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MSSM: good features and open questions

☞ Many studies focus on the minimal supersymmetric
extension of the standard model (MSSM)

☞ Why?

© stabilization of hierarchies

© MSSM gauge coupling unification

© radiative electroweak symmetry breaking

© dark matter candidate

© . . .

☞ However:

§ µ/Bµ problem
§ dimension four and five proton decay operators

§ CP and flavor problems

➥ Supersymmetry alone seems not to be enough
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➊ Introduction & Motivation X

➋ A simple ZR
4 symmetry can explain

• suppressed µ term
• proton stability

➌ String theory realization

➍ Summary
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☞ Proton hexality P6 =matter parity ZM2 × baryon triality B3

Q Ū D̄ L Ē Hu Hd ν̄ZM2 1 1 1 1 1 0 0 1

B3 0 −1 1 −1 2 1 −1 0
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☞ Appealing features
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© unique anomaly-free symmetry with the above features

☞ However:

§ not consistent with unification for matter

§ embedding into string theory not yet fully convincing

Förste, Nilles, Ramos-Sánchez, Vaudrevange (2010)
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Local grand unification (using small extra dimensions)

Buchmüller, Hamaguchi, Lebedev, M.R. (2004-2006)

Lebedev, Nilles, Raby, Ramos-Sánchez,

M.R., Vaudrevange, Wingerter (2006)
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Origin of discrete symmetries

☞ Where can the discrete symmetries come from?

☞ Possible answer: higher dimensions and strings

☞ What does string theory give us?

• unification with gravity

• extra gauge symmetries

• discrete symmetries

• Green-Schwarz anomaly cancellation

• MSSM models with Local Grand Unification

• . . .

➥ Two prejudices from string model building:

1 Local Grand Unification

2 ‘anomalous’ discrete symmetries whose anomalies are
canceled the Green-Schwarz mechanism
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From anomaly freedom to anomaly universality
Dine & Graesser (2004); Araki, Kobayashi, Kubo, Ramos-Sánchez, M.R. & Vaudrevange (2008)

☞ Important lesson from explicit string-derived (MSSM) models

‘anomalous’ discrete symmetries:

Anomalies of discrete symmetries canceled by
Green-Schwarz mechanism

➥ Anomaly freedom gets relaxed to anomaly universality

Example: anomaly coefficients for ZN

AG2−ZN
=

∑

f

ℓ(f ) · q(f ) !
= γ mod N(/2)

Agrav2−ZN
=

∑

m

q(m) !
= γ mod N(/2)

anomaly freedom:

all A coefficients vanish

➨ ➨ ➨ ➨ ➨

anomaly universality:

all A coefficients equal
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symmetry

A unique ZR
4 symmetry

☞ Assumptions:

• anomaly universality

• universal charges for quarks and leptons

• µ term forbidden at perturbative level

• Yukawa couplings and Weinberg neutrino mass operator
allowed

☞ Want to prove:
There is a unique ZR

4 symmetry in the MSSM with these
features
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☞ Anomaly universality
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N for N odd
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Claim 1: it has to be an R symmetry

☞ Anomaly coefficients for non-R symmetry with SU(5)
relations for matter charges

ASU(3)2−ZN
=
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2
q10 +
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2
q
5

ASU(2)2−ZN
=

9

2
q10 +

3

2
q
5
+
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(
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☞ Anomaly universality

ASU(2)2−ZN
− ASU(3)2−ZN

= 0

y

1

2

(
qHu
+ qHd

)
= 0 mod

{
N for N odd
N/2 for N even

bottom-line:

