Michael Ratz

Bonn, August 27, 2010

Based on:

- M. Blaszczyk, S. Groot Nibbelink, F. Ruehle, M.R., M. Trapletti & P. Vaudrevange, Phys. Lett. B 683, 340-348 (2010)
- F. Brümmer, R. Kappl, M.R. & K. Schmidt-Hoberg, JHEP 1004:006 (2010)
- R. Kappl, B. Petersen, M.R., R. Schieren & P. Vaudrevange, to appear
- H.M. Lee, S. Raby, G. Ross, M.R., R. Schieren & P. Vaudrevange, to appear

MSSM: good features and open questions

 Many studies focus on the minimal supersymmetric extension of the standard model (MSSM)

- Many studies focus on the minimal supersymmetric extension of the standard model (MSSM)
- Why?
 - ☺ stabilization of hierarchies

- Many studies focus on the minimal supersymmetric extension of the standard model (MSSM)
- J Why?
 - ☺ stabilization of hierarchies
 - \odot MSSM gauge coupling unification

- Many studies focus on the minimal supersymmetric extension of the standard model (MSSM)
- J Why?
 - ☺ stabilization of hierarchies
 - ◎ MSSM gauge coupling unification
 - radiative electroweak symmetry breaking

- Many studies focus on the minimal supersymmetric extension of the standard model (MSSM)
- J Why?
 - ☺ stabilization of hierarchies
 - \bigcirc MSSM gauge coupling unification
 - radiative electroweak symmetry breaking
 - 😳 dark matter candidate

- Many studies focus on the minimal supersymmetric extension of the standard model (MSSM)
- J Why?
 - ☺ stabilization of hierarchies
 - \bigcirc MSSM gauge coupling unification
 - radiative electroweak symmetry breaking
 - 😳 dark matter candidate
 - ☺ ...

- Many studies focus on the minimal supersymmetric extension of the standard model (MSSM)
- Why?
 - ☺ stabilization of hierarchies
 - MSSM gauge coupling unification
 - radiative electroweak symmetry breaking
 - 😊 dark matter candidate
 - ☺ ...
- However:
 - \bigcirc $\mu/B\mu$ problem

- Many studies focus on the minimal supersymmetric extension of the standard model (MSSM)
- Why?
 - ☺ stabilization of hierarchies
 - MSSM gauge coupling unification
 - radiative electroweak symmetry breaking
 - 😳 dark matter candidate
 - ☺ ...
- However:
 - \bigcirc $\mu/B\mu$ problem
 - 😔 dimension four and five proton decay operators

- Many studies focus on the minimal supersymmetric extension of the standard model (MSSM)
- Why?
 - ☺ stabilization of hierarchies
 - MSSM gauge coupling unification
 - radiative electroweak symmetry breaking
 - 😳 dark matter candidate
 - ☺ ...
- However:
 - \bigcirc $\mu/B\mu$ problem
 - 😔 dimension four and five proton decay operators
 - ⊖ CP and flavor problems

MSSM: good features and open questions

- Many studies focus on the minimal supersymmetric extension of the standard model (MSSM)
- Why?
 - ☺ stabilization of hierarchies
 - MSSM gauge coupling unification
 - radiative electroweak symmetry breaking
 - 😳 dark matter candidate
 - ☺ ...
- However:
 - \bigcirc $\mu/B\mu$ problem
 - 😔 dimension four and five proton decay operators
 - ⊖ CP and flavor problems

➡ Supersymmetry alone seems not to be enough

Outline

- Introduction & Motivation
- **2** A simple \mathbb{Z}_4^R symmetry can explain
 - suppressed μ term
 - proton stability
- **3** String theory realization
- 4 Summary

Discrete symmetry for μ and proton

Proton hexality and local grand unification

Proton decay operators

Gauge invariant superpotential terms up to order 4 include

$$\begin{aligned} \mathscr{W} &= \mu H_d H_u + \kappa_i L_i H_u \\ &+ Y_e^{ij} L_i H_d \overline{E}_j + Y_d^{ij} Q_i H_d \overline{D}_j + Y_u^{ij} Q_i H_u \overline{U}_j \\ &+ \lambda_{ijk} L_i L_j \overline{E}_k + \lambda'_{ijk} L_i Q_j \overline{D}_k + \lambda''_{ijk} \overline{U}_i \overline{D}_j \overline{D}_k \\ &+ \kappa_{ij}^{(0)} H_u L_i H_u L_j + \kappa_{ijk\ell}^{(1)} Q_i Q_j Q_k L_\ell + \kappa_{ijk\ell}^{(2)} \overline{U}_i \overline{U}_j \overline{D}_k \overline{E}_\ell \end{aligned}$$

Discrete symmetry for μ and proton

Proton hexality and local grand unification

Proton decay operators

Gauge invariant superpotential terms up to order 4 include

$$\begin{aligned} \mathcal{W} &= \mu H_d H_u + \kappa_i L_i H_u \\ &+ Y_e^{ij} L_i H_d \overline{E}_j + Y_d^{ij} Q_i H_d \overline{D}_j + Y_u^{ij} Q_i H_u \overline{U}_j \\ &+ \lambda_{ijk} L_i L_j \overline{E}_k + \lambda_{ik} L_i Q_j \overline{D}_k + \lambda_{ijk}^{\prime\prime} \overline{U}_i \overline{D}_j \overline{D}_k \\ &+ \kappa_{ij}^{(0)} H_u L_i H_u L_j + \kappa_{ik}^{(1)} Q_i Q_j Q_k L_\ell + \kappa_{ijk\ell}^{(2)} \overline{U}_i \overline{U}_j \overline{D}_k \overline{E}_\ell \end{aligned}$$
need to be strongly suppressed

Discrete symmetry for μ and proton

Proton hexality and local grand unification

Proton decay operators

Gauge invariant superpotential terms up to order 4 include

$$\begin{aligned} \mathcal{W} &= \mu H_d H_u + \kappa_i L_i H_u \\ &+ Y_e^{ij} L_i H_d \overline{E}_j + Y_d^{ij} Q_i H_d \overline{D}_j + Y_u^{ij} Q_i H_u \overline{U}_j \\ &+ \lambda_{ijk} L_i L_j \overline{E}_k + \lambda_{ijk} L_i Q_j \overline{D}_k + \lambda_{ijk}^{\prime\prime\prime} \overline{U}_i \overline{D}_j \overline{D}_k \\ &+ \kappa_{ij}^{(0)} H_u L_k H_u L_j + \kappa_{ijk} Q_i Q_j Q_k L_\ell + \kappa_{ijk\ell}^{(2)} \overline{U}_i \overline{U}_j \overline{D}_k \overline{E}_\ell \end{aligned}$$
forbidden by matter parity

Farrar & Fayet (1978); Dimopoulos, Raby & Wilczek (1981)

Discrete symmetry for μ and proton

Proton hexality and local grand unification

Proton decay operators

Gauge invariant superpotential terms up to order 4 include

$$\begin{aligned} \mathscr{W} &= \mu H_d H_u + \kappa_i L_i H_u \\ &+ Y_e^{ij} L_i H_d \overline{E}_j + Y_d^{ij} Q_i H_d \overline{D}_j + Y_u^{ij} Q_i H_u \overline{U}_j \\ &+ \lambda_{ijk} L_i L_j \overline{E}_k + \lambda'_{ijk} L_i Q_j \overline{D}_k + \lambda''_{ijk} \overline{U}_i \overline{D}_j \overline{D}_k \\ &+ \kappa_{ij}^{(0)} H_u L_i H_u L_j + \kappa_{ijk\ell}^{(1)} Q_i Q_j Q_k L_\ell + \kappa_{ijk\ell}^{(2)} \overline{U}_i \overline{U}_j \overline{D}_k \overline{E}_\ell \end{aligned}$$
forbidden by baryon triality

Ibáñez & Ross (1992)

