminar, talk by Guennadi Borrisov:

Evidence for an anomalous like-sign dimuon charge asymmetry

May 17, 2010 The New York Times:

> Physicists at the Fermi National Accelerator Laboratory are reporting that they have discovered a new clue that could help unravel one of the biggest mysteries of cosmology: why the universe is composed of matter and not its evil-twin opposite, antimatter.

> Joe Lykken, a theorist at Fermilab, said, "So I would not say that this announcement is the equivalent of seeing the face of God, but it might turn out to be the toe of God."

Basics	new physics	global analysis	SUSY	Conclusions
		Contents		

- $B_s\!-\!\overline{B}_s\,$ mixing and new physics
- Global analysis of $B_s \overline{B}_s$ mixing and $B_d \overline{B}_d$ mixing

SUSY

Conclusions

Flavour physics

studies transitions between fermions of different generations.

Standard Model: misalignment of 3 × 3 Yukawa matrices in flavour space parametrised by the Cabibbo-Kobayashi-Maskawa (CKM) matrix *V* in the quark sector Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix *U* in the lepton sector

CKM matrix V and PMNS matrix U occur only in the couplings of W bosons.

new physics

global analysis

SUSY

Expand the CKM matrix V in $V_{us} \simeq \lambda = 0.2246$:

$$\begin{pmatrix} \mathsf{V}_{ud} & \mathsf{V}_{us} & \mathsf{V}_{ub} \\ \mathsf{V}_{cd} & \mathsf{V}_{cs} & \mathsf{V}_{cb} \\ \mathsf{V}_{td} & \mathsf{V}_{ts} & \mathsf{V}_{tb} \end{pmatrix} \simeq \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3 \left(1 + \frac{\lambda^2}{2}\right) (\overline{\rho} - i\overline{\eta}) \\ -\lambda - iA^2 \lambda^5 \overline{\eta} & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3 (1 - \overline{\rho} - i\overline{\eta}) & -A\lambda^2 - iA\lambda^4 \overline{\eta} & 1 \end{pmatrix}$$

with the Wolfenstein parameters λ , A, $\overline{\rho}$, $\overline{\eta}$ CP violation $\Leftrightarrow \overline{\eta} \neq 0$

Basics	new physics	global analysis	SUSY	Conclusio

Expand the CKM matrix V in $V_{us} \simeq \lambda = 0.2246$:

$$\begin{pmatrix} \mathsf{V}_{ud} & \mathsf{V}_{us} & \mathsf{V}_{ub} \\ \mathsf{V}_{cd} & \mathsf{V}_{cs} & \mathsf{V}_{cb} \\ \mathsf{V}_{td} & \mathsf{V}_{ts} & \mathsf{V}_{tb} \end{pmatrix} \simeq \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3 \left(1 + \frac{\lambda^2}{2} \right) (\overline{\rho} - i\overline{\eta}) \\ -\lambda - iA^2 \lambda^5 \overline{\eta} & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3 (1 - \overline{\rho} - i\overline{\eta}) & -A\lambda^2 - iA\lambda^4 \overline{\eta} & 1 \end{pmatrix}$$

with the Wolfenstein parameters λ , A, $\overline{\rho}$, $\overline{\eta}$ CP violation $\Leftrightarrow \overline{\eta} \neq 0$

 $A = (\overline{\rho}, \overline{\eta})$

Unitarity triangle:

Exact definition:

$$\overline{\rho} + i\overline{\eta} = -\frac{V_{ub}^* V_{ud}}{V_{cb}^* V_{cd}}$$
$$= \left| \frac{V_{ub}^* V_{ud}}{V_{cb}^* V_{cd}} \right| e^{i\gamma}$$
$$\overline{\rho} + i\overline{\eta}$$
$$\Gamma - \overline{\rho} - i\overline{\eta}$$

Suppression factors in Flavour-changing neutral current (FCNC) processes:

weak loop, small CKM elements, often also GIM factor $(m_c^2 - m_u^2)/M_W^2$ or helicity suppression m_b/M_W .

 \Rightarrow FCNC processes are extremely sensitive to new physics.

Suppression factors in Flavour-changing neutral current (FCNC) processes:

weak loop, small CKM elements, often also GIM factor $(m_c^2 - m_u^2)/M_W^2$ or helicity suppression m_b/M_W .

⇒ FCNC processes are extremely sensitive to new physics.

Examples of FCNC processes:

new physics

global analysis

SUS

New-physics analysers:

• Global fit to UT: overconstrain $(\overline{\rho}, \overline{\eta})$, probes FCNC processes $\overline{K} - \overline{K}$, $\overline{B}_d - \overline{B}_d$ and $\overline{B}_s - \overline{B}_s$ mixing.

global analysis

SUS

New-physics analysers:

- Global fit to UT: overconstrain $(\overline{\rho}, \overline{\eta})$, probes FCNC processes $K-\overline{K}$, $B_d-\overline{B}_d$ and $B_s-\overline{B}_s$ mixing.
- Global fit to $B_s \overline{B}_s$ mixing: mass difference Δm_s , width difference $\Delta \Gamma_s$, CP asymmetries in $B_s \rightarrow J/\psi \phi$ and $(\overline{B}_s) \rightarrow \chi \ell \nu_{\ell}$.

