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SM sector SUSY 
sector

“Normal” gauge mediation:

Mediating 
sector
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Giudice Rattazzi Phys Rep 1999

Universal form for gaugino and sfermion masses - of same order



SM sector SUSY 
sector

Direct gauge mediation:

SUSY breaking dynamics now important; can have much smaller gaugino masses
Poppitz Trivedi (1996) ....
Izawa, Momura, Tobe, Yanagida (1997)
Csaki, Shirman, Terning (2006)
Kitano Ooguri Ookouchi (2006)
SAA, Durnford, Jaeckel, Khoze (2007)
SAA, Jaeckel, Khoze, Matos (2008)



General approach:

• Adopt the GGM assumption of Meade, Seiberg and Shih: defined by 
the requirement that the MSSM becomes decoupled from SUSY 
breaking sector when 

• They showed that the possible patterns of SUSY breaking (in the 
MSSM) can be completely determined by 6 combinations of gauge 
current correlators. 

• But what patterns are likely?

• And what underlying physics is associated with each pattern?

Objective: strategy for GMSB pheno at early LHC 
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Characteristics of the IR theory

Near origin ignoring Wdyn we have an R-symmetry =⇒ |vac〉+:

FMi
j

= h (qi.q̃
j − µ2

ISSδj
i ) $= 0

cannot be satisfied since qi.q̃j has rank n = FQ − N < FQ.

But Wdyn breaks this R-symmetry (anomalously) =⇒ |vac〉0:
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Dual and deflected Unification – p.8

M

DSB (metastable)

Universe sits here

vacuum is supersymmetric

ISS model (2006) inspired much of the current interest (Intriligator Seiberg Shih)



In a generic theory SUSY breaking requires an R-symmetry

                                                                                                                                                                       

Nelson-Seiberg Th’m

The origin is metastable because of an anomalous R-symmetry

(Nelson, Seiberg)

But: gaugino mass terms                     always have non-zero R-charge 

                                                                                                                                                                       
So: non-zero gaugino masses require both R-symmetry

and SUSY breaking -> R-symmetry breaking!
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Two possible options (NB - the anomalous R-breaking canʼt give 
gaugino masses):

1) Explicit R-breaking

    
    a global SUSY minimum develops                          away in field space 
     

                                                                                                                                                                       

Nelson-Seiberg Th’m

2) Spontaneous R-breaking (or a combination of explicit + spontaneous) 



Explicit Breaking example
Murayama and Nomura 2007

How to break an R-breaking gaugino mass without destabilising vacuum?
ISS is based on electric/magnetic Seiberg duals - suppose the messenger 
sector breaks R-symmetry maximally in the electric theory:
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Thanks to Nelson-Seiberg, a new lower vacuum appears but far away ...

The model generates gaugino and scalar masses of the same order - but you 
have to be reasonably careful to avoid vacuum decay 

    
                                                                                                                                       

Explicit Breaking example
Murayama and Nomura 2007

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5: Two-loop diagrams contributing to the sfermion masses. The long dashed (solid) line is a
bosonic (fermionic) messenger. Standard model sfermions are depicted by short dashed lines.

additional minus-sign between chiral and antichiral fields. In field space this corresponds to a
vertex that is proportional to a matrix VD = diag(1, 1,−1,−1). We therefore obtain,

Fig. 5(g) =
∑

i,m

(QT VDQ)i,mJ(m̂0,m, m̂0,i)(Q
T VDQ)m,i, (69)

where J is the appropriate two-loop integral for Fig. 5(g) which can be found in [40].

Finally, in 5(h) we have a mixed boson/fermion loop. The subdiagram containing the
messengers is similar to the diagram for the gaugino mass. The only difference is the direction of
the arrows on the gaugino lines. Indeed the one-loop sub-diagram corresponds to a contribution
to the kinetic term rather than a mass term for the gauginos. (The mass term will of course
contribute as well but will be suppressed by quark masses.) Using Eq. (43) we find,

Fig. 5(h) =
∑

ik

(|U †
i1Q1k + U †

i2Q2k|2 + |Q†
k3V1i + Q†

k4V2i|2)L(m̂1/2,i, m̂
2
0,k) , (70)

where L is again the appropriate loop integral from [40].