Discrete symmetry for μ and proton

Proton hexality and local grand unification

Proton decay operators

Gauge invariant superpotential terms up to order 4 include

$$\begin{aligned} \mathscr{W} &= \mu H_d H_u + \kappa_i L_i H_u \\ &+ Y_e^{ij} L_i H_d \overline{E}_j + Y_d^{ij} Q_i H_d \overline{D}_j + Y_u^{ij} Q_i H_u \overline{U}_j \\ &+ \lambda_{ijk} L_i L_j \overline{E}_k + \lambda_{ijk} L_i Q_j \overline{D}_k + \lambda_{ijk}^{\prime\prime} \overline{U}_i \overline{D}_j \overline{D}_k \\ &+ \kappa_{ij}^{(0)} H_u L_i H_u L_j + \kappa_{ijk}^{(1)} Q_i Q_j Q_k L_\ell + \kappa_{ijk\ell}^{(2)} \overline{U}_i \overline{U}_j \overline{D}_k \overline{E}_\ell \end{aligned}$$
forbidden by proton hexality

Dreiner, Luhn & Thormeier (2006)

Proton hexality = matter parity + baryon triality

Ibáñez & Ross (1992) Dreiner, Luhn & Thormeier (2006) Discrete symmetry for μ and proton

Proton hexality and local grand unification

Proton hexality

Ibáñez & Ross (1992); Dreiner, Luhn & Thormeier (2006)

	Q	$ar{U}$	\bar{D}	L	\bar{E}	H_u	H_d	$\bar{\nu}$
$\mathbb{Z}_2^{\mathcal{M}}$	1	1	1	1	1	0	0	1
$\overline{B_3}$	0	-1	1	-1	2	1	-1	0
P_6	0	1	-1	-2	1	-1	1	3

Discrete symmetry for μ and proton

Proton hexality and local grand unification

Proton hexality

Ibáñez & Ross (1992); Dreiner, Luhn & Thormeier (2006)

	Q	$ar{U}$	\bar{D}	L	\bar{E}	H_u	H_d	$\bar{\nu}$
$\mathbb{Z}_2^{\mathcal{M}}$	1	1	1	1	1	0	0	1
$\overline{B_3}$	0	-1	1	-1	2	1	-1	0
P_6	0	1	-1	-2	1	-1	1	3

- Appealing features
 - forbids dimension four and five proton decay operators

Proton hexality

Ibáñez & Ross (1992); Dreiner, Luhn & Thormeier (2006)

	Q	$ar{U}$	\bar{D}	L	\bar{E}	H_u	H_d	$\bar{\nu}$
$\mathbb{Z}_2^{\mathcal{M}}$	1	1	1	1	1	0	0	1
$\overline{B_3}$	0	-1	1	-1	2	1	-1	0
P_6	0	1	-1	-2	1	-1	1	3

- Appealing features
 - \odot forbids dimension four and five proton decay operators
 - \odot allows Yukawa couplings, Weinberg operator $\kappa_{ij}^{(0)} H_u L_i H_u L_j$ and μ term

Proton hexality

Ibáñez & Ross (1992); Dreiner, Luhn & Thormeier (2006)

	Q	$ar{U}$	\bar{D}	L	\bar{E}	H_u	H_d	$\bar{\nu}$
$\mathbb{Z}_2^{\mathcal{M}}$	1	1	1	1	1	0	0	1
$\overline{B_3}$	0	-1	1	-1	2	1	-1	0
P_6	0	1	-1	-2	1	-1	1	3

- Appealing features
 - \odot forbids dimension four and five proton decay operators
 - \odot allows Yukawa couplings, Weinberg operator $\kappa_{ij}^{(0)} H_u L_i H_u L_j$ and μ term
 - © unique anomaly-free symmetry with the above features

Discrete symmetry for μ and proton

Proton hexality and local grand unification

Proton hexality

Ibáñez & Ross (1992); Dreiner, Luhn & Thormeier (2006)

	Q	$ar{U}$	\bar{D}	L	\bar{E}	H_u	H_d	$\bar{\nu}$
$\mathbb{Z}_2^{\mathcal{M}}$	1	1	1	1	1	0	0	1
$\overline{B_3}$	0	-1	1	-1	2	1	-1	0
P_6	0	1	-1	-2	1	-1	1	3

- Appealing features
 - \odot forbids dimension four and five proton decay operators
 - \odot allows Yukawa couplings, Weinberg operator $\kappa_{ij}^{(0)} H_u L_i H_u L_j$ and μ term
 - © unique anomaly-free symmetry with the above features
- However:
 - Ont consistent with unification for matter (i.e. inconsistent with universal discrete charges for all matter fields)

Proton hexality

Ibáñez & Ross (1992); Dreiner, Luhn & Thormeier (2006)

 \sim Proton hexality P_6 = matter parity $\mathbb{Z}_2^{\mathcal{M}} \times$ baryon triality B_3

	Q	$ar{U}$	\bar{D}	L	\bar{E}	H_u	H_d	$\bar{\nu}$
$\mathbb{Z}_2^{\mathcal{M}}$	1	1	1	1	1	0	0	1
$\overline{B_3}$	0	-1	1	-1	2	1	-1	0
P_6	0	1	-1	-2	1	-1	1	3

- Appealing features
 - \odot forbids dimension four and five proton decay operators
 - ${}^{\bigcirc}$ allows Yukawa couplings, Weinberg operator ${\bf \kappa}_{ij}^{(0)}H_uL_iH_uL_j$ and μ term
 - unique anomaly-free symmetry with the above features
- However:
 - 😑 not consistent with unification for matter
 - 🔗 embedding into string theory not yet fully convincing

Förste, Nilles, Ramos-Sánchez, Vaudrevange (2010)

Discrete symmetry for μ and proton

Proton hexality and local grand unification

Local grand unification (using small extra dimensions)

Proton hexality

Disturbing aspects of proton hexality
 not consistent with (local grand) unification for matter

- Disturbing aspects of proton hexality
 - $\ensuremath{{\odot}}$ not consistent with (local grand) unification for matter
 - 😑 embedding into string theory not yet fully convincing

- Disturbing aspects of proton hexality
 - $\ensuremath{{\odot}}$ not consistent with (local grand) unification for matter
 - 😔 embedding into string theory not yet fully convincing
 - \bigcirc does not address μ problem

- Disturbing aspects of proton hexality
 - 🐵 not consistent with (local grand) unification for matter
 - 😔 embedding into string theory not yet fully convincing
 - \bigcirc does not address μ problem

$$\begin{aligned} \mathcal{W} &= \mu H_d H_u + \kappa_i L_i H_u \\ &+ Y_e^{ij} L_i H_d \overline{E}_j + Y_d^{ij} Q_i H_d \overline{D}_j + Y_u^{ij} Q_i H_u \overline{U}_j \\ &+ \lambda_{ijk} L_i L_j \overline{E}_k + \lambda_{ijk} L_i Q_j \overline{D}_k + \lambda_{ijk}^{\prime\prime} \overline{U}_i \overline{D}_j \overline{D}_k \\ &+ \kappa_{ij}^{(0)} H_u L_i H_u L_j + \kappa_{ijk} Q_i Q_j Q_k L_\ell + \kappa_{ijk\ell}^{(2)} \overline{U}_i \overline{U}_j \overline{D}_k \overline{E}_\ell + \dots \end{aligned}$$
need to be strongly suppressed

- Disturbing aspects of proton hexality
 - 🙃 not consistent with (local grand) unification for matter
 - 😔 embedding into string theory not yet fully convincing
 - \bigcirc does not address μ problem

Origin of discrete symmetries

Where can the discrete symmetries come from?

- Where can the discrete symmetries come from?
- Possible answer: higher dimensions and strings

- Where can the discrete symmetries come from?
- Possible answer: higher dimensions and strings
- What does string theory give us?

- Where can the discrete symmetries come from?
- Possible answer: higher dimensions and strings
- What does string theory give us?
 - unification with gravity

- Where can the discrete symmetries come from?
- Possible answer: higher dimensions and strings
- What does string theory give us?
 - unification with gravity
 - extra gauge symmetries

- Where can the discrete symmetries come from?
- Possible answer: higher dimensions and strings
- What does string theory give us?
 - unification with gravity
 - extra gauge symmetries
 - discrete symmetries

- Where can the discrete symmetries come from?
- Possible answer: higher dimensions and strings
- What does string theory give us?
 - unification with gravity
 - extra gauge symmetries
 - discrete symmetries
 - Green-Schwarz anomaly cancellation
Origin of discrete symmetries

- Where can the discrete symmetries come from?
- Possible answer: higher dimensions and strings
- What does string theory give us?
 - unification with gravity
 - extra gauge symmetries
 - discrete symmetries
 - Green-Schwarz anomaly cancellation
 - MSSM models with Local Grand Unification

Origin of discrete symmetries

- Where can the discrete symmetries come from?
- Possible answer: higher dimensions and strings
- What does string theory give us?
 - unification with gravity
 - extra gauge symmetries
 - discrete symmetries
 - Green-Schwarz anomaly cancellation
 - MSSM models with Local Grand Unification
 - . . .

