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I—MSSM: good features and open questions

MSSM: good features and open questions

0 Many studies focus on the minimal supersymmetric
extension of the standard model (MSSM)

0 Why?

2 stabilization of hierarchies

MSSM gauge coupling unification
radiative electroweak symmetry breaking
dark matter candidate

©000O0

0 However:
@ u/Bu problem
& dimension four and five proton decay operators
© CP and flavor problems

O Supersymmetry alone seems not to be enough
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[] Introduction & Motivation V4

[] A simple ZZ symmetry can explain
e suppressed u term
e proton stability

[] String theory realization

(] Summary
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Iodnez & Ross (1992); Dreiner, Luhn & Thormeier (2006)

O Proton hexality Pg = matter parity ZQ" x baryon friality Bs
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O Appealing features
forbids dimension four and five proton decay operators

allows Yukawa couplings, Weinberg operator )’ H,L; H,L;
and u term

© unique anomaly-free symmetry with the above features

© ©

0 However:
@ not consistent with unification for matter
© embedding into string theory not yet fully convincing

Forste, Nilles, Ramos-Sdnchez, Vaudrevange (2010)
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Local grond unification (using small extra dimensions)

Glt Grt Buchmiller, Hamaguchi, Lebedev, M.R. (2004-2006)
Lebedev, Nilles, Raby, Ramos-Sénchez,
M.R., Vaudrevange, Wingerter (2006)

standard
model

as an
intersection
of Grb, Grt, Glt
& SO(10)

inG

large(r)
group

‘low-energy’

effective theory

16
S0(10) Gy

SM generation(s):

Higgs doublets:
localized in region with PT——
SO(10) symmetry ive in the “bu
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I—Proh'.\n hexality and local grand unification

Proton hexality

O Disturbing aspects of proton hexality

© not consistent with (local grand) unification for matter

© embedding into string theory not yet fully convincing
© does not address i problem

/= /lHdHu + K; LiHu

U LiH E; )Y QiHyD; + Y! QiH,U;

q E inl_)k + /lz{]/'k Uiﬁjl_)k

inQk ¢+ Kz(jzlgl ﬁiﬁjﬁkl@ + ...

need to be strongly suppressed

@eds fo be suppressed as D
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= Origin of discrete symmetries

Origin of discrete symmetries

O Where can the discrete symmetries come from?
O Possible answer: higher dimensions and strings

O What does string theory give us?
¢ unification with gravity
extra gauge symmetries
discrete symmetries
o Green-Schwarz anomaly cancellation
MSSM models with Local Grand Unification

0 Two prejudices from string model building:
@ Local Grand Unification

® anomalous’ discrete symmetries whose anomalies are
canceled the Green-Schwarz mechanism
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From anomaly freedom to anomaly universality

Dine & Graesser (2004); Araki, Kobayashi, Kubo, Ramos-Sanchez, M.R. & Vaudrevange (2008)

O Important lesson from explicit string-derived (MSSM) models

‘anomalous’ discrete symmetries:

Anomalies of discrete symmetries canceled by
Green-Schwarz mechanism

0 Anomaly freedom gets relaxed to anomaly universality

Example: anomaly coefficients for Zy

sum over all
Age_zy = > D .qh representations of G
\_/
f

Agave-zy = Zq(m)\_/[sum over all fermions )
m
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From anomaly freedom to anomaly universality

Dine & Graesser (2004); Araki, Kobayashi, Kubo, Ramos-Sanchez, M.R. & Vaudrevange (2008)

O Important lesson from explicit string-derived (MSSM) models

‘anomalous’ discrete symmetries:

Anomalies of discrete symmetries canceled by
Green-Schwarz mechanism

0 Anomaly freedom gets relaxed to anomaly universality

Example: anomaly coefficients for Zy

Dynkin index I
AGZ—ZN = Z[(f) 4
f

discrete chorges]

AgTaVZ—ZN = Zq(m)
m
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From anomaly freedom to anomaly universality

Dine & Graesser (2004); Araki, Kobayashi, Kubo, Ramos-Sanchez, M.R. & Vaudrevange (2008)