Summing over all diagrams we find the sfermion masses which are typically significantly
larger than the gaugino masses calculated earlier. Indeed, the scalar masses roughly follow the
estimate

m2
f̃
∼

g4

(16π2)2
µ2. (71)

This is precisely the leading order effect which in our direct mediation scenario is absent for the
gaugino masses.

So far we have taken into account the ρ, Z (or similarly the σ,M) contributions which as we
just explained give a non-vanishing leading order effect. In distinction to our earlier calculation
of the gaugino masses we do not need to include the sub-dominant contributions from other
messengers (which were massless at tree-level)9.

9Inclusion of such effects would be actually not completely straightforward because our mass-insertion tech-
nique breaks down when used in the two-loop diagrams for the scalars. The reason for this can be traced to the
non-cancelation of the UV cutoff dependent terms. This problem would disappear if one performs a complete
higher-loop calculation. In any case since the leading order result for scalars was non-vanishing we do not expect
any significant changes from this.
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Tr(τ〈FΦ〉)

Tr(τ〈Φ〉)

Figure 1: One-loop contribution to the gaugino masses from messengers f , f̃ . The dashed (solid)
line is a bosonic (fermionic) messenger. The blob on the scalar line indicates an insertion of the
F -term VEV into the propagator of the scalar messengers and the cross denotes an insertion
of the R-symmetry breaking VEV into the propagator of the fermionic messengers.

This can be seen to result from the minimization of the tree-level potential with respect to A
for a given B VEV:

∂V

∂A
= λBTr(F †

Φ) = 0 . (30)

Thus (at tree-level) the mediation of SUSY-breaking to the visible sector requires non-degenerate
couplings τii, and indeed we can write

Tr(τFΦ) = h(τµ2 − τ̄µ2) . (31)

That is, only if both τ and µ have non-degeneracy can there be unsuppressed SUSY breaking
mediation, even though SUSY breaking per se requires non-degeneracy only in the latter.

However, as we have said, when the full minimization is performed, tree-level relations such
as Tr(F †

Φ) = 0 are no longer expected to hold (for example, with the unconstrained values in the

table we find Tr(F †
Φ) = −0.034µ2

X ): typically one finds Tr(F †
Φ) = µ2/(16π2), since the effective

F -term for mediation is one-loop suppressed. Thus when the τ are degenerate one can still get

mλ ∼ µ2

16π2Mf

g2

(16π2) ∼ 1 TeV if µ2/Mf ∼ 107 GeV.

3.2 Direct gauge mediation

Now, let us compute gaugino masses for the direct gauge mediation scenario from the meson-
deformed ISS sector. We first consider the effects of those direct messengers which obtain R-
symmetry breaking masses at tree-level and which couple directly to the largest F -terms. These
transform in the fundamental representation of the SM gauge groups, and this constitutes a
strictly one-loop and formally leading order effect. Then we will include additional, formally
higher-loop, contributions from the pseudo-Goldstone modes transforming in both adjoint and
(bi-)fundamental representations of the Standard Model gauge groups. It will turn out that the
latter contributions can be of the same order.

3.2.1 Strict one-loop contributions to gaugino masses

To present a general discussion relevant for any deformation of the ISS model, by mesons,
baryons or otherwise, we shall consider models of the form

W = hΦijϕi.ϕ̃j − hµ2
ijΦji + Wmeson−def(Aa,Φ) + Wbaryon−def(Aa,φ, φ̃) (32)
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Can simply “deform” ISS for direct gauge mediation    (SAA, Durnford, Jaeckel, Khoze)

                                                                                                                                                                       

where                    are the 1st and 2nd “flavour” numbers. 

Landau poles

• Consider a “baryon-deformed” ISS in order to mediate SUSY

breaking:

W = Mijqi.q̃j − Tr(µ2
ISSM) + mεabεrsq

a
r qb

s

where r, s = 1, 2 are the 1st and second generation numbers only.