Origin of discrete symmetries

- Where can the discrete symmetries come from?
- Possible answer: higher dimensions and strings
- What does string theory give us?
 - unification with gravity
 - extra gauge symmetries
 - discrete symmetries
 - Green-Schwarz anomaly cancellation
 - MSSM models with Local Grand Unification
 - ...
- → Two prejudices from string model building:
 - 1 Local Grand Unification
 - 2 `anomalous' discrete symmetries whose anomalies are canceled the Green-Schwarz mechanism

Discrete symmetry for μ and proton

From anomaly freedom to anomaly universality

From anomaly freedom to anomaly universality

Dine & Graesser (2004); Araki, Kobayashi, Kubo, Ramos-Sánchez, M.R. & Vaudrevange (2008)

Important lesson from explicit string-derived (MSSM) models

'anomalous' discrete symmetries:

Anomalies of discrete symmetries canceled by Green-Schwarz mechanism

Discrete symmetry for μ and proton

From anomaly freedom to anomaly universality

From anomaly freedom to anomaly universality

Dine & Graesser (2004); Araki, Kobayashi, Kubo, Ramos-Sánchez, M.R. & Vaudrevange (2008)

Important lesson from explicit string-derived (MSSM) models

'anomalous' discrete symmetries:

Anomalies of discrete symmetries canceled by Green-Schwarz mechanism

Anomaly freedom gets relaxed to anomaly universality

From anomaly freedom to anomaly universality

Dine & Graesser (2004); Araki, Kobayashi, Kubo, Ramos-Sánchez, M.R. & Vaudrevange (2008)

Important lesson from explicit string-derived (MSSM) models

'anomalous' discrete symmetries:

Anomalies of discrete symmetries canceled by Green-Schwarz mechanism

Anomaly freedom gets relaxed to anomaly universality

Example: anomaly coefficients for \mathbb{Z}_N

$$A_{G^2 - \mathbb{Z}_N} = \sum_{f} \ell^{(f)} \cdot q^{(f)}$$
$$A_{\operatorname{grav}^2 - \mathbb{Z}_N} = \sum_{m} q^{(m)}$$

From anomaly freedom to anomaly universality

Dine & Graesser (2004); Araki, Kobayashi, Kubo, Ramos-Sánchez, M.R. & Vaudrevange (2008)

Important lesson from explicit string-derived (MSSM) models

'anomalous' discrete symmetries:

Anomalies of discrete symmetries canceled by Green-Schwarz mechanism

Anomaly freedom gets relaxed to anomaly universality

From anomaly freedom to anomaly universality

Dine & Graesser (2004); Araki, Kobayashi, Kubo, Ramos-Sánchez, M.R. & Vaudrevange (2008)

Important lesson from explicit string-derived (MSSM) models

'anomalous' discrete symmetries:

Anomalies of discrete symmetries canceled by Green-Schwarz mechanism

Anomaly freedom gets relaxed to anomaly universality

From anomaly freedom to anomaly universality

Dine & Graesser (2004); Araki, Kobayashi, Kubo, Ramos-Sánchez, M.R. & Vaudrevange (2008)

Important lesson from explicit string-derived (MSSM) models

'anomalous' discrete symmetries:

Anomalies of discrete symmetries canceled by Green-Schwarz mechanism

Anomaly freedom gets relaxed to anomaly universality

Example: anomaly coefficients for \mathbb{Z}_N

$$A_{G^2-\mathbb{Z}_N} = \sum_{f} \ell^{(f)} \cdot q^{(f)} \stackrel{!}{=} 0 \mod N(/2)$$
$$A_{\operatorname{grav}^2-\mathbb{Z}_N} = \sum_{m} q^{(m)} \stackrel{!}{=} 0 \mod N(/2)$$

anomaly freedom:

all A coefficients vanish

From anomaly freedom to anomaly universality

Dine & Graesser (2004); Araki, Kobayashi, Kubo, Ramos-Sánchez, M.R. & Vaudrevange (2008)

Important lesson from explicit string-derived (MSSM) models

'anomalous' discrete symmetries:

Anomalies of discrete symmetries canceled by Green-Schwarz mechanism

➡ Anomaly freedom gets relaxed to anomaly universality

Example: anomaly coefficients for \mathbb{Z}_N

$$A_{G^2 - \mathbb{Z}_N} = \sum_{f} \ell^{(f)} \cdot q^{(f)} \stackrel{!}{=} \gamma \mod N(/2)$$
$$A_{\operatorname{grav}^2 - \mathbb{Z}_N} = \sum_{m} q^{(m)} \stackrel{!}{=} \gamma \mod N(/2)$$

anomaly freedom:

all A coefficients vanish

anomaly universality: all A coefficients equal

Discrete symmetry for μ and proton Unique \mathbb{Z}_{4}^{R} symmetry

- Assumptions:
 - anomaly universality

- Assumptions:
 - anomaly universality
 - universal charges for quarks and leptons

- Assumptions:
 - anomaly universality
 - universal charges for quarks and leptons
 - μ term forbidden at perturbative level

- Assumptions:
 - anomaly universality
 - universal charges for quarks and leptons
 - μ term forbidden at perturbative level
 - Yukawa couplings and Weinberg neutrino mass operator allowed

- Assumptions:
 - anomaly universality
 - universal charges for quarks and leptons
 - μ term forbidden at perturbative level
 - Yukawa couplings and Weinberg neutrino mass operator allowed
- ${\mathscr T}$ Want to prove: There is a unique \mathbb{Z}_4^R symmetry in the MSSM with these features

Claim 1: it has to be an R symmetry

Anomaly coefficients for non-R symmetry with SU(5) relations for matter charges

$$\begin{aligned} A_{\mathrm{SU}(3)^2 - \mathbb{Z}_N} &= \frac{9}{2} q_{10} + \frac{3}{2} q_{\overline{5}} \\ A_{\mathrm{SU}(2)^2 - \mathbb{Z}_N} &= \frac{9}{2} q_{10} + \frac{3}{2} q_{\overline{5}} + \frac{1}{2} \left(q_{H_u} + q_{H_d} \right) \end{aligned}$$

Claim 1: it has to be an R symmetry

Anomaly coefficients for non-R symmetry with SU(5) relations for matter charges

$$\begin{aligned} A_{\mathrm{SU}(3)^2 - \mathbb{Z}_N} &= \frac{9}{2} q_{10} + \frac{3}{2} q_{\overline{5}} \\ A_{\mathrm{SU}(2)^2 - \mathbb{Z}_N} &= \frac{9}{2} q_{10} + \frac{3}{2} q_{\overline{5}} + \frac{1}{2} \left(q_{H_u} + q_{H_d} \right) \end{aligned}$$

Anomaly universality

Claim 1: it has to be an R symmetry

Anomaly coefficients for non-R symmetry with SU(5) relations for matter charges

$$\begin{aligned} A_{\mathrm{SU}(3)^2 - \mathbb{Z}_N} &= \frac{9}{2} q_{10} + \frac{3}{2} q_{\overline{5}} \\ A_{\mathrm{SU}(2)^2 - \mathbb{Z}_N} &= \frac{9}{2} q_{10} + \frac{3}{2} q_{\overline{5}} + \frac{1}{2} \left(q_{H_u} + q_{H_d} \right) \end{aligned}$$

Anomaly universality

bottom-line:

non- $R \ \mathbb{Z}_N$ symmetry cannot forbid μ term

Claim 2: Higgs discrete charges have to vanish

 \ll Assumption: quarks and leptons have universal charge r

Claim 2: Higgs discrete charges have to vanish

- < Assumption: quarks and leptons have universal charge r
- \ll u- and d-type Yukawas allowed requires that