O Important lesson from explicit string-derived (MSSM) models

‘anomalous’ discrete symmetries:

Anomalies of discrete symmetries canceled by
Green-Schwarz mechanism

0 Anomaly freedom gets relaxed to anomaly universality

Example: anomaly coefficients for Zy anomaly freedom:
all A coefficients vanish

Ag gy = Zm.q(f);y mod N(/2)
f O O O O O

_ m) L
Agravi-zy = qu =y mod N(/2) anomaly universality:
all A coefficients equal
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I—Unique Zf symmetry

A unique Z£ symmetry

O Assumptions:
e anomaly universality
e universal charges for quarks and leptons
e u term forbidden at perturbative level

e Yukawa couplings and Weinberg neutrino mass operator
allowed

0 Want to prove:
There is a unique ZE symmetry in the MSSM with these
features
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I—Unique Zf symmetry

Claim T1: it has to be an R symmetry

O Anomaly coefficients for non-R symmetry with SU(5)
relations for matter charges

9 3
ASU(S)Z—ZN = 5Q10+§CI5

9 3 1
ASU(2)2—ZN = §qlo + 5615 + ) (QH,/ + QH(I)
00 Anomaly universality

Aguep-zy —Asuep-zy = 0
1( +gm) = 0 mod N  forN odd
~ g \dH, T4H,) = N/2 for N even

bottom-line:
non-R Zy symmetry cannot forbid p term
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I—Unique Zf symmetry

Claim 2: Higgs discrete charges have to vanish

O Assumption: quarks and leptons have universal charge r
0 u- and d-type Yukawas allowed requires that
2r+rg, = 2 mod N and 2r+rg, = 2 mod N

IaY% rHg, —TH, =0 mod N

O u-type Yukawa and Weinberg operator allowed requires
that

2r+rg, = 2 mod N and 2r+2ry, = 2 mod N

~ rg, =0 mod N

bottom-line:
rg, = rg; = 0 mod N
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I—Unique Zf symmetry

Claim 3: The order has to be 4 (or 2)

O Anomaly coefficients for Abelian discrete R symnmetry

6(r-1)+3 = 6r-3

ASU(3)2—Z§

1
ASU(Q)Z—Zﬁ 6r + 5 (rH“ + er) -5

0 Anomaly universality

ASU(z)Z—zg —ASU(3)2—Z§ =0

2N for N odd

ryg +r =4 m
~ TH,TTH Od{N for N even

O but we know already that g, =y, =0 mod N

bottom-line:
N=2or N=4
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I—Unique Zf symmetry

Claim 3: The order has to be 4 (or 2)

O Anomaly coefficients for Abelian discrete R symnmetry

6(r-1)+3 = 6r-3

ASU(3)2—Z§

1
ASU(Q)Z—Zﬁ 6r + 5 (rH“ + er) -5

0 Anomaly universality

cf. e.g. Dine & Kehayias (2009)

A however: there is no meaningful Z§ symmetry
SU(@2-78 ~

T IOt TN forN even

O but we know already that g, =y, =0 mod N

bottom-line:
N=2or N=4
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I—Unique Zf symmetry

Unique ZE symmetry

0 We know:
o itis a ZE symmetry
e Higgs fields have charge ry, =ry, =0 mod 4

0 Yukawa couplings and Weinberg operator allowed ~
matter has charge r =1

[0 Consistent with anomaly universality

ASU(3)2-Z§ = 6(r-1)+3 = 6r-3 =1 mod 4/2

ASU(2)2—Z§ = 6r+ % (’"H,/ +7'Hd) -5 =1 mod 4/2
A = —-61+48r+2ry, +2rg, = 1 mod 4/2

R
grav2-7%

[ Anomaly-free version of this Z£ with extra matter has been
d|scussed prev|ous|y Kurosawa, Maru & Yanagida (2001)
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Implications of 7

0 Gauge invariant superpotential terms up to order 4

/= deHu + K; LiHu
+ YéjLinEj + Yfij Qinl_)j + YLJ Ql’HuUj
+ /lijk LiLjEk + /ll/‘jk Linﬁk + /lé}k Eﬁjﬁk

+ Kgn HuLi HuLj + Kl(jlk){’ QinQkLg + Kz(]?lzf ﬁiﬁjﬁkl@ + ...
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= Implications of Zf

Implications of 7

0 Gauge invariant superpotential terms up to order 4

/= /lHdHu+K'LiHu

+ Aij L; 'Ek + "'k Linﬁk + /lz{]/'k Eﬁjﬁk

+ k) Hhe HaL + N, QiQQpLy + 1), U;UDE, + ...