• We will use q and q̃ to mediate to gauginos so let n = 2, FQ = 7

and gauge SU(5)f ⊃ GSM factor

• take (µ2
ISS)ij = diag{µ2

2I2, µ2
5I5}

Dual and deflected Unification – p.10
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Spontaneous Breaking example

Because of the deformation      develops a VEV, and R-is broken. 

Wcl = Φq.q̃ − (mQΛ)Φ

Wcl = Φijqi.q̃j − (µ2
ISS)ijΦji +mεabεrsq

a
r q

b
s

(µISS =
√

ΛmQ)

ΛbΛ̄b̄ = µb+b̄

b = 3N − FQ > 0

b̄ = 3n− FQ < 0

p = q(r+ − r−)

E = 1
4πε0r3

(

3(p.r)r

r2
− p

)

dHg < 2.1× 10−28ecm

(f.f̃)Φ = (f.f̃)(Φ+ θ2F )

α1 = α2 = α3 = 0

Welec =
λ

MPl
QQ̃ff̃ +Mff̃ +mQQQ̃

Wcl =
λΛ

MPl
Φf f̃ +Mff̃ + qΦq̃ − µ2

ISSΦ

λΛ

MPl
〈f f̃〉 = µ2

ISS ;
λΛ

MPl
〈Φ〉 = −M

2

Wcl = Φq.q̃ − (mQΛ)Φ

Wcl = Φijqi.q̃j − (µ2
ISS)ijΦji + λ′Tr(Φ)f̃ f +Mf f̃ f

(µISS =
√

ΛmQ)

ΛbΛ̄b̄ = µb+b̄

b = 3N − FQ > 0

b̄ = 3n− FQ < 0

p = q(r+ − r−)

E = 1
4πε0r3

(

3(p.r)r

r2
− p

)

dHg < 2.1× 10−28ecm

(f.f̃)Φ = (f.f̃)(Φ+ θ2F )

α1 = α2 = α3 = 0

Welec =
λ

MPl
QQ̃ff̃ +Mff̃ +mQQQ̃

Wcl =
λΛ

MPl
Φf f̃ +Mff̃ + qΦq̃ − µ2

ISSΦ

λΛ

MPl
〈f f̃〉 = µ2

ISS ;
λΛ

MPl
〈Φ〉 = −M

〈FΦ〉 〈Φ〉

M2
λ

m2
scalar

∼ Nf .
1

1 + Nq

Nf

(

Mf

λ′µ5

)2

Φ ∼ Mf/λ
′

ki = (5/3, 1, 1)

kiαi

m0, m1/2

ΛS ,ΛG

Wcl = W ISS
cl +mεabε

rsqar q
b
s

1010 1014

2

Wcl = Φq.q̃ − (mQΛ)Φ

Wcl = Φijqi.q̃j − (µ2
ISS)ijΦji + λ′Tr(Φ)f̃ f +Mf f̃ f

(µISS =
√

ΛmQ)

ΛbΛ̄b̄ = µb+b̄

b = 3N − FQ > 0

b̄ = 3n− FQ < 0

p = q(r+ − r−)

E = 1
4πε0r3

(

3(p.r)r

r2
− p

)

dHg < 2.1× 10−28ecm

(f.f̃)Φ = (f.f̃)(Φ+ θ2F )

α1 = α2 = α3 = 0

Welec =
λ

MPl
QQ̃ff̃ +Mff̃ +mQQQ̃

Wcl =
λΛ

MPl
Φf f̃ +Mff̃ + qΦq̃ − µ2

ISSΦ

λΛ

MPl
〈f f̃〉 = µ2

ISS ;
λΛ

MPl
〈Φ〉 = −M

〈FΦ〉 〈Φ〉

M2
λ

m2
scalar

∼ Nf .
1

1 + Nq

Nf

(

Mf

λ′µ5

)2

Φ ∼ Mf/λ
′

ki = (5/3, 1, 1)

kiαi

m0, m1/2

ΛS ,ΛG

Wcl = W ISS
cl +mεabε

rsqar q
b
s

1010 1014

a, b = 1, 2

a, b = 1, 2

2

and                  are gauge indices. 