 $2r + r_{H_u} = 2 \mod N$ and $2r + r_{H_d} = 2 \mod N$

Claim 2: Higgs discrete charges have to vanish

- < Assumption: quarks and leptons have universal charge r
- \gg u- and d-type Yukawas allowed requires that

 $2r + r_{H_u} = 2 \mod N$ and $2r + r_{H_d} = 2 \mod N$

 $\sim r_{H_u} - r_{H_d} = 0 \mod N$

Claim 2: Higgs discrete charges have to vanish

- Assumption: quarks and leptons have universal charge r
- u- and d-type Yukawas allowed requires that

 $2r + r_{H_u} = 2 \mod N$ and $2r + r_{H_d} = 2 \mod N$

 $\sim r_{H_u} - r_{H_d} = 0 \mod N$

u-type Yukawa and Weinberg operator allowed requires that

 $2r + r_{H_n} = 2 \mod N$ and $2r + 2r_{H_n} = 2 \mod N$

Claim 2: Higgs discrete charges have to vanish

- < Assumption: quarks and leptons have universal charge r
- u- and d-type Yukawas allowed requires that

 $2r + r_{H_u} = 2 \mod N$ and $2r + r_{H_d} = 2 \mod N$

 $\sim r_{H_u} - r_{H_d} = 0 \mod N$

- u-type Yukawa and Weinberg operator allowed requires that
 - $2r + r_{H_v} = 2 \mod N$ and $2r + 2r_{H_v} = 2 \mod N$

 $\sim r_{H_u} = 0 \mod N$

Claim 2: Higgs discrete charges have to vanish

- Assumption: quarks and leptons have universal charge r
- \ll u- and d-type Yukawas allowed requires that

 $2r + r_{H_u} = 2 \mod N$ and $2r + r_{H_d} = 2 \mod N$

 $\sim r_{H_u} - r_{H_d} = 0 \mod N$

u-type Yukawa and Weinberg operator allowed requires that

 $2r + r_{H_u} = 2 \mod N$ and $2r + 2r_{H_u} = 2 \mod N$

 $\sim r_{H_u} = 0 \mod N$

bottom-line: $r_{H_u} = r_{H_d} = 0 \mod N$

Claim 3: The order has to be 4 (or 2)

Anomaly coefficients for Abelian discrete R symmetry

$$egin{array}{rcl} A_{{
m SU}(3)^2-\mathbb{Z}_N^R} &=& 6(r-1)+3 &=& 6r-3 \ A_{{
m SU}(2)^2-\mathbb{Z}_N^R} &=& 6r+rac{1}{2}\left(r_{H_u}+r_{H_d}
ight)-5 \end{array}$$

Claim 3: The order has to be 4 (or 2)

Anomaly coefficients for Abelian discrete R symmetry

Anomaly universality

$$egin{aligned} A_{\mathrm{SU}(2)^2-\mathbb{Z}_N^R} &-A_{\mathrm{SU}(3)^2-\mathbb{Z}_N^R} &= 0 \ && & \sim & r_{H_u}+r_{H_d} &= 4 \mod \left\{ egin{aligned} 2N & ext{for N odd} \ N & ext{for N oven} \end{array}
ight. \end{aligned}$$

Claim 3: The order has to be 4 (or 2)

Anomaly coefficients for Abelian discrete R symmetry

Anomaly universality

 $<\!\!\!>$ but we know already that r_{H_u} = r_{H_d} = $0 \mod N$

Claim 3: The order has to be 4 (or 2)

Anomaly coefficients for Abelian discrete R symmetry

Anomaly universality

$$\begin{array}{rcl} A_{\mathrm{SU}(2)^2-\mathbb{Z}_N^R}-A_{\mathrm{SU}(3)^2-\mathbb{Z}_N^R}&=&0\\ &\frown&r_{H_u}+r_{H_d}\ =&4\ \mathrm{mod}\ \left\{\begin{array}{ll} 2N & \mathrm{for}\ N\ \mathrm{odd}\\ N & \mathrm{for}\ N\ \mathrm{even}\end{array}\right.\end{array}$$

 $<\!\!\!>$ but we know already that r_{H_u} = r_{H_d} = $0 \mod N$

bottom-line:	
$N=2 \ { m or} \ N=4$	

Claim 3: The order has to be 4 (or 2)

Anomaly coefficients for Abelian discrete R symmetry

Anomaly universality

 $A_{SU(2)^2 - \mathbb{Z}_N^R} - \left\{ \begin{array}{c} \text{however: there is no meaningful } \mathbb{Z}_2^R \text{ symmetry} \\ \text{cf. e.g. Dine & Kehaylas (2009)} \end{array} \right.$

 $<\!\!\!>$ but we know already that r_{H_u} = r_{H_d} = $0 \mod N$

bottom-line: N = 2 or N = 4

Claim 3: The order has to be 4 (or 2)

Anomaly coefficients for Abelian discrete R symmetry

Anomaly universality

$$\begin{array}{rcl} A_{\mathrm{SU}(2)^2-\mathbb{Z}_N^R}-A_{\mathrm{SU}(3)^2-\mathbb{Z}_N^R}&=&0\\ &\frown&r_{H_u}+r_{H_d}\ =&4\ \mathrm{mod}\ \left\{\begin{array}{ll} 2N & \mathrm{for}\ N\ \mathrm{odd}\\ N & \mathrm{for}\ N\ \mathrm{even}\end{array}\right.\end{array}$$

 $<\!\!\!>$ but we know already that r_{H_u} = r_{H_d} = $0 \mod N$

bottom-line:	
N = 4 unique	

- We know:
 - it is a \mathbb{Z}_4^R symmetry
 - Higgs fields have charge $r_{H_u} = r_{H_d} = 0 \mod 4$

- We know:
 - it is a \mathbb{Z}_4^R symmetry
 - Higgs fields have charge $r_{H_u} = r_{H_d} = 0 \mod 4$
- → Yukawa couplings and Weinberg operator allowed \sim matter has charge r = 1

- We know:
 - it is a \mathbb{Z}_4^R symmetry
 - Higgs fields have charge $r_{H_u} = r_{H_d} = 0 \mod 4$
- → Yukawa couplings and Weinberg operator allowed \sim matter has charge r = 1
- Consistent with anomaly universality

$$\begin{array}{rcl} A_{\mathrm{SU}(3)^2-\mathbb{Z}_N^R} &=& 6(r-1)+3 \ =& 6r-3 \ =& 1 \mod 4/2 \\ \\ A_{\mathrm{SU}(2)^2-\mathbb{Z}_N^R} &=& 6r+\frac{1}{2}\left(r_{H_u}+r_{H_d}\right)-5 \ =& 1 \mod 4/2 \\ \\ A_{\mathrm{grav}^2-\mathbb{Z}_N^R} &=& -61+48r+2r_{H_u}+2r_{H_d} \ =& 1 \mod 4/2 \end{array}$$

- We know:
 - it is a \mathbb{Z}_4^R symmetry
 - Higgs fields have charge $r_{H_u} = r_{H_d} = 0 \mod 4$
- → Yukawa couplings and Weinberg operator allowed \sim matter has charge r = 1
- Consistent with anomaly universality

$$\begin{array}{rcl} A_{\mathrm{SU}(3)^2-\mathbb{Z}_N^R} &=& 6(r-1)+3 \ =& 6r-3 \ =& 1 \mod 4/2 \\ \\ A_{\mathrm{SU}(2)^2-\mathbb{Z}_N^R} &=& 6r+\frac{1}{2}\left(r_{H_u}+r_{H_d}\right)-5 \ =& 1 \mod 4/2 \\ \\ A_{\mathrm{grav}^2-\mathbb{Z}_N^R} &=& -61+48r+2r_{H_u}+2r_{H_d} \ =& 1 \mod 4/2 \end{array}$$

Implications of \mathbb{Z}_4^R

Gauge invariant superpotential terms up to order 4

$$\begin{aligned} \mathcal{W} &= \mu H_d H_u + \kappa_i L_i H_u \\ &+ Y_e^{ij} L_i H_d \overline{E}_j + Y_d^{ij} Q_i H_d \overline{D}_j + Y_u^{ij} Q_i H_u \overline{U}_j \\ &+ \lambda_{ijk} L_i L_j \overline{E}_k + \lambda'_{ijk} L_i Q_j \overline{D}_k + \lambda''_{ijk} \overline{U}_i \overline{D}_j \overline{D}_k \\ &+ \kappa_{ij}^{(0)} H_u L_i H_u L_j + \kappa_{ijk\ell}^{(1)} Q_i Q_j Q_k L_\ell + \kappa_{ijk\ell}^{(2)} \overline{U}_i \overline{U}_j \overline{D}_k \overline{E}_\ell + \dots \end{aligned}$$