global analysis

SUS

New-physics analysers:

- Global fit to UT: overconstrain $(\overline{\rho}, \overline{\eta})$, probes FCNC processes $K-\overline{K}$, $B_d-\overline{B}_d$ and $B_s-\overline{B}_s$ mixing.
- Global fit to $B_s \overline{B}_s$ mixing: mass difference Δm_s , width difference $\Delta \Gamma_s$, CP asymmetries in $B_s \rightarrow J/\psi\phi$ and $(\overline{B}_s) \rightarrow \chi \ell \nu_{\ell}$.
- Penguin decays: $B \to X_s \gamma$, $B \to X_s \ell^+ \ell^-$, $B \to K \pi$, $B_d \to \phi K_s$, $B_s \to \mu^+ \mu^-$, $K \to \pi \nu \overline{\nu}$.

global analysis

SUSY

New-physics analysers:

- Global fit to UT: overconstrain $(\overline{\rho}, \overline{\eta})$, probes FCNC processes $K-\overline{K}$, $B_d-\overline{B}_d$ and $B_s-\overline{B}_s$ mixing.
- Global fit to $B_s \overline{B}_s$ mixing: mass difference Δm_s , width difference $\Delta \Gamma_s$, CP asymmetries in $B_s \rightarrow J/\psi\phi$ and $(\overline{B}_s) \rightarrow \chi \ell \nu_{\ell}$.
- Penguin decays: $B \to X_s \gamma$, $B \to X_s \ell^+ \ell^-$, $B \to K \pi$, $B_d \to \phi K_s$, $B_s \to \mu^+ \mu^-$, $K \to \pi \nu \overline{\nu}$.
- CKM-suppressed or helicity-suppressed tree-level decays: $B^+ \rightarrow \tau^+ \nu$, $B \rightarrow \pi \ell \nu$, $B \rightarrow D \tau \nu$, probe charged Higgses and right-handed W-couplings.

-				
D	0	0	۰.	00
		5		
_		-		~

new physics

global analysis

SUS

Global fit in the SM from CKMfitter:

Statistical method: Rfit, a Frequentist approach.

SUS

Conclusions

Global fit in the SM from UTfit:

Statistical method: Bayesian.

Basics	new physics	global analysis	SUSY	Conclusions
	$B_s - \overline{B}_s$	mixing and new p	physics	

Schrödinger equation for $B_s \sim \overline{bs}$ and $\overline{B_s} \sim \overline{bs}$:

$$i\frac{d}{dt}\begin{pmatrix} |B_{s}(t)\rangle\\ |\overline{B}_{s}(t)\rangle \end{pmatrix} = \left(M-i\frac{\Gamma}{2}\right)\begin{pmatrix} |B_{s}(t)\rangle\\ |\overline{B}_{s}(t)\rangle \end{pmatrix}$$

Here $|B_s(t)\rangle$ is a linear superposition of $|B_s\rangle$ and $|\overline{B}_s\rangle$ with $|B_s(0)\rangle = |B_s\rangle$.

Mass and decay matrices $M = M^{\dagger}$ and $\Gamma = \Gamma^{\dagger}$.

Basics	new physics	global analysis	SUSY	Conclusions
	$B_s - \overline{B}_s$	mixing and new p	physics	

Schrödinger equation for $B_s \sim \overline{bs}$ and $\overline{B}_s \sim \overline{bs}$:

$$i \frac{d}{dt} \begin{pmatrix} |B_{s}(t)\rangle \\ |\overline{B}_{s}(t)\rangle \end{pmatrix} = \left(M - i \frac{\Gamma}{2}\right) \begin{pmatrix} |B_{s}(t)\rangle \\ |\overline{B}_{s}(t)\rangle \end{pmatrix}$$

Here $|B_s(t)\rangle$ is a linear superposition of $|B_s\rangle$ and $|\overline{B}_s\rangle$ with $|B_s(0)\rangle = |B_s\rangle$.

Mass and decay matrices $M = M^{\dagger}$ and $\Gamma = \Gamma^{\dagger}$.

3 physical quantities in $B_s - \overline{B}_s$ mixing:

$$\left| M_{12}^{s} \right|, \quad \left| \Gamma_{12}^{s} \right|, \quad \phi_{s} \equiv \arg\left(-\frac{M_{12}^{s}}{\Gamma_{12}^{s}} \right)$$

Two mass eigenstates with masses M_H , M_L and widths Γ_H , Γ_L . Mass and width differences:

$$\begin{array}{rcl} \Delta m_{s} &=& M_{H} - M_{L} \simeq 2 |M_{12}^{s}|, \\ \Delta \Gamma_{s} &=& \Gamma_{L} - \Gamma_{H} \simeq 2 |\Gamma_{12}^{s}| \cos \phi_{s} \end{array}$$

New physics can barely affect Γ_{12}^s , which stems from tree-level decays.

s

u.c.t

b

 M_{12}^{s} is very sensitive to virtual effects of new heavy particles.