non-R ZN symmetry cannot forbid µ term



"Anomalous" discrete symmetries Discrete symmetry for µ and proton

UniqueZR
4

symmetry

Claim 2: Higgs discrete charges have to vanish

☞ Assumption: quarks and leptons have universal charge r



"Anomalous" discrete symmetries Discrete symmetry for µ and proton

UniqueZR
4

symmetry

Claim 2: Higgs discrete charges have to vanish

☞ Assumption: quarks and leptons have universal charge r

☞ u- and d-type Yukawas allowed requires that

2r + rHu
= 2 mod N and 2r + rHd

= 2 mod N



"Anomalous" discrete symmetries Discrete symmetry for µ and proton

UniqueZR
4

symmetry

Claim 2: Higgs discrete charges have to vanish

☞ Assumption: quarks and leptons have universal charge r

☞ u- and d-type Yukawas allowed requires that

2r + rHu
= 2 mod N and 2r + rHd

= 2 mod N

y rHu
− rHd

= 0 mod N



"Anomalous" discrete symmetries Discrete symmetry for µ and proton

UniqueZR
4

symmetry
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☞ Assumption: quarks and leptons have universal charge r

☞ u- and d-type Yukawas allowed requires that

2r + rHu
= 2 mod N and 2r + rHd

= 2 mod N

y rHu
− rHd

= 0 mod N

☞ u-type Yukawa and Weinberg operator allowed requires
that
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☞ Anomaly coefficients for Abelian discrete R symmetry
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= rHd

= 0 mod N

bottom-line:
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however: there is no meaningful ZR
2 symmetry

cf. e.g. Dine & Kehayias (2009)
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4 symmetry

☞ We know:

• it is a ZR
4 symmetry

• Higgs fields have charge rHu = rHd
= 0 mod 4

➥ Yukawa couplings and Weinberg operator allowedy
matter has charge r = 1

☞ Consistent with anomaly universality

ASU(3)2−ZR
N
= 6(r − 1) + 3 = 6r − 3 = 1 mod 4/2

ASU(2)2−ZR
N
= 6r +

1

2

(
rHu
+ rHd

)
− 5 = 1 mod 4/2

Agrav2−ZR
N
= − 61 + 48r + 2rHu

+ 2rHd
= 1 mod 4/2

☞ Anomaly-free version of this ZR
4 with extra matter has been

discussed previously Kurosawa, Maru & Yanagida (2001)
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Implications ofZR
4

Implications of ZR
4

☞ Gauge invariant superpotential terms up to order 4

W = µHdHu + κi LiHu

+ Y ij
e LiHdEj + Y

ij
d QiHdDj + Y

ij
u QiHuUj

+ λijk LiLjEk + λ
′
ijk LiQjDk + λ

′′
ijk UiDjDk

+ κ
(0)
ij HuLi HuLj + κ

(1)
ijkℓ QiQjQkLℓ + κ

(2)
ijkℓ UiUjDkEℓ + . . .

non-perturbatively generated terms harmless



. . . string theory allows us to understand the non-perturbative
‘violation’ of ‘anomalous’ discrete symmetries
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☞ Orbifolds with Z2 plane have three important properties:

➊ ZR
4 symmetry arises as a remnant of the Lorentz group in

compact dimensions

➋ Orbifold GUT limit with SU(6) bulk symmetry gives us
gauge-top unification

P. Hosteins, R. Kappl, M.R., K. Schmidt-Hoberg (2009)
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➋ Orbifold GUT limit with SU(6) bulk symmetry gives us
gauge-top unification

P. Hosteins, R. Kappl, M.R., K. Schmidt-Hoberg (2009)

➌ Orbifold GUT limit with SU(6) bulk symmetry gives us the
proportionality between µ term and expectation value of
the superpotential 〈W 〉

F. Brümmer, R. Kappl, M.R., K. Schmidt-Hoberg (2009)
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2
orbifold plane

The Z2 orbifold plane

☞ Orbifolds with Z2 plane have three important properties:

➊ ZR
4 symmetry arises as a remnant of the Lorentz group in

compact dimensions

➋ Orbifold GUT limit with SU(6) bulk symmetry gives us
gauge-top unification

P. Hosteins, R. Kappl, M.R., K. Schmidt-Hoberg (2009)

➌ Orbifold GUT limit with SU(6) bulk symmetry gives us the
proportionality between µ term and expectation value of
the superpotential 〈W 〉