Implications of \mathbb{Z}_4^R

Gauge invariant superpotential terms up to order 4

$$\begin{aligned} \mathscr{W} &= \mu H_d H_u + \kappa_i L_i H_u \\ &+ Y_e^{ij} L_i H_d \overline{E}_j + Y_d^{ij} Q_i H_d \overline{D}_j + Y_u^{ij} Q_i H_u \overline{U}_j \\ &+ \lambda_{ijk} L_i L_i \overline{E}_k + \lambda_{ik} L_i Q_j \overline{D}_k + \lambda_{ijk}^{\prime\prime} \overline{U}_i \overline{D}_j \overline{D}_k \\ &+ \kappa_{ij}^{(0)} H_u L_i H_u L_j + \lambda_{ik\ell}^{(1)} Q_i Q_j Q_k L_\ell + \kappa_{ijk\ell}^{(2)} \overline{U}_i \overline{U}_j \overline{D}_k \overline{E}_\ell + \dots \end{aligned}$$
forbidden at the perturbative level
$$\begin{aligned} \mathcal{W} &= \mu H_d H_u + \kappa_i L_i H_u \\ &+ Y_e^{ij} L_i H_d \overline{E}_j + Y_d^{ij} Q_i H_d \overline{D}_j + Y_u^{ij} Q_i H_u \overline{U}_j \\ &+ \lambda_{ijk} L_i L_j \overline{E}_k + \lambda'_{ijk} L_i Q_j \overline{D}_k + \lambda''_{ijk} \overline{U}_i \overline{D}_j \overline{D}_k \\ &+ \kappa_{ij}^{(0)} H_u L_i H_u L_j + \kappa_{ijk\ell}^{(1)} Q_i Q_j Q_k L_\ell + \kappa_{ijk\ell}^{(2)} \overline{U}_i \overline{U}_j \overline{D}_k \overline{E}_\ell + \dots \end{aligned}$$

$$\begin{split} \mathscr{W} &= \mu H_d H_u + \kappa_i L_i H_u \\ &+ Y_{e}^{ij} L_i H_d \overline{E}_j + Y_d^{ij} Q_i H_d \overline{D}_j + Y_u^{ij} Q_i H_u \overline{U}_j \\ &+ \lambda_{ijk} L_i L_j \overline{E}_k + \lambda'_{ijk} L_i Q_j \overline{D}_k + \lambda''_{ijk} \overline{U}_i \overline{D}_j \overline{D}_k \\ &+ \kappa_{ij}^{(0)} H_u L_i H_k L_j + \kappa_{ijk\ell}^{(1)} Q_i Q_j Q_k L_\ell + \kappa_{ijk\ell}^{(2)} \overline{U}_i \overline{U}_j \overline{D}_k \overline{E}_\ell + \dots \end{split}$$

$$\begin{aligned} \mathscr{W} &= \mu H_d H_u + \kappa_i L_i H_u \\ &+ Y_e^{ij} L_i H_d \overline{E}_j + Y_d^{ij} Q_i H_d \overline{D}_j + Y_u^{ij} Q_i H_u \overline{U}_j \\ &+ \lambda_{ijk} L_i L_j \overline{E}_k + \lambda'_{ijk} L_i Q_j \overline{D}_k + \lambda''_{ijk} \overline{U}_i \overline{D}_j \overline{D}_k \\ &+ \kappa_{ij}^{(0)} H_u L_i H_u L_j + \kappa_{ijk\ell}^{(1)} Q_i Q_j Q_k L_\ell + \kappa_{ijk\ell}^{(2)} \overline{U}_i \overline{U}_j \overline{D}_k \overline{E}_\ell + \dots \end{aligned}$$

An explicit

string-derived

example

...string theory allows us to understand the non-perturbative `violation' of `anomalous' discrete symmetries

Explicit string theory example

The \mathbb{Z}_2 orbifold plane

The \mathbb{Z}_2 orbifold plane

2D space with SO(2) rotational symmetry

Explicit string theory example

The \mathbb{Z}_2 orbifold plane

Explicit string theory example $_$ The \mathbb{Z}_2 orbifold plane

Explicit string theory example $_$ The \mathbb{Z}_2 orbifold plane

Explicit string theory example $_$ The \mathbb{Z}_2 orbifold plane

Explicit string theory example $_$ The \mathbb{Z}_2 orbifold plane

Explicit string theory example $_$ The \mathbb{Z}_2 orbifold plane

Explicit string theory example

The \mathbb{Z}_2 orbifold plane

Explicit string theory example

The \mathbb{Z}_2 orbifold plane

Explicit string theory example

The \mathbb{Z}_2 orbifold plane

Explicit string theory example

The \mathbb{Z}_2 orbifold plane

Explicit string theory example

The \mathbb{Z}_2 orbifold plane

Explicit string theory example

The \mathbb{Z}_2 orbifold plane

Explicit string theory example

The \mathbb{Z}_2 orbifold plane

Explicit string theory example

The \mathbb{Z}_2 orbifold plane

Explicit string theory example

The \mathbb{Z}_2 orbifold plane

Explicit string theory example

The \mathbb{Z}_2 orbifold plane

Explicit string theory example

The \mathbb{Z}_2 orbifold plane

Explicit string theory example

The \mathbb{Z}_2 orbifold plane

Explicit string theory example

The \mathbb{Z}_2 orbifold plane

Explicit string theory example

The \mathbb{Z}_2 orbifold plane

Explicit string theory example

The \mathbb{Z}_2 orbifold plane

Explicit string theory example

The \mathbb{Z}_2 orbifold plane

Explicit string theory example

The \mathbb{Z}_2 orbifold plane

Explicit string theory example

The \mathbb{Z}_2 orbifold plane

Explicit string theory example

The \mathbb{Z}_2 orbifold plane

Explicit string theory example

The \mathbb{Z}_2 orbifold plane

Explicit string theory example

The \mathbb{Z}_2 orbifold plane

Explicit string theory example

The \mathbb{Z}_2 orbifold plane

Explicit string theory example

The \mathbb{Z}_2 orbifold plane

Explicit string theory example

The \mathbb{Z}_2 orbifold plane

Explicit string theory example

The \mathbb{Z}_2 orbifold plane

\mathbb{Z}_2 orbifold pillow

The \mathbb{Z}_2 orbifold plane

 ${\mathscr T}$ Orbifolds with ${\mathbb Z}_2$ plane have three important properties:

Explicit string theory example \Box The \mathbb{Z}_2 orbifold plane

- ${}^{\sim}$ Orbifolds with \mathbb{Z}_2 plane have three important properties:
- 1 \mathbb{Z}_4^R symmetry arises as a remnant of the Lorentz group in compact dimensions

Explicit string theory example \Box The \mathbb{Z}_2 orbifold plane

- ${}^{\sim}$ Orbifolds with \mathbb{Z}_2 plane have three important properties:
- 1 \mathbb{Z}_4^R symmetry arises as a remnant of the Lorentz group in compact dimensions

Explicit string theory example \Box The \mathbb{Z}_2 orbifold plane

- ${}^{\sim}$ Orbifolds with \mathbb{Z}_2 plane have three important properties:
- 1 \mathbb{Z}_4^R symmetry arises as a remnant of the Lorentz group in compact dimensions

- ${}^{\sim}$ Orbifolds with \mathbb{Z}_2 plane have three important properties:
- 1 \mathbb{Z}_4^R symmetry arises as a remnant of the Lorentz group in compact dimensions
- Orbifold GUT limit with SU(6) bulk symmetry gives us gauge-top unification

The \mathbb{Z}_2 orbifold plane

- ${}^{\sim}$ Orbifolds with \mathbb{Z}_2 plane have three important properties:
- 1 \mathbb{Z}_4^R symmetry arises as a remnant of the Lorentz group in compact dimensions
- Orbifold GUT limit with SU(6) bulk symmetry gives us gauge-top unification