< forbidden at the perturbative level
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= Implications of Zf

Implications of 7

0 Gauge invariant superpotential terms up to order 4

/= deH +KlLH

+ /ll]k L; Ek + /lyk L; QJDk + /ll]k UiDjDk
i + Kijkt‘ QinQkLg + Kz(jzlgl ﬁiﬁjﬁkl@ + ...

< appear at non-perturbative level >




"Anomalous" discrete symmetries Discrete symmetry for 1 and proton

= Implications of Zf

Implications of 7

0 Gauge invariant superpotential terms up to order 4

W o= deH +KlLH

also forbidden at
non-perturbative level by
non-anomalous Zg subgroup
which is equivalent
to matter parity




"Anomalous" discrete symmetries Discrete symmetry for 1 and proton

= Implications of Zf

Implications of 7

0 Gauge invariant superpotential terms up to order 4

W = puHqHy, + ki LiHy

{LiHyE; + Y] QiHyD; + Y Q:H,U;

Ey + A, LiQ;Dy, + A, U;D;Dy,

Lj+ Kl(jlk)f Q:Q;QrL, + Kglgf ﬁiﬁjﬁkfjg .

mn-per’rurboﬁve generation of u solves the u problem




"Anomalous" discrete symmetries Discrete symmetry for 1 and proton

= Implications of Zf

Implications of 7

0 Gauge invariant superpotential terms up to order 4

W = pHdHu + K; LiHu
+ YéjLinEj + Yfij Qinl_)j + YLJ Ql’HuUj
+ /lijk LiLjEk + /ll/'jk Linﬁk + /ll/'J/'k Eﬁjﬁk
+ Kgn H,L; HuLj + K(llgl QinQkLg + Kz(jzlgl ﬁiﬁjﬁkl@ + ...

L

\

< non-perturbatively generated terms harmless =




An explicit
string-derived

example

... string theory allows us to understand the non-perturbative
‘violation” of ‘anomalous’ discrete symmetries



"Anomalous" discrete symmetries Explicit string theory example

I—The Zg orbifold plane

The Zg orbifold plane

2D space with SO(2) rotational symmetry
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Explicit string theory example

"Anomalous” discrete symmetries
I—The Zg orbifold plane

The Z, orbifold plane

0 Orbifolds with Zgy plane have three important properties:

[] ZE symmetry arises as a remnant of the Lorentz group in
compact dimensions

bulk fields
have even
ZE charge

localized
fields have odd
ZE charge



"Anomalous" discrete symmetries Explicit string theory example

I—The Zg orbifold plane

The Zy orbifold plane

0 Orbifolds with Zgy plane have three important properties:

[ 7Lt symmmetry arises as a remnant of the Lorentz group in
compact dimensions

[] Orbifold GUT limit with SU(6) bulk symmetry gives us
gauge-top unification

P Hosteins, R. Kappl, M.R., K. Schmidt-Hoberg (2009)

0.09
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%
0.07
0.06 Q
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I—The Zg orbifold plane

The Z, orbifold plane

0 Orbifolds with Zgy plane have three important properties:

[ 7Lt symmmetry arises as a remnant of the Lorentz group in
compact dimensions

[] Orbifold GUT limit with SU(6) bulk symmetry gives us
gauge-top unification

P Hosteins, R. Kappl, M.R., K. Schmidt-Hoberg (2009)

[] Orbifold GUT limit with SU(6) bulk symmetry gives us the
proportionality between i term and expectation value of
the superpotential (#)