F. Brümmer, R. Kappl, M.R., K. Schmidt-Hoberg (2009)

➥ Rest of this talk: discuss globally consistent string model with
these features
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SU(5)
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bcbc
SU(5)
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SU(5)

non-local
breaking
SU(5)
↓

GSM

➊ step: 6 generation Z2 × Z2 model with SU(5) symmetry

➋ step: mod out a freely acting Z2 symmetry which:

• breaks SU(5)→ SU(3)C × SU(2)L ×U(1)Y
• reduces the number of generations to 3

analogous mechanism in CY MSSMs Bouchard & Donagi (2005)

Braun, He, Ovrut, Pantev (2005)
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Blaszczyk et al. modelZ2 × Z2 orbifold example
M. Blaszczyk, S. Groot Nibbelink, M.R., F. Ruehle, M. Trapletti, P. Vaudrevange (2009)

bcbc
SU(5)

bcbc
SU(5)

bcbc
SU(5)
bcbc

SU(5)

SU(6) →

bcbc
SU(5)

bcbc
SU(5)

non-local
breaking
SU(5)
↓

GSM

➊ step: 6 generation Z2 × Z2 model with SU(5) symmetry

➋ step: mod out a freely acting Z2 symmetry which:

• breaks SU(5)→ SU(3)C × SU(2)L ×U(1)Y
• reduces the number of generations to 3

Note: this is just a cartoon
the geometric picture will be ex-
plained in more detail elsewhere

M. Fischer, M.R., P. Vaudrevange (to appear)

for further discussion of this model see talks by M. Blaszczyk & S. Groot Nibbelink
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Blaszczyk et al. model

Main features

➊ GUT symmetry breaking non-local
y no ‘logarithmic running above the GUT scale’

Hebecker, Trapletti (2004)

y precision gauge unification
with distinctive pattern of soft masses

Raby, M.R., Schmidt-Hoberg (2009)
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symmetry in principle possible
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Blaszczyk et al. model

Main features

➊ GUT symmetry breaking non-local

➋ No localized flux in hypercharge direction

➌ 4D gauge group:
SU(3)C × SU(2)L × U(1)Y ×U(1)B−L × [SU(3) × SU(2)2 × U(1)7]

➍ massless spectrum

spectrum = 3 × generation + vector-like

➎ Various appealing features:

• vacua where exotics decouple at the linear level in SM
singlets

• non-trivial Yukawa couplings
• gauge-top unification
• SU(5) relation yτ ≃ yb (but also for light generations)

P. Hosteins, R. Kappl, M.R., K. Schmidt-Hoberg (2009)

for further discussion of this model see talks by M. Blaszczyk & S. Groot Nibbelink
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☞ We succeeded in finding vacua with the ‘anomalous’ ZR
4

. . . e.g. by switching on the fields

{φi} = {X3,X4,X5,X4,X5,Y1,Y2,Z1,Z2,N1,N2,N6,

N11,N17,N25,N26,N28,N35,N37,N45,N47,N49,N51,N53,N55}
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☞ We succeeded in finding vacua with the ‘anomalous’ ZR
4

. . . e.g. by switching on the fields

{φi} = {X3, . . . }

☞ This gives us a vacuum with the remnant symmetry
GSM × ZR

4 × Znasty
2

§ Unfortunately we cannot get rid of the extra Znasty
2 , which

leads to rank 2 Ye and Yd Yukawa couplings

☞ Nevertheless: successful string embedding of ZR
4 possible!

☞ Why can we call the field configuration a ‘vacuum’?