The mediators are               and                 and the typical scalar mass is                                            

Landau poles

• Scalar masses can be much larger (don’t depend on R-symmetry

breaking):

mscalar ∼
g2

A

16π2
µ2

The deformation m takes phenomenology continuously from

almost-gauge-mediation-like to “split-SUSY-like”

Dual and deflected Unification – p.13

Landau poles

• Gaugino mass is now (naively)
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ḡ2

A

16π2
χ

µ2
5

µ2
2

Dual and deflected Unification – p.12

But ... this is a model of  ʻslightly split SUSYʻ - gaugino masses are zero at tree-level. 
Typically suppressed by a factor of a few * 10 (similar to the effect found by Izawa, 
Momura, Tobe, Yanagida in 1997)
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Figure 1: One-loop contribution to the gaugino masses from messengers f , f̃ . The dashed (solid)
line is a bosonic (fermionic) messenger. The blob on the scalar line indicates an insertion of the
F -term VEV into the propagator of the scalar messengers and the cross denotes an insertion
of the R-symmetry breaking VEV into the propagator of the fermionic messengers.

This can be seen to result from the minimization of the tree-level potential with respect to A
for a given B VEV:

∂V

∂A
= λBTr(F †

Φ) = 0 . (30)

Thus (at tree-level) the mediation of SUSY-breaking to the visible sector requires non-degenerate
couplings τii, and indeed we can write

Tr(τFΦ) = h(τµ2 − τ̄µ2) . (31)

That is, only if both τ and µ have non-degeneracy can there be unsuppressed SUSY breaking
mediation, even though SUSY breaking per se requires non-degeneracy only in the latter.

However, as we have said, when the full minimization is performed, tree-level relations such
as Tr(F †

Φ) = 0 are no longer expected to hold (for example, with the unconstrained values in the

table we find Tr(F †
Φ) = −0.034µ2
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Φ) = µ2/(16π2), since the effective

F -term for mediation is one-loop suppressed. Thus when the τ are degenerate one can still get
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(16π2) ∼ 1 TeV if µ2/Mf ∼ 107 GeV.
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Now, let us compute gaugino masses for the direct gauge mediation scenario from the meson-
deformed ISS sector. We first consider the effects of those direct messengers which obtain R-
symmetry breaking masses at tree-level and which couple directly to the largest F -terms. These
transform in the fundamental representation of the SM gauge groups, and this constitutes a
strictly one-loop and formally leading order effect. Then we will include additional, formally
higher-loop, contributions from the pseudo-Goldstone modes transforming in both adjoint and
(bi-)fundamental representations of the Standard Model gauge groups. It will turn out that the
latter contributions can be of the same order.

3.2.1 Strict one-loop contributions to gaugino masses

To present a general discussion relevant for any deformation of the ISS model, by mesons,
baryons or otherwise, we shall consider models of the form

W = hΦijϕi.ϕ̃j − hµ2
ijΦji + Wmeson−def(Aa,Φ) + Wbaryon−def(Aa,φ, φ̃) (32)

12

Wcl = Φq.q̃ − (mQΛ)Φ

Wcl = Φijqi.q̃j − (µ2
ISS)ijΦji +mεabεrsq

a
r q

b
s

(µISS =
√

ΛmQ)

ΛbΛ̄b̄ = µb+b̄

b = 3N − FQ > 0

b̄ = 3n− FQ < 0

p = q(r+ − r−)

E = 1
4πε0r3

(

3(p.r)r

r2
− p

)

dHg < 2.1× 10−28ecm

(f.f̃)Φ = (f.f̃)(Φ+ θ2F )

α1 = α2 = α3 = 0

Welec =
λ

MPl
QQ̃ff̃ +Mff̃ +mQQQ̃

Wcl =
λΛ

MPl
Φf f̃ +Mff̃ + qΦq̃ − µ2

ISSΦ

λΛ

MPl
〈f f̃〉 = µ2

ISS ;
λΛ

MPl
〈Φ〉 = −M

〈FΦ〉 〈Φ〉

2

Wcl = Φq.q̃ − (mQΛ)Φ

Wcl = Φijqi.q̃j − (µ2
ISS)ijΦji +mεabεrsq

a
r q

b
s

(µISS =
√

ΛmQ)