F. Brummer, R. Kappl, M.R., K. Schmidt-Hoberg (2009)
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I—The Zg orbifold plane

The Z, orbifold plane

0 Orbifolds with Zgy plane have three important properties:

[ 7Lt symmmetry arises as a remnant of the Lorentz group in
compact dimensions

[] Orbifold GUT limit with SU(6) bulk symmetry gives us
gauge-top unification

P Hosteins, R. Kappl, M.R., K. Schmidt-Hoberg (2009)

[] Orbifold GUT limit with SU(6) bulk symmetry gives us the
proportionality between i term and expectation value of
the superpotential (#)

F. Brummer, R. Kappl, M.R., K. Schmidt-Hoberg (2009)

[] Rest of this talk: discuss globally consistent string model with
these features
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I—Bluszt:zyk et al. model

Zo X 79 Orbifold example

M. Blaszczyk, S. Groot Nibbelink, M.R., F. Ruehle, M. Trapletti, P Vaudrevange (2009)

SU(5) SU(5)
® ®

@ ®
SU(5) SU(5)

O step: 6 generation Zsy x Zy model with SU(5) symmetry
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I—Bluszt:zyk et al. model

Zo X 79 Orbifold example

M. Blaszczyk, S. Groot Nibbelink, M.R., F. Ruehle, M. Trapletti, P Vaudrevange (2009)

SU(5) SU(5) SU(5)
@ @ @
non-local
breaking
—
@ Ol @ .
SU(5) SU(5) SU(5)

O step: 6 generation Zs x Zy model with SU(5) symmetry

O step: mod out a freely acting Zg sysnmetry which:
e breaks SU(5) — SU(3)c x SU(2)L, x U(1)y
e reduces the number of generations to 3

analogous mechanism in CY MSSMs Bouchard & Donagi (2005)
Braun, He, Ovrut, Pantev (2005)
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I—Bluszt:zyk et al. model

'
Zo X 79 Orbifold example
M. Blaszczyk, S. Groot Nibbelink, M.R., F. Ruehle, M. Trapletti, P Vaudrevange (2009)

SU(5) SU(5) SU(5)

non-local
breaking
SU(5)
l
Gsm

Note: this is just a cartoon
the geometric picture will be ex-
SU(5) . . .
plained in more detail elsewhere
0 step: 6 g

M. Fischer, M.R., P Vaudrevange (to appear) T]meTry

0 step: mod out a freely acting Zg symmetry which:
e breaks SU(5) — SU(3)c x SU(2)L, x U(1)y
e reduces the number of generations to 3

for further discussion of this model see talks by M. Blaszczyk & S. Groot Nibbelink



"Anomalous" discrete symmetries Explicit string theory example

I—Blusu:zyk et al. model

Main features

[] GUT symmetry breaking non-locall
~ No ‘logarithmic running above the GUT scale’

Hebecker, Trapletti (2004)
~ precision gauge unification

with distinctive pattern of soft masses
Raby. M.R., Schmidt-Hoberg (2009)
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I—Bluszt:zyk et al. model

Main features

[] GUT symmetry breaking non-locall

[1 No localized flux in hypercharge direction
~ complete blow-up without breaking SM gauge
symmetry in principle possible
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I—Blusu:zyk et al. model

Main features

[] GUT symmetry breaking non-locall
[1 No localized flux in hypercharge direction

[] 4D gauge group:
SU3)e x SU)L x U()y x U(1)5 1 x [SUE3) x SU2)2 x U(1)]

[] massless spectrum

spectrum = 3 x generation + vector-like

[] various appealing features:
e vacua where exotics decouple at the linear level in SM
singlets
e non-trivial Yukawa couplings
e gauge-top unification P Hosteins, R. Kappl, M.R., K. Schmidt-Hoberg (2009)
e SU(D) relation Y+ = Yp (outalso for light generations)

for further discussion of this model see talks by M. Blaszczyk & S. Groot Nibbelink
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I—‘Anomulous’ Zf from the Blaszczyk et al. model

‘Anomalous’ Z& from the Blaszczyk et al. model

[ We succeeded in finding vacua with the *‘anomalous’ Z%
...e.g. by switching on the fields