P. Hosteins, R. Kappl, M.R., K. Schmidt-Hoberg (2009)

Orbifold GUT limit with SU(6) bulk symmetry gives us the proportionality between μ term and expectation value of the superpotential (*W*)

F. Brümmer, R. Kappl, M.R., K. Schmidt-Hoberg (2009)

The \mathbb{Z}_2 orbifold plane

- ${}^{\sim}$ Orbifolds with \mathbb{Z}_2 plane have three important properties:
- 1 \mathbb{Z}_4^R symmetry arises as a remnant of the Lorentz group in compact dimensions
- Orbifold GUT limit with SU(6) bulk symmetry gives us gauge-top unification

P. Hosteins, R. Kappl, M.R., K. Schmidt-Hoberg (2009)

Orbifold GUT limit with SU(6) bulk symmetry gives us the proportionality between μ term and expectation value of the superpotential (*W*)

F. Brümmer, R. Kappl, M.R., K. Schmidt-Hoberg (2009)

 Rest of this talk: discuss globally consistent string model with these features

Explicit string theory example

Blaszczyk et al. model

$\mathbb{Z}_2 \times \mathbb{Z}_2$ orbifold example

M. Blaszczyk, S. Groot Nibbelink, M.R., F. Ruehle, M. Trapletti, P. Vaudrevange (2009)

0 step: 6 generation $\mathbb{Z}_2 \times \mathbb{Z}_2$ model with SU(5) symmetry

Explicit string theory example

Blaszczyk et al. model

$\mathbb{Z}_2 \times \mathbb{Z}_2$ orbifold example

M. Blaszczyk, S. Groot Nibbelink, M.R., F. Ruehle, M. Trapletti, P. Vaudrevange (2009)

- **1** step: 6 generation $\mathbb{Z}_2 \times \mathbb{Z}_2$ model with SU(5) symmetry
- **2** step: mod out a freely acting \mathbb{Z}_2 symmetry which:
 - breaks $SU(5) \rightarrow SU(3)_C \times SU(2)_L \times U(1)_Y$
 - reduces the number of generations to 3

analogous mechanism in CY MSSMs Bouchard & Donagi (2005)

Braun, He, Ovrut, Pantev (2005)

Explicit string theory example

Blaszczyk et al. model

$\mathbb{Z}_2 \times \mathbb{Z}_2$ orbifold example

M. Blaszczyk, S. Groot Nibbelink, M.R., F. Ruehle, M. Trapletti, P. Vaudrevange (2009)

• reduces the number of generations to 3

for further discussion of this model see talks by M. Blaszczyk & S. Groot Nibbelink

1 GUT symmetry breaking non-local \sim no `logarithmic running above the GUT scale'

Hebecker, Trapletti (2004)

∼ precision gauge unification with distinctive pattern of soft masses

Raby, M.R., Schmidt-Hoberg (2009)

- **1** GUT symmetry breaking non-local

- **1** GUT symmetry breaking non-local
- **2** No localized flux in hypercharge direction
- **3** 4D gauge group: $SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_{B-L} \times [SU(3) \times SU(2)^2 \times U(1)^7]$

- GUT symmetry breaking non-local
- **2** No localized flux in hypercharge direction
- 3 4D gauge group: $SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_{B-L} \times [SU(3) \times SU(2)^2 \times U(1)^7]$
- 4 massless spectrum

spectrum = 3 × generation + vector-like

- GUT symmetry breaking non-local
- **2** No localized flux in hypercharge direction
- 3 4D gauge group: $SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_{B-L} \times [SU(3) \times SU(2)^2 \times U(1)^7]$
- 4 massless spectrum

spectrum = 3 × generation + vector-like

- **5** Various appealing features:
 - vacua where exotics decouple at the linear level in SM singlets
 - non-trivial Yukawa couplings
 - gauge-top unification

P. Hosteins, R. Kappl, M.R., K. Schmidt-Hoberg (2009)

• SU(5) relation $y_{ au} \simeq y_b$ (but also for light generations)

for further discussion of this model see talks by M. Blaszczyk & S. Groot Nibbelink

'Anomalous' \mathbb{Z}_4^R from the Blaszczyk et al. model

- ${}^{\sim}$ We succeeded in finding vacua with the 'anomalous' \mathbb{Z}_4^R
- ...e.g. by switching on the fields

$$\begin{aligned} \{\phi_i\} \ &= \ \{X_3, X_4, X_5, \overline{X}_4, \overline{X}_5, Y_1, Y_2, Z_1, Z_2, N_1, N_2, N_6, \\ N_{11}, N_{17}, N_{25}, N_{26}, N_{28}, N_{35}, N_{37}, N_{45}, N_{47}, N_{49}, N_{51}, N_{53}, N_{55} \end{aligned}$$

'Anomalous' \mathbb{Z}_4^R from the Blaszczyk et al. model

- ${}^{\sim}$ We succeeded in finding vacua with the 'anomalous' \mathbb{Z}_4^R
- ...e.g. by switching on the fields

 $\{\phi_i\} = \{X_3, \dots\}$

 $<\!\!\!>$ This gives us a vacuum with the remnant symmetry $G_{
m SM} imes \mathbb{Z}_4^R imes \mathbb{Z}_2^{
m nasty}$

'Anomalous' \mathbb{Z}_4^R from the Blaszczyk et al. model

- ${}^{\sim}$ We succeeded in finding vacua with the 'anomalous' \mathbb{Z}_4^R
- ...e.g. by switching on the fields

$$\{\phi_i\} = \{X_3, \dots\}$$

- \bigcirc Unfortunately we cannot get rid of the extra $\mathbb{Z}_2^{\text{nasty}}$, which leads to rank 2 Y_e and Y_d Yukawa couplings

'Anomalous' \mathbb{Z}_4^R from the Blaszczyk et al. model

- ${}^{\sim}$ We succeeded in finding vacua with the 'anomalous' \mathbb{Z}_4^R
- ...e.g. by switching on the fields

 $\{\phi_i\} = \{X_3, \dots\}$

- $<\!\!\!>$ This gives us a vacuum with the remnant symmetry $G_{
 m SM} imes \mathbb{Z}_4^R imes \mathbb{Z}_2^{
 m nasty}$
- $\,\ominus\,$ Unfortunately we cannot get rid of the extra $\mathbb{Z}_2^{\rm nasty}$, which leads to rank 2 Y_e and Y_d Yukawa couplings
- \sim Nevertheless: successful string embedding of \mathbb{Z}_4^R possible!

'Anomalous' \mathbb{Z}_4^R from the Blaszczyk et al. model

- ${}^{\sim}$ We succeeded in finding vacua with the 'anomalous' \mathbb{Z}_4^R
- ...e.g. by switching on the fields

 $\{\phi_i\} = \{X_3, \dots\}$

- $<\!\!\!>$ This gives us a vacuum with the remnant symmetry $G_{
 m SM} imes \mathbb{Z}_4^R imes \mathbb{Z}_2^{
 m nasty}$
- \odot Unfortunately we cannot get rid of the extra $\mathbb{Z}_2^{
 m nasty}$, which leads to rank 2 Y_e and Y_d Yukawa couplings
- \sim Nevertheless: successful string embedding of \mathbb{Z}_4^R possible!
- Why can we call the field configuration a `vacuum'?