ΛbΛ̄b̄ = µb+b̄

b = 3N − FQ > 0

b̄ = 3n− FQ < 0

p = q(r+ − r−)

E = 1
4πε0r3

(

3(p.r)r

r2
− p

)

dHg < 2.1× 10−28ecm

(f.f̃)Φ = (f.f̃)(Φ+ θ2F )

α1 = α2 = α3 = 0

Welec =
λ

MPl
QQ̃ff̃ +Mff̃ +mQQQ̃

Wcl =
λΛ

MPl
Φf f̃ +Mff̃ + qΦq̃ − µ2

ISSΦ

λΛ

MPl
〈f f̃〉 = µ2

ISS ;
λΛ

MPl
〈Φ〉 = −M

〈FΦ〉 〈Φ〉

2



If there is a non-zero gaugino mass at leading order then there will be 
some value of pseudo-Goldstone mode (i.e.      ) with tachyonic 
messengers. 

                                                                                                                                                                       

Why? Komargodski and Shih Th’m
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Non-zero gaugino masses require a lower lying vacuum at some point in 
moduli space, at tree-level (note that the basic ISS model does not have 
this).

                                                                                                                                                                       



Simplest way to see this in action: bring in a lower lying vacuum from infinity by 
having explicit R-breaking messenger:

                                                                                                                                                                       

Hybrid model
  (SAA, Jaeckel, Khoze)
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At leading order gaugino masses from explicit f-messengers only, but scalars from 
both q and f-messengers.

                                                                                                                                                                       

Hybrid model
  (SAA, Jaeckel, Khoze)

                                                                                                                                                                       

The distance away in field space of the lower vacuum is        

As this is brought in from infinity, the SUSY breaking goes from being infinitely 
split to standard ~ 1.
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Outline 

• GGM definition and motivation

• DSB (metastable), two models and two general theorems

• Phenomenology of Pure GGM for LHC @ 7 TeV

“Pure” means no additional generation of Higgs “B term”.
This must be generated radiatively -> large tan beta (Rattazzi, Sarid; Gabrielli Sarid)



Take Pure GGM parameter space and restrict to single effective scale for the 
gaugino masses and for the scalar masses

• includes any scenario with preserved GUT structure in mediation
• captures the main effects of R-symmetry and metastability
• is equivalent to                       in CMSSM 

• in contrast with other work (e.g. Carpenter;  Rajaraman, Shirman, Smidt, Yu)                          

General set-up for phenomenological study

strongly coupled theories with direct mediation.

The main free parameters in this setup are the gaugino and scalar masses as well as the
messenger scale. For simplicity we restrict ourselves in this work to a single effective scale ΛG

for the gaugino masses and a single scale ΛS for the scalars1. Thus at the messenger scale Mmess

the soft supersymmetry breaking gaugino masses are

Mλ̃i
(Mmess) = ki

αi(Mmess)

4π
ΛG (1)

where ki = (5/3, 1, 1), kiαi (no sum) are equal at the GUT scale and αi are the gauge coupling
constants. The scalar mass squareds are

m2
f̃
(Mmess) = 2

3
∑

i=1

Ciki
α2

i (Mmess)

(4π)2
Λ2

S (2)

where the Ci are the quadratic Casimir operators of the gauge groups. Ordinary gauge mediation
scenarios (see Ref. [4] for a review) live on the restricted parameter space ΛG ! ΛS.

Outside the confines of ordinary gauge mediation the parameter space is populated by many
models that predict different values of the ratio of gaugino to scalar masses, ΛG/ΛS . In models
with explicit messengers one expects this ratio to be close to one, while for direct mediation
models the gaugino masses are often suppressed relative to the scalar masses [5, 6, 7, 8, 9, 10].
Recently, hybrid models have been constructed which interpolate between these two cases [11]. It
is also possible to achieve values ΛG/ΛS > 1 by increasing the “effective number of messengers”
in the context of extraordinary gauge mediation models [12]. Indeed we argue that the set
of models defined by ΛG, ΛS and Mmess are the gauge mediation equivalent to the canonical
mSUGRA (or Constrained MSSM) scenario, with ΛG and ΛS playing the role of the parameters
m1/2 and m0 in those models.