Basics	new physics	global analysis	SUSY	Conclusions
		Generic new physics		

The phase $\phi_s = \arg(-M_{12}/\Gamma_{12})$ is negligibly small in the Standard Model:

 $\phi_{s}^{SM} = 0.2^{\circ}.$

Define the complex parameter Δ_s through

 $M_{12}^{s} \equiv M_{12}^{\mathrm{SM},s} \cdot \Delta_{s}, \qquad \Delta_{s} \equiv |\Delta_{s}| e^{i\phi_{s}^{\Delta}}.$

In the Standard Model $\Delta_s = 1$. Use $\phi_s = \phi_s^{SM} + \phi_s^{\Delta} \simeq \phi_s^{\Delta}$.

global analysis	SUSY	Conclusions
Generic new physics	3	
	global analysis Generic new physics	global analysis SUSY Generic new physics

The phase $\phi_s = \arg(-M_{12}/\Gamma_{12})$ is negligibly small in the Standard Model:

 $\phi_{s}^{SM} = 0.2^{\circ}.$

Define the complex parameter Δ_s through

$$M_{12}^{s} \equiv M_{12}^{\mathrm{SM},s} \cdot \Delta_{s}, \qquad \Delta_{s} \equiv |\Delta_{s}| e^{i\phi_{s}^{\Delta}}.$$

In the Standard Model $\Delta_s = 1$. Use $\phi_s = \phi_s^{SM} + \phi_s^{\Delta} \simeq \phi_s^{\Delta}$. The CDF measurement

$$\Delta m_{\rm s} = (17.77 \pm 0.10 \pm 0.07) \, {\rm ps}^{-1}$$

implies

$$|\Delta_s| = 0.92 \pm 0.14_{(th)} \pm 0.01_{(exp)}$$

Flavour-specific decay: $B_s \rightarrow f$ is allowed, while $\overline{B}_s \rightarrow f$ is forbidden

CP asymmetry in flavour-specific decays (semileptonic CP asymmetry):

$$a_{\mathrm{fs}}^{\mathrm{s}} = rac{\Gamma(\overline{B}_{\mathrm{s}}(t) o f) - \Gamma(B_{\mathrm{s}}(t) o \overline{f})}{\Gamma(\overline{B}_{\mathrm{s}}(t) o f) + \Gamma(B_{\mathrm{s}}(t) o \overline{f})}$$

with e.g. $f = X\ell^+\nu_\ell$ and $\overline{f} = \overline{X}\ell^-\overline{\nu}_\ell$. Untagged rate:

$$a_{\rm fs,unt}^{\rm s} \equiv \frac{\int_0^\infty dt \left[\Gamma(\overline{B}_s^{\,\prime} \to \mu^+ X) - \Gamma(\overline{B}_s^{\,\prime} \to \mu^- X) \right]}{\int_0^\infty dt \left[\Gamma(\overline{B}_s^{\,\prime} \to \mu^+ X) + \Gamma(\overline{B}_s^{\,\prime} \to \mu^- X) \right]} \simeq \frac{a_{\rm fs}^{\rm s}}{2}$$

Basics	new physics	global analysis	SUSY	Conclusions

Relation to M_{12}^{s} :

$$a_{\rm fs}^{\rm s} = \frac{|\Gamma_{12}^{\rm s}|}{|M_{12}^{\rm s}|} \sin \phi_{\rm s} = \frac{|\Gamma_{12}^{\rm s}|}{|M_{12}^{\rm SM, \rm s}|} \cdot \frac{\sin \phi_{\rm s}}{|\Delta_{\rm s}|} = (4.97 \pm 0.94) \cdot 10^{-3} \cdot \frac{\sin \phi_{\rm s}}{|\Delta_{\rm s}|}$$

A. Lenz, UN, 2006

Basics	new physics	global analysis	SUSY	Conclusions

Dilepton events:

Compare the number N_{++} of decays $(B_{s}(t), \overline{B}_{s}(t)) \rightarrow (f, f)$ with the number N_{--} of decays to $(\overline{f}, \overline{f})$.

Then
$$a_{\rm fs}^{\rm s}=rac{N_{++}-N_{--}}{N_{++}+N_{--}}.$$

At the Tevatron all *b*-flavoured hadrons are produced. Still only those events contribute to $(N_{++} - N_{--})/(N_{++} + N_{--})$, in which one of the *b* hadronises as a B_d or B_s and undergoes mixing.

May 15, 2010: DØ presents

 $a_{\rm fs}~=~(-9.57\pm2.51\pm1.46)\cdot10^{-3}$

for a mixture of B_d and B_s mesons with

 $a_{\mathrm{fs}} = (0.506 \pm 0.043)a_{\mathrm{fs}}^{d} + (0.494 \pm 0.043)a_{\mathrm{fs}}^{\mathrm{s}}$

The result is 3.2σ away from $a_{fs}^{SM} = \left(-0.23^{+0.05}_{-0.06}\right) \cdot 10^{-3}$. A. Lenz, UN, 2006

Averaging with an older CDF measurement yields

$$a_{\rm fs} = (-8.5 \pm 2.8) \cdot 10^{-3},$$

which is 3.0σ away from $a_{\rm fs}^{\rm SM}$.