(¢} = (X3,X4,X5,X4,X5,Y1,Y2,Z1,Z3,N1,Na,Ns,
N11,N17,N25,N26,Nog, N3s, N37, Nas, N47, N49, N51, N53, N5}
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[ We succeeded in finding vacua with the *‘anomalous’ Z%
...e.g. by switching on the fields
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O This gives us a vacuum with the remnant symnmetry
GSM X Zf X ZgaSty
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leads to rank 2 Y, and Y, Yukawa couplings
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‘Anomalous’ Z& from the Blaszczyk et al. model

[ We succeeded in finding vacua with the *‘anomalous’ Z%
...e.g. by switching on the fields

{¢i}) = (Xs,...}

O This gives us a vacuum with the remnant symnmetry
GSM X Zf X ZgaSty

© Unfortunately we cannot get rid of the extra Z5**%, which
leads to rank 2 Y, and Y, Yukawa couplings

)

[ Nevertheless: successful string embedding of 74 possible!
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I—‘Anomulous’ Zf from the Blaszczyk et al. model

‘Anomalous’ Z& from the Blaszczyk et al. model

[ We succeeded in finding vacua with the *‘anomalous’ Z%
...e.g. by switching on the fields

{pi} = {X5,...}
O This gives us a vacuum with the remnant symnmetry
GSM X Zf X ZgaSty

™

© Unfortunately we cannot get rid of the extra Z5**%, which
leads to rank 2 Y, and Y, Yukawa couplings

)

[ Nevertheless: successful string embedding of 74 possible!

O Why can we call the field configuration a ‘vacuum’?
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I—‘Anomulous’ Zf from the Blaszczyk et al. model

‘Anomalous’ Z& from the Blaszczyk et al. model

[ We succeeded in finding vacua with the *‘anomalous’ Z%
...e.g. by switching on the fields

{¢i}) = (Xs,...}

O This gives us a vacuum with the remnant symnmetry
GSM X Zf X ZgaSty

' Unfortunately we cannot get rid of the extra z5*%, which
leads to rank 2 Y, and Y, Yukawa couplings

@

[ Nevertheless: successful string embedding of 74 possible!
O Why can we call the field configuration a ‘vacuum’?

0 Two conditions:

e vanishing F ferms (no fime to discuss)
e vanishing D terms
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0 D-flat directions « holomorphic invariant monomials

O Practically all MSSM models obtained so far have an
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0 Need invariant monomials .7 = ¢7" --- ¢ which carry net
negative charge under the ‘anomalous’ U(1)
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0 Need invariant monomials .7 = ¢7" --- ¢ which carry net
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0 We find: charges of the monomials are quantized in a way
that a = integer - 872

R. Kappl, B. Petersen, M.R., R. Schieren & P Vaudrevange (to appearn)
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I—‘Anomulous’ Zf from the Blaszczyk et al. model

Excursion: FI monomial quantization

0 D-flat directions « holomorphic invariant monomials

O Practically all MSSM models obtained so far have an
‘anomalous’ U(1)

0 Need invariant monomials .7 = ¢7" --- ¢ which carry net
negative charge under the ‘anomalous’ U(1)

0 Non-perturbative terms can be written down

(////e—as — d)llll d);]\ . e—aS

0 We find: charges of the monomials are quantized in a way
that a = integer - 872

R. Kappl, B. Petersen, M.R., R. Schieren & P Vaudrevange (to appearn)

bottom-line:
FI monomials consistent with t"Hooft instantons
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= Non-perturbative violation of Zf

Non-perturbative violation of Z&

R. Kappl, B. Petersen, M.R., R. Schieren & P Vaudrevange (to appearn)

0 Instanton couplings ‘violate” Z%

ni ny -87% 8
e . e
é1 oy

~——
R
7% charge 0 Zy charge 2
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0 The model has an hidden sector with gauge group B
SU(V. = 3) and Nf = N, — 1 = 2 massless pairs in the 3 and 3
representation
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= Non-perturbative violation of Zf