With such a plethora of possibilities suddenly available, it is therefore important to determine
if any region in this parameter space is favoured by experimental data. Accordingly, in this
paper we will confront the full ΛG, ΛS and Mmess parameter space with a number of measured
observables in order to provide direction for model building and investigate expected LHC
signals.

Before we proceed to the phenomenology we outline our approach to the supersymmetry
breaking in the Higgs sector. Pure General Gauge Mediation on its own does not generate the
µ-parameter appearing in the effective Lagrangian,

Leff ⊃
∫

d2θ µHuHd , (3)

where the Higgs superfields are denoted by H and their scalar components are H. The phe-
nomenologically required value of µ is roughly of the order of the electroweak scale and as usual
will be determined in our analysis from the requirements of electroweak symmetry breaking.

1We do not split the scale for the different gauge representations as was done in [2, 3].
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e.g. take intermediate messenger scale:                                 

B and tan beta at low energy

! !
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! !
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(SoftSUSY: Allanach)



e.g. take intermediate messenger scale:                                 

B and tan beta at low energy

! !

!"#$%&&'(%)%*+,%-*+./$-*0%*-%123%$+$#45$6

! !

!"#$%&&'(%)%*+,%-*+./$-*0%*-%123%$+$#45$6

Standard gauge mediation line

Direct mediation with spontaneous R-breaking

Hybrid

Strongly 
coupled



Dominated by scalar masses which decrease when either       or         decrease.
So starting at the line of standard gauge mediation and going to the split scenario by 
decreasing         does not increase tuning     
                                 

Fine tuning
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Figure 6: Plots showing level of fine-tuning required to successfully break electroweak symmetry,
ca (roughly speaking we have to tune to 1 part in ca) for (a) MMess = 106 GeV, (b) MMess =
1010 GeV and (c) Mmess = 1014 GeV. Also shown are the contours of ca = 100 and 1000.
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supersymmetry is realised. Furthermore there is some inherent subjectivity in how one chooses
to define an appropriate measure of fine-tuning, and what constitutes an acceptably high level
of fine-tuning in a theory. Should we accept fine-tuning at the 10% level, but not 1%? For
these reasons we think that while an analysis of the necessary fine-tuning required to achieve
electroweak symmetry breaking in General Gauge Mediation is worthwhile, arguments based on
fine-tuning should not be used to rule out any theory under consideration.

With this caveat in place let us proceed. A number of definitions of a suitable quantification
of fine-tuning have been proposed [58, 59]. In this work we adopt the definition of [59], which
is incorporated in the SoftSUSY code. Consider a set of model parameters {a}. For us a =
{ΛG,ΛS , µ}. Since Bµ is set to be zero at the high scale Mmess we do not, of course, consider it
to be part of our fine-tuning measure. Then the sensitivity of M2

Z to the parameter ai is

cai
≡

∣

∣

∣

∣

∂ ln M2
Z

∂ ln a

∣

∣

∣

∣

(20)

The total fine-tuning in the soft-parameters is defined to be ca = max(cai
). While this makes

clear the sensitivity of M2
Z to the soft breaking parameters, it is also possible that there could

exist a region of parameter space that evades the naturalness bounds in the soft-parameters
but is very finely tuned with respect to some other parameter. The canonical example of this
is the focus-point region in the Constrained MSSM [60], which despite being a region of low
fine-tuning from the perspective of the universal scalar mass m0, is nonetheless very sensitive
to the top Yukawa ht. The top Yukawa coupling is different in some ways to the soft masses we
have included in our definition of ca: it is dimensionless and is related in an intimate way to the
measured mass of the top quark Mt [61]. For these reasons we do not include it in our definition
of ca. We have examined the results for cht and found them to be qualitatively similar.

We show in Figure 6 (a,b,c) the level fine-tuning required in our scans with Mmess = 106,
1010 and 1014 GeV as in the previous section 5. We also show contour lines corresponding
to fine-tuning at the ca = 100 and 1, 000 levels. The minimum fine-tuning possible is around
ca ∼ 30. However, the region in which this occurs is strongly disfavoured by the low energy
observables. In fact, the region preferred by the low energy observables is quite well delineated
by the contours of 100 and 1, 000 for Mmess = 1 × 1010,14. That this amount of fine-tuning is
necessary is somewhat troubling, but is comparable to the situation in the mSUGRA scenario.