Basics new physics global analysis SUSY Conclusions

$$a_{
m fs}^{
m s} = (4.97 \pm 0.94) \cdot 10^{-3} \cdot rac{\sin \phi_{
m s}}{|\Delta_{
m s}|}$$

If there is no new physics in $a_{\rm fs}^d$, the Tevatron measurement of $a_{\rm fs} = (-8.5 \pm 2.8) \cdot 10^{-3}$ roughly implies $a_{\rm fs}^s = (-17 \pm 6) \cdot 10^{-3}$. With $|\Delta_s| \ge 0.78$ find

 $\sin \phi_{s} \leq -2.2 \pm 0.7.$

new physics

global analysis

SUS

Closer look: Allow for new physics in $B_d - \overline{B}_d$ mixing as well:

$$rac{M_{12}^d}{M_{12}^{
m SM,d}}\equiv\Delta_d=|\Delta_d|e^{i\phi_d^\Delta}$$

Measurement by B factories: $a_{f_s}^d = (-4.7 \pm 4.6) \cdot 10^{-3}$

However: a_{fs}^d can be better determined indirectly through

$$\mathbf{a}_{\rm fs}^d = \frac{|\Gamma_{12}^d|}{M_{12}^{\rm SM,d}} \frac{\sin(\phi_d^{\rm SM} + \phi_d^{\Delta})}{|\Delta_d|} \qquad \qquad \text{with} \ \phi_d^{\rm SM} = (-5 \pm 2)^\circ$$

using the measurements of $\Delta m_d = 2|M_{12}^d|$ and of $2\beta + \phi_d^{\Delta} = (21 \pm 1)^\circ$ from $A_{CP}^{\min}(B_d \to J/\psi K_S)$.

new physics

global analysis

SUS

Closer look: Allow for new physics in $B_d - \overline{B}_d$ mixing as well:

$$rac{M_{12}^d}{M_{12}^{
m SM,d}}\equiv\Delta_d=|\Delta_d|e^{i\phi_d^\Delta}$$

Measurement by B factories: $a_{f_s}^d = (-4.7 \pm 4.6) \cdot 10^{-3}$

However: a_{fs}^d can be better determined indirectly through

$$a_{\rm fs}^d = \frac{|\Gamma_{12}^d|}{M_{12}^{\rm SM,d}} \frac{\sin(\phi_d^{\rm SM} + \phi_d^{\Delta})}{|\Delta_d|} \qquad \qquad \text{with} \ \phi_d^{\rm SM} = (-5 \pm 2)^\circ$$

using the measurements of $\Delta m_d = 2|M_{12}^d|$ and of $2\beta + \phi_d^{\Delta} = (21 \pm 1)^\circ$ from $A_{CP}^{\min}(B_d \to J/\psi K_S)$.

 \Rightarrow requires fit to unitarity triangle to find β

Based on work with A. Lenz and the CKMfitter Group(J. Charles, S. Descotes-Genon, A. Jantsch, C. Kaufhold,H. Lacker, S. Monteil, V. Niess)arXiv:1008.1593

Rfit method: No statistical meaning is assigned to systematic errors and theoretical uncertainties.

We have performed a simultaneous fit to the Wolfenstein parameters and to the new physics parameters Δ_s and Δ_d in three scenarios.

SUS

Scenario I: arbitrary complex parameters Δ_s and Δ_d

Scenario II: new physics is minimally flavour violating (MFV) (meaning that all flavour violation stems from the Yukawa sector) and y_b is small: one real parameter $\Delta = \Delta_s = \Delta_d$ Scenario III: MFV with a large y_b : one complex parameter $\Delta = \Delta_s = \Delta_d$

Scenario I: arbitrary complex parameters Δ_s and Δ_d

Scenario II: new physics is minimally flavour violating (MFV) (meaning that all flavour violation stems from the Yukawa sector) and y_b is small: one real parameter $\Delta = \Delta_s = \Delta_d$ Scenario III: MFV with a large y_b : one complex parameter $\Delta = \Delta_s = \Delta_d$

Examples: Scenario I covers the MSSM with generic flavour structure of the soft terms and small $\tan \beta$. Scenario II covers the MSSM with MFV and small $\tan \beta$. Scenario III covers certain two-Higgs models (but

not the MFV-MSSM).

SUS

Results in scenario I:

SM point $\Delta_d = 1$ disfavoured by $\geq 2.5\sigma$.

 ϕ_d^{Δ} < 0 helps to explain DØ dimuon asymmetry.

Reason for the tension with the SM: $B(B^+ \rightarrow \tau^+ \nu_{\tau})$ SM prediction (CL= 2σ):

 ${\it B}({\it B}^+ o au^+
u_ au) = \left(0.763^{+0.214}_{-0.097}
ight) \cdot 10^{-4}$

Average of several measurements by BaBar and Belle:

 $B^{\exp}(B^+ o au^+
u_{ au}) = (1.68 \pm 0.31) \cdot 10^{-4}$

Reason for the tension with the SM: $B(B^+ \rightarrow \tau^+ \nu_{\tau})$ SM prediction (CL= 2σ):

$${\it B}({\it B}^+ o au^+
u_ au) = \left(0.763^{+0.214}_{-0.097}
ight) \cdot 10^{-4}$$