'Anomalous' \mathbb{Z}_4^R from the Blaszczyk et al. model

- ${}^{\sim}$ We succeeded in finding vacua with the 'anomalous' \mathbb{Z}_4^R
- ...e.g. by switching on the fields

 $\{\phi_i\} = \{X_3, \dots\}$

- $<\!\!\!>$ This gives us a vacuum with the remnant symmetry $G_{
 m SM} imes \mathbb{Z}_4^R imes \mathbb{Z}_2^{
 m nasty}$
- $\,\ominus\,$ Unfortunately we cannot get rid of the extra $\mathbb{Z}_2^{\rm nasty}$, which leads to rank 2 Y_e and Y_d Yukawa couplings
- \sim Nevertheless: successful string embedding of \mathbb{Z}_4^R possible!
- Why can we call the field configuration a `vacuum'?
- Two conditions:
 - vanishing F terms (no time to discuss)
 - vanishing *D* terms

 $\sim D$ -flat directions \leftrightarrow holomorphic invariant monomials

Excursion: FI monomial quantization

- \ll **D-flat directions** \leftrightarrow holomorphic invariant monomials
- ${\mathscr P}$ Practically all MSSM models obtained so far have an 'anomalous' U(1)

- $\$ *D***-flat directions** \leftrightarrow holomorphic invariant monomials
- ${\mathscr P}$ Practically all MSSM models obtained so far have an 'anomalous' U(1)
- → Need invariant monomials $\mathscr{M} = \phi_1^{n_1} \cdots \phi_N^{n_N}$ which carry net negative charge under the `anomalous' U(1)

- \ll **D-flat directions** \leftrightarrow holomorphic invariant monomials
- ${\mathscr P}$ Practically all MSSM models obtained so far have an 'anomalous' U(1)
- → Need invariant monomials $\mathcal{M} = \phi_1^{n_1} \cdots \phi_N^{n_N}$ which carry net negative charge under the `anomalous' U(1)
- ➡ Non-perturbative terms can be written down

- $\$ *D***-flat directions** \leftrightarrow holomorphic invariant monomials
- ${\mathscr P}$ Practically all MSSM models obtained so far have an 'anomalous' U(1)
- → Need invariant monomials $\mathcal{M} = \phi_1^{n_1} \cdots \phi_N^{n_N}$ which carry net negative charge under the `anomalous' U(1)
- ➡ Non-perturbative terms can be written down

$$\mathscr{M} \mathbf{e}^{-\mathbf{a} \mathbf{S}} = \phi_1^{n_1} \cdots \phi_N^{n_N} \cdot \mathbf{e}^{-\mathbf{a} \mathbf{S}}$$

→ We find: charges of the monomials are quantized in a way that $a = \text{integer} \cdot 8\pi^2$ R. Kappl, B. Petersen, M.R., R. Schleren & R. Vaudrevange (to appear)

- \ll **D-flat directions** \leftrightarrow holomorphic invariant monomials
- ${\mathscr P}$ Practically all MSSM models obtained so far have an 'anomalous' U(1)
- → Need invariant monomials $\mathcal{M} = \phi_1^{n_1} \cdots \phi_N^{n_N}$ which carry net negative charge under the `anomalous' U(1)
- ➡ Non-perturbative terms can be written down

$$\mathscr{M} \mathbf{e}^{-a \mathbf{S}} = \phi_1^{n_1} \cdots \phi_N^{n_N} \cdot \mathbf{e}^{-a \mathbf{S}}$$

→ We find: charges of the monomials are quantized in a way that $a = \text{integer} \cdot 8\pi^2$ R. Kappl, B. Petersen, M.R., R. Schleren & R. Vaudrevange (to appear)

bottom-line:

FI monomials consistent with t'Hooft instantons

Explicit string theory example

 \square Non-perturbative violation of \mathbb{Z}_{A}^{R}

Non-perturbative violation of \mathbb{Z}_4^R

R. Kappl, B. Petersen, M.R., R. Schieren & P. Vaudrevange (to appear)

Instanton couplings `violate' \mathbb{Z}_4^R

 $\underbrace{\phi_1^{n_1}\cdots\phi_N^{n_N}}_{\mathbb{Z}_4^R \text{ charge } 0} \cdot \underbrace{e^{-8\pi^2 S}}_{\mathbb{Z}_4^R \text{ charge } 2}$

Explicit string theory example

Non-perturbative violation of \mathbb{Z}_A^R

Non-perturbative violation of \mathbb{Z}_4^R

R. Kappl, B. Petersen, M.R., R. Schieren & P. Vaudrevange (to appear)

 $<\!\!\!<\!\!\!<\!\!\!\!<$ Instanton couplings `violate' \mathbb{Z}_4^R

The model has an hidden sector with gauge group $SU(N_c = 3)$ and $N_f = N_c - 1 = 2$ massless pairs in the **3** and $\overline{3}$ representation

Explicit string theory example

Non-perturbative violation of \mathbb{Z}_A^R

Non-perturbative violation of \mathbb{Z}_4^R

R. Kappl, B. Petersen, M.R., R. Schieren & P. Vaudrevange (to appear)

 $<\!\!\!<\!\!\!<\!\!\!\!<$ Instanton couplings `violate' \mathbb{Z}_4^R

- The model has an hidden sector with gauge group $SU(N_c = 3)$ and $N_f = N_c 1 = 2$ massless pairs in the **3** and $\overline{3}$ representation
- We find that the Affleck-Dine-Seiberg potential

Explicit string theory example

Non-perturbative violation of \mathbb{Z}_A^R

Non-perturbative violation of \mathbb{Z}_4^R

R. Kappl, B. Petersen, M.R., R. Schieren & P. Vaudrevange (to appear)

 $<\!\!\!<\!\!\!<$ Instanton couplings `violate' \mathbb{Z}_4^R

- The model has an hidden sector with gauge group $SU(N_c = 3)$ and $N_f = N_c 1 = 2$ massless pairs in the **3** and $\overline{3}$ representation
- We find that the Affleck-Dine-Seiberg potential

$$\mathscr{W}_{ADS} = \left(\frac{\Lambda^{3N_c - N_f}}{\det M}\right)^{\frac{1}{N_c - N_f}}$$
meson determinant
s also \mathbb{Z}_4^R covariant

Explicit string theory example

Non-perturbative violation of \mathbb{Z}_A^R

F. Brümmer, R. Kappl, M.R., K. Schmidt-Hoberg (2009)

 $<\!\!<$ Higher-dimensional gauge invariance \sim Kähler potential

Antoniadis, Gava, Narain & Taylor (1994); Choi et al. (2003)

$$K = -\ln\left[\left(\underline{T_3} + \overline{T_3}\right)\left(\underline{Z} + \overline{\underline{Z}}\right) - \left(H_u + \overline{H_d}\right)\left(H_d + \overline{H_u}\right)\right]$$

Kähler
modulus
Köhler
modulus

Explicit string theory example

Non-perturbative violation of \mathbb{Z}_4^R

F. Brümmer, R. Kappl, M.R., K. Schmidt-Hoberg (2009)

 $<\!\!<$ Higher-dimensional gauge invariance \sim Kähler potential

$$K = -\ln\left[\left(T_3 + \overline{T_3}\right)\left(Z + \overline{Z}\right) - \left(H_u + \overline{H_d}\right)\left(H_d + \overline{H_u}\right)\right]$$

Higgs fields
= extra components
of gauge fields

Explicit string theory example

Non-perturbative violation of \mathbb{Z}_4^R

F. Brümmer, R. Kappl, M.R., K. Schmidt-Hoberg (2009)

 $<\!\!<$ Higher-dimensional gauge invariance \sim Kähler potential

$$\begin{split} K &= -\ln\left[\left(T_3 + \overline{T_3}\right) \left(Z + \overline{Z}\right) - \left(H_u + \overline{H_d}\right) \left(H_d + \overline{H_u}\right)\right] \\ &\simeq -\ln\left[\left(T_3 + \overline{T_3}\right) \left(Z + \overline{Z}\right)\right] \\ &+ \frac{1}{\left(T_3 + \overline{T_3}\right) \left(Z + \overline{Z}\right)} \left[|H_u|^2 + |H_d|^2 + (H_u H_d + \text{c.c.})\right] \end{split}$$

Explicit string theory example $__$ Non-perturbative violation of \mathbb{Z}_{4}^{R}

F. Brümmer, R. Kappl, M.R., K. Schmidt-Hoberg (2009)

 $<\!\!<$ Higher-dimensional gauge invariance \sim Kähler potential
μ from \mathcal{W}

F. Brümmer, R. Kappl, M.R., K. Schmidt-Hoberg (2009)

Higher-dimensional gauge invariance ~ K\u00e4hler potential

$$K \simeq -\ln\left[\left(T_3 + \overline{T_3}\right) \left(Z + \overline{Z}\right)\right] + \left[|\widehat{H}_u|^2 + |\widehat{H}_d|^2 + (\widehat{H}_u \widehat{H}_d + \text{c.c.})\right]$$

Consider now superpotential

 $\mathscr{W} = \Omega$ = independent of the monomial $\widehat{H}_u \widehat{H}_d$