It is interesting to note that the χ2 (Figure 5) and the fine-tuning (Figure 6) prefer different
regions of parameter space. Without the χ2 analysis the fine-tuning plots alone would favour
light supersymmetry. However, the comparison with measured observables, i.e. the χ2, favours
somewhat heavier superpartner masses.

Finally let us comment on the ΛG/ΛS ratio and its effect on the amount of fine-tuning.
Keeping ΛS fixed and moving horizontally to the left, i.e. decreasing ΛG we see that the fine-
tuning decreases. This is because the fine-tuning is dominated by the scalar mass squareds
which decrease when either ΛG or ΛS decrease. In particular, beginning on the line of ordinary
gauge mediation and decreasing ΛG (with low χ2) does not lead to a significant increase in either

5For earlier work on alleviating the fine-tuning problem in gauge mediation see [62]
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Experimental constraints

To compare with Normal Gauge mediation, look at general scalar and 
gaugino masses in gauge mediation and apply experimental bounds ...

Observable Constraint Experiment Theory

δaµ × 1010 29.5 ± 8.8 [26] [33, 42, 43, 44, 35, 34, 36]
mh[GeV] > 114.4 GeV [45] [46]

BR(B → Xsγ) × 104 3.28 ± 0.29 [47] [37, 38]
BR(Bs → µ+µ−) < 5.8 × 10−8 [48] [33, 42, 43, 44]
BR(B → Dτν) 0.416 ± 0.138 [49] [37, 38]
BR(Ds → τν) 5.7 ± 0.5 × 10−2 [50] [37, 38]
BR(Ds → µν) 5.7 ± 0.5 × 10−3 [50] [37, 38]

RBτν 1.9 ± 0.60 [39] [37, 38, 51]
∆0− 0.031+0.03

−0.025 [26, 52, 53] [37, 38]
Rl23 1.004 ± 0.007 [54] [37, 38]

Table 1: Experimental constraints, showing the observables, the constraints applied and the
source of the theoretical and experimental values and errors.

and BR(Bs → µ+µ−). Furthermore, the anomalous magnetic moment of the muon favours
some supersymmetric contribution to achieve agreement with experiment. Thus, we expect
some tension between (g − 2)µ and some of the B observables.

In order to investigate this we now turn to a χ2 analysis. The χ2 value of the ith observable
is

χ2
i =

(pi − ci)2

σ2
i

(16)

where pi is the predicted value and ci is the experimental central value. This is not the case
for the Higgs mass, for which we use a parametrisation of the LEP likelihood provided in the
SoftSUSY package, and the unobserved branching ratio BR(Bs → µ+µ−) where we use the
Tevatron likelihood2. The total χ2

tot =
∑

i χ
2
i is the sum of the χ2 values of the individual

observables. We note that a study in similar spirit to ours has been performed in the context of
ordinary gauge mediation in [40, 41].

Figure 5 (a,c,e) show the χ2
tot/d.o.f. distributions we obtain from the scans for Mmess =

1× 106,10,14 respectively, along with 68% and 95% confidence limit contours (∆χ2
tot = 2.41, 5.99

respectively). The region of maximum likelihood is shown in yellow, and the best-fit points are
marked by black splodges. We see immediately that the region of light supersymmetry where
both ΛG and ΛS are small is strongly disfavoured (the blue and red region). This due to a
combination of factors. Since the scalars are light the Higgs mass is below the LEP bound for
which there is a strong χ2 penalty. On top of that, the supersymmetric contributions to (g−2)µ
and the B-observables are too large. As the masses of the SUSY particles increase the loop
contributions become smaller and the Higgs mass larger. A large amount of the region of good
fit for the higher Mmess has very small ΛS for Mmess = 1010 GeV, and all of the 68% confidence
region for Mmess = 1× 1014 has an inverted hierarchy ΛG > ΛS . For all values of Mmess within
the 68% confidence limits shown the Higgs mass is just above the limit set at LEP, and the
anomalous magnetic moment of the muon is saturated by SUSY effects. However, the region