Average of several measurements by BaBar and Belle:

$$B^{
m exp}(B^+ o au^+
u_ au) = (1.68 \pm 0.31) \cdot 10^{-4}$$

$$B^{
m SM}(B^+ o au^+
u_ au) = rac{G_F^2 m_{B^+} m_ au^2}{8\pi} \left(1 - rac{m_ au^2}{m_{B^+}^2}
ight)^2 |V_{ub}|^2 f_B^2 au_{B^+}.$$

But with e.g. $f_B = 210 \text{ MeV}$ and $|V_{ub}| = 4.4 \cdot 10^{-3}$ find $B^{\text{SM}}(B^+ \to \tau^+ \nu_{\tau}) = 1.51 \cdot 10^{-4}$. These parameters comply with the global fit to the UT only, if new physics changes the constraints from $A_{CP}^{\text{mix}}(B_d \to J/\psi K_S)$, Δm_d or $\Delta m_d/\Delta m_s$.
Basics	new physics	global analysis	SUSY	Conclusions

Global fit in the SM:

without 2010 CDF/DØ data on $B_s \rightarrow J/\psi\phi$

Global fit to UT hinting at $\phi_d^{\Delta} < 0$:

Other authors have seen a tension with the SM in the same direction stemming from ϵ_{K} .

Lunghi, Soni; Buras, Guadagnoli

In our fit the tension with ϵ_{K} is mild, because we use a more conservative error on the hadronic parameter $\widehat{B}_{K} = 0.724 \pm 0.004 \pm 0.067$ and because the Rfit method is more conservative.

Basics	new physics	global analysis	SUSY	Conclusions

p-values: Calculate χ^2/N_{dof} with and without a hypothesis to find:

Hypothesis	p-value
$\Delta_d = 1$	2.5 σ
$\Delta_s = 1$	2.7 σ
$\Delta_d = \Delta_s = 1$	3.4 σ
$\Delta_d = \Delta_s$	2.1 σ

Is the result driven by the DØ dimuon asymmetry? One can remove a_{fs} as an input and instead predict it from the global fit:

$$a_{\rm fs} = \left(-4.2^{+2.7}_{-2.6}
ight) \cdot 10^{-3}$$
 at 2σ .

Basics new physics global analysis SUSY Conclusions

Is the result driven by the DØ dimuon asymmetry? One can remove a_{fs} as an input and instead predict it from the global fit:

$$a_{\rm fs} = \left(-4.2^{+2.7}_{-2.6}
ight) \cdot 10^{-3}$$
 at 2σ .

This is just 1.5σ away from the DØ/CDF average

$$a_{\rm fs} = (-8.5 \pm 2.8) \cdot 10^{-3}.$$

The fit in scenario II (real $\Delta_s = \Delta_d$) is not better than the SM fit and gives $\Delta = 0.907^{+0.091}_{-0.067}$.

Scenario III (complex $\Delta_s = \Delta_d$) fits the data quite well irrespective of whether $B(B^+ \to \tau^+ \nu_{\tau})$ is included or not.

Hypothesis	p-value
$\Delta = 1$	3.1 σ

Basics	new physics	global analysis	SUSY	Conclusions
		Supersymmetry		

The MSSM has many new sources of flavour violation, all in the supersymmetry-breaking sector.

No problem to get big effects in $B_s - \overline{B}_s$ mixing, but rather to suppress the big effects elsewhere.

Basics	new physics	global analysis	SUSY	Conclusions
	5	Squark mass matrix	x	

Diagonalise the Yukawa matrices Y_{jk}^{u} and Y_{jk}^{d} \Rightarrow quark mass matrices are diagonal, super-CKM basis

Basics	new physics		global analys	is	SUSY	Con	clusions
	Squark mass matrix						
Diagon ⇒ E.g. Do	Diagonalise the Yukawa matrices Y ^u _{jk} and Y ^d _{jk} ⇒ quark mass matrices are diagonal, super-CKM basis E.g. Down-squark mass matrix:						
$M_{\tilde{d}}^2 =$	$\begin{pmatrix} \left(M_{1L}^{\tilde{d}} \right)^{2} \\ \Delta_{12}^{\tilde{d}LL^{*}} \\ \Delta_{13}^{\tilde{d}LL^{*}} \\ \Delta_{11}^{\tilde{d}LR^{*}} \\ \Delta_{12}^{\tilde{d}LR^{*}} \\ \Delta_{13}^{\tilde{d}LR^{*}} \end{pmatrix}$	$\Delta_{12}^{\tilde{a}LL} \\ \left(M_{2L}^{\tilde{a}}\right)^2 \\ \Delta_{23}^{\tilde{a}LL^*} \\ \Delta_{12}^{\tilde{a}RL} \\ \Delta_{22}^{\tilde{a}LR^*} \\ \Delta_{23}^{\tilde{a}LR^*}$	$\Delta_{13}^{\tilde{d}LL}$ $\Delta_{23}^{\tilde{d}LL}$ $\left(M_{3L}^{\tilde{d}}\right)^{2}$ $\Delta_{13}^{\tilde{d}RL}$ $\Delta_{23}^{\tilde{d}RL}$ $\Delta_{33}^{\tilde{d}LR}^{*}$	$\Delta_{11}^{\tilde{d} LR}$ $\Delta_{12}^{\tilde{d} RL^*}$ $\Delta_{13}^{\tilde{d} RL^*}$ $\left(M_{1R}^{\tilde{d}}\right)^2$ $\Delta_{12}^{\tilde{d} RR^*}$ $\Delta_{13}^{\tilde{d} RR^*}$	$\Delta_{12}^{\tilde{d} LR}$ $\Delta_{22}^{\tilde{d} LR}$ $\Delta_{23}^{\tilde{d} RL*}$ $\Delta_{12}^{\tilde{d} RR}$ $\left(M_{2R}^{\tilde{d}}\right)^{2}$ $\Delta_{23}^{\tilde{d} RR}^{*}$	$\Delta_{13}^{\tilde{d}LR}$ $\Delta_{23}^{\tilde{d}LR}$ $\Delta_{33}^{\tilde{d}LR}$ $\Delta_{13}^{\tilde{d}RR}$ $\Delta_{23}^{\tilde{d}RR}$ $\left(M_{3R}^{\tilde{d}}\right)^{2}$	