Non-perturbative violation of Z&

R. Kappl, B. Petersen, M.R., R. Schieren & P Vaudrevange (to appearn)

0 Instanton couplings ‘violate” Z%

ni ny -87% 8
e . e
é1 oy

~——
R
7% charge 0 Zy charge 2

0 The model has an hidden sector with gauge group B
SU(V. = 3) and Nf = N, — 1 = 2 massless pairs in the 3 and 3
representation

O We find that the Affleck-Dine-Seiberg potential

1 1
A = 8
is also ZE covariant HexP ( 8 3N. — N¢ gz(ﬂ))]
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= Non-perturbative violation of Zf

Non-perturbative violation of Z&

R. Kappl, B. Petersen, M.R., R. Schieren & P Vaudrevange (to appearn)

0 Instanton couplings ‘violate” Z%

ni ny -87% 8
e . e
é1 oy

~——
R
7% charge 0 Zy charge 2

0 The model has an hidden sector with gauge group B
SU(V. = 3) and Nf = N, — 1 = 2 massless pairs in the 3 and 3
representation

O We find that the Affleck-Dine-Seiberg potential

1
ASNC_Nf Ne-Np
W =
ADS < det M

meson ole’rerminon’r]

is also ZE covariant
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= Non-perturbative violation of Zf

u from %

F. Brummer, R. Kappl, M.R., K. Schmidt-Hoberg (2009)

O Higher-dimensional gauge invariance ~ Kdahler potential

Antoniadis, Gava, Narain & Taylor (1994); Choi et al. (2003)

K = -In|[(Ts+7y) (247

)~ (H,+Hy) (Ha+ )|

complex
structure
modulus

modulus




"Anomalous" discrete symmetries Explicit string theory example

= Non-perturbative violation of Zf

u from %

F. Brummer, R. Kappl, M.R., K. Schmidt-Hoberg (2009)

O Higher-dimensional gauge invariance ~ Kdahler potential

K = —1n[(T3+T_3) (Z+Z)—

Higgs fields
= extra components
of gauge fields
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= Non-perturbative violation of Zf

u from %

F. Brummer, R. Kappl, M.R., K. Schmidt-Hoberg (2009)

O Higher-dimensional gauge invariance ~ Kdahler potential

K —1n[(T3+T_3) (Z+Z)—(Hu+ITd) (Hd+ITu)}

(134 T5) (2+2)]

(T + T)l (Z N Z) [|H, I + |Hyl* + (H,Hq + C.C.)]
3 3

1R

+
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= Non-perturbative violation of Zf

u from %

F. Brummer, R. Kappl, M.R., K. Schmidt-Hoberg (2009)

O Higher-dimensional gauge invariance ~ Kdahler potential

K —1n[(T3+T_3) (Z+Z)—(Hu+ITd) (Hd+ITu)}

(134 T5) (2+2)]

(T + T)l (Z N Z) [|H, I + |Hyl* + (H,Hq + C.C.)]
3 3

—ln[(T3 +T_3) (Z+Z)} + ﬁu|2+ a2+ ﬁﬁd+c.c.)}

1R

+

normalized

Higgs
fields
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= Non-perturbative violation of Zf

u from %

F. Brummer, R. Kappl, M.R., K. Schmidt-Hoberg (2009)
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"Anomalous" discrete symmetries Explicit string theory example
= Non-perturbative violation of Zf

u from %

F. Brummer, R. Kappl, M.R., K. Schmidt-Hoberg (2009)

O Higher-dimensional gauge invariance ~ Kdahler potential

K=~ -In [(Tg +T3) (Z+Z)} + [lIAful2 + |Hy? + (H,H; +c.c.)