☞ Two conditions:

• vanishing F terms (no time to discuss)
• vanishing D terms
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Excursion: FI monomial quantization

☞ D-flat directions↔ holomorphic invariant monomials

☞ Practically all MSSM models obtained so far have an
‘anomalous’ U(1)

➥ Need invariant monomials M = φ
n1

1 · · ·φ
nN

N which carry net
negative charge under the ‘anomalous’ U(1)

➥ Non-perturbative terms can be written down

M e−aS = φn1

1 · · ·φ
nN

N · e
−aS

➥ We find: charges of the monomials are quantized in a way
that a = integer · 8π2 R. Kappl, B. Petersen, M.R., R. Schieren & P. Vaudrevange (to appear)

bottom-line:

FI monomials consistent with t’Hooft instantons
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☞ The model has an hidden sector with gauge group
SU(Nc = 3) and Nf = Nc − 1 = 2 massless pairs in the 3 and 3

representation

☞ We find that the Affleck-Dine-Seiberg potential

WADS =

(
Λ

3Nc−Nf

detM

) 1
Nc−Nf

is also ZR
4 covariant

meson determinant
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☞ Higher-dimensional gauge invariancey Kähler potential

Antoniadis, Gava, Narain & Taylor (1994); Choi et al. (2003)

K = − ln
[(

T3 + T3
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Hu +Hd

) (
Hd +Hu

)]

Kähler
modulus

complex
structure
modulus
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|Ĥu|

2
+ |Ĥd|
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µ from W
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☞ Higher-dimensional gauge invariancey Kähler potential

K ≃ − ln
[(

T3 + T3

) (
Z + Z

)]
+

[
|Ĥu|

2
+ |Ĥd|

2
+ (ĤuĤd + c.c.)

]

☞ Consider now superpotential

W = Ω = independent of the monomial ĤuĤd

☞ K & W in leading order in ĤuĤd equivalent to

K ′ = − ln
[(

T3 + T3

) (
Z + Z

)]
+

[
|Ĥu|

2
+ |Ĥd|

2
]

W
′
= exp(Ĥu Ĥd)Ω = Ω Ĥu Ĥd + . . .

bottom-line:

µ term proportional to 〈Ω〉
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☞ Since HuHd is proportional to 〈W 〉 we will get a
holomorphic contribution to the µ term of the right order

Kim & Nilles (1983); Casas & Muñoz (1992)

µ ∼
〈W 〉

M2
P

≃ m3/2

☞ Whatever gives us 〈W 〉 will be the order parameter for ZR
4

breaking

. . . for instance, one may replace/describe hidden sector
superpotential by gaugino condensate

Nilles (1982)

〈W 〉 ≃ 〈λλ〉 ≃ Λ3

• this is consistent with a non-perturbative breaking of ZR
4

• this assumes that the dilaton is fixed somehow (Kähler
stabilization . . . )
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☞ Since HuHd is proportional to 〈W 〉 we will get a
holomorphic contribution to the µ term of the right order

Kim & Nilles (1983); Casas & Muñoz (1992)

µ ∼
〈W 〉

M2
P

≃ m3/2

☞ Whatever gives us 〈W 〉 will be the order parameter for ZR
4

breaking

☞ Dimension 5 proton decay operators will have highly
suppressed coefficients

W
np
QQQL ∼

〈W 〉

M4
P

QQQL ∼
m3/2

MP

1

MP

QQQL ∼ 10−15
1

MP

QQQL

☞ No R parity violation because ZR
4 has a non-anomalous

subgroup which is equivalent to matter parity
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☞ A simple ‘anomalous’ ZR
4 symmetry can

• provide a solution to the µ problem
• suppress proton decay operators

universal anomaly coefficients
universal charges for matter

forbid µ @ tree-level
allow Yukawa couplings
allow Weinberg operator






y unique ZR
4ZR

4 y






dim. 4 proton decay operators completely forbidden
dim. 5 proton decay operators highly suppressed
µ appears non-perturbatively
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Summary – top-down

☞ Embedding into string theory allows us to
understand where the ZR

4 symmetry comes from:
it may arise as a discrete remnant of Lorentz
symmetry in extra dimensions

☞ Such symmetries are on the same footing as the
fundamental symmetries C, P and T

☞ Guided by the (unique) ZR
4 symmetry we have constructed

a globally consistent string model with:

• exact MSSM spectrum

• non-trivial Yukawa couplings

• exact matter parity

• µ ∼ m3/2

• dimension five proton decay operators sufficiently suppressed
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