Not diagonal! \Rightarrow new FCNC transitions.

Basics

new physics

global analysis

SUSY

Conclusions

Model-independent analyses constrain

 $\delta_{ij}^{q \times Y} = \frac{\Delta_{ij}^{\tilde{q} \times Y}}{\frac{1}{6} \sum_{s} \left[M_{\tilde{q}}^{2} \right]_{ss}} \quad \text{with } XY = LL, LR, RR \text{ and } q = u, d$

using data on FCNC (and also charged-current) processes.

 \Rightarrow see next talk by A. Dedes

Basics

new physics

global analysis

SUSY

Model-independent analyses constrain

 $\delta_{ij}^{q\,XY} = \frac{\Delta_{ij}^{\tilde{q}\,XY}}{\frac{1}{6}\sum_{s} \left[M_{\tilde{q}}^{2}\right]_{ss}} \qquad \text{with } XY = LL, LR, RR \text{ and } q = u, d$

using data on FCNC (and also charged-current) processes.

 \Rightarrow see next talk by A. Dedes

Remarks:

 For M_{g̃} ≥ 1.5M_{q̃} the gluino contribution is small and chargino/neutralino contributions are important. parallel talk by M. Davidkov, 27-1, FR 14:17 Basics

new physics

global analysis

SUSY

Model-independent analyses constrain

 $\delta_{ij}^{q\,XY} = \frac{\Delta_{ij}^{\tilde{q}\,XY}}{\frac{1}{6}\sum_{s} \left[M_{\tilde{q}}^{2}\right]_{ss}} \qquad \text{with } XY = LL, LR, RR \text{ and } q = u, d$

using data on FCNC (and also charged-current) processes.

 \Rightarrow see next talk by A. Dedes

Remarks:

- For M_{g̃} ≥ 1.5M_{q̃} the gluino contribution is small and chargino/neutralino contributions are important. parallel talk by M. Davidkov, 27-1, FR 14:17
- To derive meaningful bounds on δ^{q LR}_{ij} chirally enhanced higher-order contributions must be taken into account.
 A. Crivellin, UN, 2009

Are there natural ways to motivate sizable new flavour violation in $B_s - \overline{B}_s$ mixing and $B_d - \overline{B}_d$ mixing while simultaneous suppressing flavour violation elsewhere?

 Basics
 new physics
 global analysis
 SUSY
 Conclusions

 Flavour violation from trilinear terms

Origin of the SUSY flavour problem: Misalignment of squark mass matrices with Yukawa matrices. Unorthodox solution: Set Y_{ij}^{u} and Y_{ij}^{d} to zero, except for (i, j) = (3, 3).

 \Rightarrow No flavour violation from $Y_{ij}^{u,d}$ and $V_{CKM} = 1$.

 Basics
 new physics
 global analysis
 SUSY
 Conclusions

 Flavour violation from trilinear terms

Origin of the SUSY flavour problem: Misalignment of squark mass matrices with Yukawa matrices. Unorthodox solution: Set Y_{ij}^{u} and Y_{ij}^{d} to zero, except for (i, j) = (3, 3). \Rightarrow No flavour violation from $Y_{ii}^{u,d}$ and $V_{CKM} = 1$.

 $V_{CKM} \neq 1$ is then generated radiatively, through finite squark-gluino loops. \Rightarrow SUSY-breaking is the origin of flavour.

Basics	new physics	global analysis	SUSY	Conclusions
	Flavour	violation from trilinear t	erms	
	Origin of the SUSY fl mass matrices with Y Unorthodox solution: (i, j) = (3, 3). \Rightarrow No $V_{CKM} \neq 1$ is then get squark-gluino loops.	avour problem: Misalignm (ukawa matrices. Set Y_{ij}^{u} and Y_{ij}^{d} to zero, flavour violation from $Y_{ij}^{u,v}$ herated radiatively, throug \Rightarrow SUSY-breaking is the	nent of squar except for ^d and V _{CKM} = gh finite e origin of flar	k = 1 . vour.
	Radiative flavour viola flavour from soft	ation: SUSY terms:	S. Weinberg	1972
		W. Buchmüller, D. Wyler T. Banks F. Borzumati, G.R. Farrar,	1	983, 988,
		N. Polonsky, S.D. The J. Ferrandis, N. Haba	omas 1998,	1999 2004

Today: Strong constraints from FCNCs probed at B factories.