O Consider now superpotential L
W = Q = independent of the monomial H, H,

0 K & 7 inleading order in ﬁuﬁd equivalent to

K = -ln [(T3 +T_3) (Z+Z)} + [lﬁu|2 +|IA{d|2}
W = exp(H,Hy)Q = QH, Hy+...

bottom-line:
u term proportional 1o (Q)
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= Non-perturbative violation of Zf

Non-perturbative violation of Z (cont'd)

0O Since H, Hy is proportional to (#') we will get a
holomorphic contribution to the u term of the right order
Kim & Nilles (1983); Casas & Munoz (1992)

e = mgj2

M3

O Whatever gives us (#') will be the order parameter for fo
breaking

. forinstance, one may replace/describe hidden sector
superpotential by gaugino condensate

Nilles (1982)

Wy = A1) =~ A®

« this is consistent with a non-perturbative breaking of 7%

o this assumes that the dilaton is fixed somehow (K&hler
stabilization .. .)
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= Non-perturbative violation of Zf

Non-perturbative violation of Z (cont'd)

0O Since H, Hy is proportional to (#') we will get a
holomorphic contribution to the u term of the right order

Kim & Nilles (1983); Casas & Munoz (1992)

~ e = Mgpe
2
M;

O Whatever gives us (#') will be the order parameter for fo
breaking

[0 Dimension 5 proton decay operators will have highly
suppressed coefficients

n <%/> ms/2
P
WQQQL ~ F%QQQL ~ Mp

1 s 1
ATPQQQL ~ 10 ATPQQQL
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= Non-perturbative violation of Zf

Non-perturbative violation of Z (cont'd)

0O Since H, Hy is proportional to (#') we will get a
holomorphic contribution to the u term of the right order

Kim & Nilles (1983); Casas & Munoz (1992)

~ e = Mgpe
2
M;

O Whatever gives us (#') will be the order parameter for fo
breaking

[0 Dimension 5 proton decay operators will have highly
suppressed coefficients

np @ _ g2 i N —15i
Y aqaL M{%,QQQL MPQQQL 10 MPQQQL

Mp

[ No R parity violation because Z£ has a non-anomalous
subgroup which is equivalent to matter parity



Summary

&

autloak



"Anomalous” discrete symmetries Summary

Summary — bottom-up

L A simple ‘anomalous’ Z§ symmetry can

e provide a solutfion to the i problem
e suppress proton decay operators



"Anomalous” discrete symmetries Summary

Summary — bottom-up

L A simple ‘anomalous’ Z§ symmetry can

e provide a solutfion to the i problem
e suppress proton decay operators

universal anomaly coefficients

universal charges for matter
forbid u @ free-level 3 ~ unique ZF

allow Yukawa couplings

allow Weinberg operator
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Summary — bottom-up

[] A simple ‘anomalous’ ZE symmetry can

e provide a solutfion to the i problem
e suppress proton decay operators

universal anomaly coefficients

universal charges for matter
forbid u @ free-level 3 ~ unique ZF

allow Yukawa couplings

dllow Weinberg operator

dim. 4 proton decay operators completely forbidden
fo ~ dim. 5 proton decay operators highly suppressed
1 Appears non-perturbatively
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Summary — top-down

[] Embedding into string theory allows us to
understand where the 7% symmetry comes from:
it may arise as a discrete remnant of Lorentz
symmetry in extra dimensions

[] Such symmetries are on the same footing as the
fundamental symmmetries C, P and T

[] Guided by the (unique) 7 symmetry we have constructed
a globally consistent string model with:

e exact MSSM spectrum

e non-trivial Yukawa couplings

exact matter parity

e U~ m3

e dimension five proton decay operators sufficiently suppressed






	Introduction
	MSSM: good features and open questions

	Outline
	Discrete symmetry for bold0mu mumu beamerouterthememiketreehooks and proton
	Proton hexality and local grand unification
	Origin of discrete symmetries
	From anomaly freedom to anomaly universality
	Unique Z4R symmetry
	Implications of Z4R

	Explicit string theory example
	The bold0mu mumu Z2Z2beamerouterthememiketreehooksZ2Z2Z2Z2 orbifold plane
	Blaszczyk et al. model
	`Anomalous' bold0mu mumu Z4RZ4RbeamerouterthememiketreehooksZ4RZ4RZ4RZ4R from the Blaszczyk et al. model
	Non-perturbative violation of bold0mu mumu Z4RZ4RbeamerouterthememiketreehooksZ4RZ4RZ4RZ4R

	Summary & outlook
	Summary