 μ from \mathcal{W}

Explicit string theory example

Non-perturbative violation of \mathbb{Z}_4^R

F. Brümmer, R. Kappl, M.R., K. Schmidt-Hoberg (2009)

 $<\!\!>$ Higher-dimensional gauge invariance \sim Kähler potential

$$K \simeq -\ln\left[\left(T_3 + \overline{T_3}\right) \left(Z + \overline{Z}\right)\right] + \left[|\widehat{H}_u|^2 + |\widehat{H}_d|^2 + (\widehat{H}_u \widehat{H}_d + \text{c.c.})\right]$$

Consider now superpotential $\mathcal{W} = \Omega = \text{ independent of the monomial } \widehat{H}_u \widehat{H}_d$

 ${} <\!\! > K \& \mathscr W$ in leading order in $\widehat{H}_u \widehat{H}_d$ equivalent to

$$\begin{split} K' &= -\ln\left[\left(T_3 + \overline{T_3}\right) \left(Z + \overline{Z}\right)\right] + \left[|\widehat{H}_u|^2 + |\widehat{H}_d|^2\right] \\ \mathscr{W}' &= \exp(\widehat{H}_u \, \widehat{H}_d) \,\Omega \,=\, \Omega \, \widehat{H}_u \, \widehat{H}_d + \dots \end{split}$$

 μ from \mathcal{W}

F. Brümmer, R. Kappl, M.R., K. Schmidt-Hoberg (2009)

 $<\!\!>$ Higher-dimensional gauge invariance \sim Kähler potential

$$K \simeq -\ln\left[\left(T_3 + \overline{T_3}\right) \left(Z + \overline{Z}\right)\right] + \left[|\widehat{H}_u|^2 + |\widehat{H}_d|^2 + (\widehat{H}_u \widehat{H}_d + \text{c.c.})\right]$$

Consider now superpotential $\mathcal{W} = \Omega = \text{independent of the monomial } \widehat{H}_u \widehat{H}_d$

 ${\mathscr T} \ll {\mathscr W}$ in leading order in $\widehat{H}_u \widehat{H}_d$ equivalent to

$$\begin{split} K' &= -\ln\left[\left(T_3 + \overline{T_3}\right) \left(Z + \overline{Z}\right)\right] + \left[|\widehat{H}_u|^2 + |\widehat{H}_d|^2\right] \\ \mathscr{W}' &= \exp(\widehat{H}_u \, \widehat{H}_d) \, \Omega = \Omega \, \widehat{H}_u \, \widehat{H}_d + \dots \end{split}$$

bottom-line:

 μ term proportional to $\langle \Omega \rangle$

Explicit string theory example

Non-perturbative violation of \mathbb{Z}_4^R

Non-perturbative violation of \mathbb{Z}_4^R (cont'd)

The second seco

 $\mu \sim \frac{\langle \mathscr{W} \rangle}{M_{\rm P}^2} \simeq m_{3/2}$

Kim & Nilles (1983); Casas & Muñoz (1992)

Non-perturbative violation of \mathbb{Z}_4^R (cont'd)

The second seco

Kim & Nilles (1983); Casas & Muñoz (1992)

- ${\mathscr T}$ Whatever gives us $\langle {\mathscr W} \rangle$ will be the order parameter for \mathbb{Z}_4^R breaking
- ... for instance, one may replace/describe hidden sector superpotential by gaugino condensate

Nilles (1982)

 $\langle \mathscr{W} \rangle \, \simeq \, \langle \lambda \lambda \rangle \, \simeq \, \Lambda^3$

 $\mu \sim \frac{\langle \mathscr{W} \rangle}{M_{\rm P}^2} \simeq m_{3/2}$

- this is consistent with a non-perturbative breaking of \mathbb{Z}_4^R
- this assumes that the dilaton is fixed somehow (Kähler stabilization . . .)

Non-perturbative violation of \mathbb{Z}_4^R (cont'd)

The second seco

Kim & Nilles (1983); Casas & Muñoz (1992)

- ${\mathscr T}$ Whatever gives us $\langle {\mathscr W} \rangle$ will be the order parameter for \mathbb{Z}_4^R breaking
- Dimension 5 proton decay operators will have highly suppressed coefficients

$$\mathscr{W}_{QQQL}^{\mathrm{np}} \sim \frac{\langle \mathscr{W} \rangle}{M_{\mathrm{P}}^4} Q \, Q \, Q \, L \sim \frac{m_{3/2}}{M_{\mathrm{P}}} \frac{1}{M_{\mathrm{P}}} Q \, Q \, Q \, L \sim 10^{-15} \, \frac{1}{M_{\mathrm{P}}} Q \, Q \, Q \, L$$

$$\mu \sim \frac{\langle \mathscr{W} \rangle}{M_{\mathrm{P}}^2} \simeq m_{3/2}$$

 $\mu \sim \frac{\langle \mathscr{W} \rangle}{M_{\rm P}^2} \simeq m_{3/2}$

Non-perturbative violation of \mathbb{Z}_4^R (cont'd)

The second seco

Kim & Nilles (1983); Casas & Muñoz (1992)

- ${\mathscr T}$ Whatever gives us $\langle {\mathscr W} \rangle$ will be the order parameter for \mathbb{Z}_4^R breaking
- Dimension 5 proton decay operators will have highly suppressed coefficients

$$\mathscr{W}_{QQQL}^{\mathrm{np}} \sim \frac{\langle \mathscr{W} \rangle}{M_{\mathrm{P}}^4} Q \, Q \, Q \, L \sim \frac{m_{3/2}}{M_{\mathrm{P}}} \frac{1}{M_{\mathrm{P}}} Q \, Q \, Q \, L \sim 10^{-15} \, \frac{1}{M_{\mathrm{P}}} Q \, Q \, Q \, L$$

No R parity violation because \mathbb{Z}_4^R has a non-anomalous subgroup which is equivalent to matter parity

outlook

Summary – bottom-up

- rightarrow A simple `anomalous' \mathbb{Z}_4^R symmetry can
 - provide a solution to the μ problem
 - suppress proton decay operators

Summary

Summary – bottom-up

- rightarrow A simple `anomalous' \mathbb{Z}_4^R symmetry can
 - provide a solution to the μ problem
 - suppress proton decay operators

universal anomaly coefficients universal charges for matter forbid μ @ tree-level allow Yukawa couplings allow Weinberg operator

 \sim unique \mathbb{Z}_4^R

Summary

Summary – bottom-up

- $\overset{<}{=}$ A simple `anomalous' \mathbb{Z}^{R}_{4} symmetry can
 - provide a solution to the μ problem
 - suppress proton decay operators

universal anomaly coefficients $\begin{array}{c} \text{universal charges for matter} \\ \text{forbid } \mu @ \text{tree-level} \\ \text{allow Yukawa couplings} \end{array} \right\} \\ \frown \\ \begin{array}{c} \text{unique } \mathbb{Z}_4^R \end{array}$ allow Weinberg operator

 $\mathbb{Z}_4^R \sim \begin{cases} \dim. 4 \text{ proton decay operators completely forbidden} \\ \dim. 5 \text{ proton decay operators highly suppressed} \\ \mu \text{ appears non-perturbatively} \end{cases}$

Summary – top-down

The string theory allows us to understand where the \mathbb{Z}_4^R symmetry comes from: it may arise as a discrete remnant of Lorentz symmetry in extra dimensions

Summary – top-down

- The string theory allows us to understand where the \mathbb{Z}_4^R symmetry comes from: it may arise as a discrete remnant of Lorentz symmetry in extra dimensions
- Such symmetries are on the same footing as the fundamental symmetries *C*, *P* and *T*

Summary – top-down

- The string theory allows us to understand where the \mathbb{Z}_4^R symmetry comes from: it may arise as a discrete remnant of Lorentz symmetry in extra dimensions
- Such symmetries are on the same footing as the fundamental symmetries *C*, *P* and *T*
- Guided by the (unique) \mathbb{Z}_4^R symmetry we have constructed a globally consistent string model with:
 - exact MSSM spectrum
 - non-trivial Yukawa couplings
 - exact matter parity
 - $\mu \sim m_{3/2}$
 - dimension five proton decay operators sufficiently suppressed