Today: Strong constraints from FCNCs probed at B factories.

But: Radiative flavour violation in the MSSM is still viable, albeit only with A_{ii}^d and A_{ii}^u entering

 $M_{ij}^{\tilde{d}\,LR} = A_{ij}^d v_d + \delta_{i3}\delta_{j3}y_b\mu v_u, \qquad M_{ij}^{\tilde{u}\,LR} = A_{ij}^u v_u + \delta_{i3}\delta_{j3}y_t\mu v_d.$

Andreas Crivellin, UN, PRD 79 (2009) 035018

Today: Strong constraints from FCNCs probed at B factories.

But: Radiative flavour violation in the MSSM is still viable, albeit only with A_{ii}^d and A_{ii}^u entering

$$M_{ij}^{\tilde{d}\,LR} = A_{ij}^{d} v_d + \delta_{i3} \delta_{j3} y_b \mu v_u, \qquad M_{ij}^{\tilde{u}\,LR} = A_{ij}^{u} v_u + \delta_{i3} \delta_{j3} y_t \mu v_d.$$
And reas Crivellin LIN PRD 79 (2009) 035018

Basics	new physics	global analysis	SUSY	Conclusions
	Flee	ctric dipole mome	ents	

Darkest corner of the MSSM: The phases of A_{ii}^q and μ generate too large EDMs. If light quark masses are generated radiatively through soft SUSY-breaking terms, this "supersymmetric CP problem" is substantially alleviated:

- The phases of A_{ii}^{q} and m_{q} are aligned, i.e. zero.
- The phase of μ (essentially) does not enter the EDMs at the one-loop level, because the Yukawa couplings of the first two generations are zero.

Borzumati, Farrar, Polonsky, Thomas 1998,1999

Linking quarks to neutrinos: Flavour mixing: quarks: Cabibbo-Kobayashi-Maskawa (CKM) matrix leptons: Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix

Consider SU(5) multiplets:

$$\overline{\mathbf{5}}_{\mathbf{1}} = \begin{pmatrix} \mathbf{d}_{R}^{c} \\ \mathbf{d}_{R}^{c} \\ \mathbf{d}_{R}^{c} \\ \mathbf{e}_{L} \\ -\nu_{e} \end{pmatrix}, \quad \overline{\mathbf{5}}_{\mathbf{2}} = \begin{pmatrix} \mathbf{s}_{R}^{c} \\ \mathbf{s}_{R}^{c} \\ \mathbf{s}_{R}^{c} \\ \mu_{L} \\ -\nu_{\mu} \end{pmatrix}, \quad \overline{\mathbf{5}}_{\mathbf{3}} = \begin{pmatrix} \mathbf{b}_{R}^{c} \\ \mathbf{b}_{R}^{c} \\ \mathbf{b}_{R}^{c} \\ \tau_{L} \\ -\nu_{\tau} \end{pmatrix}$$

If the observed large atmospheric neutrino mixing angle stems from a rotation of $\overline{5}_2$ and $\overline{5}_3$, it will induce a large $\tilde{b}_R - \tilde{s}_R$ -mixing (Moroi; Chang,Masiero,Murayama).

 \Rightarrow new $b_R - s_R$ transitions from gluino-squark loops possible.

Key ingredients: Some weak basis with

$$\mathbf{Y}_{d} = V_{\text{CKM}}^{*} \begin{pmatrix} y_{d} & 0 & 0 \\ 0 & y_{s} & 0 \\ 0 & 0 & y_{b} \end{pmatrix} U_{\text{PMNS}}$$

and right-handed down squark mass matrix:

$$\mathsf{m}^2_{\widetilde{d}}\left(\mathit{M}_{\!Z}
ight) = \mathsf{diag}\left(\mathit{m}^2_{\widetilde{d}},\,\mathit{m}^2_{\widetilde{d}},\,\mathit{m}^2_{\widetilde{d}}-\Delta_{\widetilde{d}}
ight).$$

with a calculable real parameter $\Delta_{\tilde{d}}$, typically generated by top-Yukawa RG effects.

Rotating Y_d to diagonal form puts the large atmospheric neutrino mixing angle into $m_{\tilde{d}}^2$:

$$U_{\rm PMNS}^{\dagger} \, {\sf m}_{\tilde{d}}^2 \, U_{\rm PMNS} = egin{pmatrix} m_{\tilde{d}}^2 & 0 & 0 \ 0 & m_{\tilde{d}}^2 - rac{1}{2} \, \Delta_{\tilde{d}} & -rac{1}{2} \, \Delta_{\tilde{d}} \, e^{i\xi} \ 0 & -rac{1}{2} \, \Delta_{\tilde{d}} \, e^{-i\xi} & m_{\tilde{d}}^2 - rac{1}{2} \, \Delta_{\tilde{d}} \end{pmatrix}$$

The CP phase ξ affects $B_s - \overline{B}_s$ mixing!

Realistic GUTs involve further dimension-5 Yukawa terms to fix the Yukawa unification in the first two generations. One can use these terms to shuffle a part of the effect from $b_R \rightarrow s_R$ into $b_R \rightarrow d_R$ transitions. This "leakage" is strongly constrained by $K-\overline{K}$ mixing. Trine,Wiesenfeldt,Westhoff 2009 Basics new physics global analysis SUSY Conclusions

Realistic GUTs involve further dimension-5 Yukawa terms to fix the Yukawa unification in the first two generations. One can use these terms to shuffle a part of the effect from $b_R \rightarrow s_R$ into $b_R \rightarrow d_R$ transitions. This "leakage" is strongly constrained by $K-\overline{K}$ mixing. Trine,Wiesenfeldt,Westhoff 2009

Similar constraints can be found from $\mu \rightarrow e\gamma$.

Borzumati, Yamashita 2009; Girrbach, Mertens, UN, Wiesenfeldt 2009

Basics	new physics	global analysis	SUSY	Conclusions
	Chang-N	Aasireo-Muravam	a model	

We have considered $B_s - \overline{B}_s$ mixing, $b \to s\gamma$, $\tau \to \mu\gamma$, vacuum stability bounds, lower bounds on sparticle masses and the mass of the lightest Higgs boson. The analysis involves 7 parameters in addition to those of the Standard Model.

Generic results: Largest effect in $B_s - \overline{B}_s$ mixing tension with $M_h \ge 114 \text{ GeV}$

J. Girrbach, S. Jäger, M. Knopf, W. Martens, UN, C. Scherrer, S. Wiesenfeldt

global analysis

SUSY

Contour plot for $M_{\tilde{q}} = 350 \text{ GeV}$, arg $\mu = 0$:

Black: negative soft masses² Green: excluded by $\tau \rightarrow \mu \gamma$ and $b \rightarrow s \gamma$ Blue: excluded by $\tau \rightarrow \mu \gamma$ Gray: excluded by $B_s - \overline{B}_s$ mixing Yellow: allowed

dashed lines: $10^4 \cdot Br(b \rightarrow s\gamma)$; dotted lines: $10^8 \cdot Br(\tau \rightarrow \mu\gamma)$.

Parallel talks addressing topics touched in this talk:

MO Pheno 23-2	17:37	David Straub
TU Pheno 24-1	14:17	Jennifer Girrbach
TU Pheno 24-1	15:25	Stefania Gori
TH Model Building 26-1	14:17	Andreas Crivellin
FR Model Building 27-1	14:17	Momchil Davidkov
FR Model Building 27-1	14:34	Jisuke Kubo
FR Pheno 27-2	17:37	Wolfgang Altmannshofer

Basics	new physics	global analysis	SUSY	Conclusions
		Conclusions		

• The DØ result for the dimuon asymmetry in B_s decays supports the hints for $\phi_s < 0$ seen in $B_s \rightarrow J/\psi\phi$ data. The central value is easier to accomodate if both $a_{\rm fs}^s$ and $a_{\rm fs}^d$ receive negative contributions from new physics.

Basics	new physics	global analysis	SUSY	Conclusions
Conclusions				

- The DØ result for the dimuon asymmetry in B_s decays supports the hints for $\phi_s < 0$ seen in $B_s \rightarrow J/\psi\phi$ data. The central value is easier to accomodate if both $a_{\rm fs}^s$ and $a_{\rm fs}^d$ receive negative contributions from new physics.
- A global fit to the UT indeed shows a slight preference for a new CP phase $\phi_d^{\Delta} < 0$, driven by $B(B^+ \to \tau^+ \nu_{\tau})$ (and possibly ϵ_K). In a simultaneously global fit to the UT and the $B_s \overline{B}_s$ mixing complex a plausible picture of new CP-violating physics emerges.

Basics new phys	cs global analysis	SUSY	Conclusions
	Conclusion	ns	

 Large CP-violating contributions to B_s-B_s mixing are possible in supersymmetry without violating constraints from other FCNC processes. If confirmed the DØ/CDF results imply physics beyond the MFV-MSSM.

Basics new physics		global analysis	SUSY	Conclusions
		Conclusions		

- Large CP-violating contributions to $B_s \overline{B}_s$ mixing are possible in supersymmetry without violating constraints from other FCNC processes. If confirmed the DØ/CDF results imply physics beyond the MFV-MSSM.
- An attractive variant is the MSSM with vanishing Yukawa couplings for the first two generations and radiative flavour violation.

Basics n	new physics	global analysis	SUSY	Conclusions
	Co	onclusions		

- Large CP-violating contributions to B_s-B_s mixing are possible in supersymmetry without violating constraints from other FCNC processes. If confirmed the DØ/CDF results imply physics beyond the MFV-MSSM.
- An attractive variant is the MSSM with vanishing Yukawa couplings for the first two generations and radiative flavour violation.
- Models of GUT flavour physics with $\tilde{b}_R \tilde{s}_R$ mixing driven by the atmospheric neutrino mixing angle can explain the Tevatron data on $B_s - \overline{B}_s$ mixing without conflicting with $b \rightarrow s\gamma$ and $\tau \rightarrow \mu\gamma$.