2We thank C. S. Lin for providing the likelihood for this process.
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Fit doesnʼt favour degenerate SUSY breaking for scalars and gauginos
                                 

Experimental constraints
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Figure 5: (a,c,e) show the χ2
tot distribution in the ΛG-ΛS plane for Mmess = 106 ,1010 and

1014 GeV respectively, and (b,d,f) show the χ2 of only the B physics observables for the same
values of Mmess. The black lines denote the boundaries of the 68% and 95% confidence regions.
The black spots mark the best-fit points in all cases.

16

!2/ d.o.f.

 4.5  4.8  5.1  5.4  5.7  6
log10("G (GeV))

 3
 3.3
 3.6
 3.9
 4.2
 4.5
 4.8
 5.1
 5.4
 5.7

 6

lo
g 1

0(
"

S 
(G

eV
))

 0

 2

 4

 6

 8

 10

 12

(a)

!2/ d.o.f.

 4.5  4.8  5.1  5.4  5.7  6
log10("G (GeV))

 3
 3.3
 3.6
 3.9
 4.2
 4.5
 4.8
 5.1
 5.4
 5.7

 6

lo
g 1

0(
"

S 
(G

eV
))

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

(b)
!2/ d.o.f.

 4.5  4.8  5.1  5.4  5.7  6  6.3
log10("G (GeV))

 3
 3.3
 3.6
 3.9
 4.2
 4.5
 4.8
 5.1
 5.4
 5.7

 6
 6.3

lo
g 1

0(
"

S 
(G

eV
))

 0

 2

 4

 6

 8

 10

 12

(c)

!2/ d.o.f.

 4.5  4.8  5.1  5.4  5.7  6  6.3
log10("G (GeV))

 3
 3.3
 3.6
 3.9
 4.2
 4.5
 4.8
 5.1
 5.4
 5.7

 6
 6.3

lo
g 1

0(
"

S 
(G

eV
))

 0

 1

 2

 3

 4

 5

 6

(d)
!2/ d.o.f.

 4.5  4.8  5.1  5.4  5.7  6  6.3
log10("G (GeV))

 3
 3.3
 3.6
 3.9
 4.2
 4.5
 4.8
 5.1
 5.4
 5.7

 6
 6.3

lo
g 1

0(
"

S 
(G

eV
))

 0

 2

 4

 6

 8

 10

 12

 14

(e)

!2/ d.o.f.

 4.5  4.8  5.1  5.4  5.7  6  6.3
log10("G (GeV))

 3
 3.3
 3.6
 3.9
 4.2
 4.5
 4.8
 5.1
 5.4
 5.7

 6
 6.3

lo
g 1

0(
"

S 
(G

eV
))

 0

 1

 2

 3

 4

 5

 6

 7

 8

(f)

Figure 5: (a,c,e) show the χ2
tot distribution in the ΛG-ΛS plane for Mmess = 106 ,1010 and

1014 GeV respectively, and (b,d,f) show the χ2 of only the B physics observables for the same
values of Mmess. The black lines denote the boundaries of the 68% and 95% confidence regions.
The black spots mark the best-fit points in all cases.

16

messenger scale =                                         messenger scale =
                                 

Wcl = Φq.q̃ − (mQΛ)Φ

Wcl = Φijqi.q̃j − (µ2
ISS)ijΦji + λ′Tr(Φ)f̃ f +Mf f̃ f

(µISS =
√

ΛmQ)

ΛbΛ̄b̄ = µb+b̄

b = 3N − FQ > 0

b̄ = 3n− FQ < 0

p = q(r+ − r−)

E = 1
4πε0r3

(

3(p.r)r

r2
− p

)

dHg < 2.1× 10−28ecm

(f.f̃)Φ = (f.f̃)(Φ+ θ2F )

α1 = α2 = α3 = 0

Welec =
λ

MPl
QQ̃ff̃ +Mff̃ +mQQQ̃

Wcl =
λΛ

MPl
Φf f̃ +Mff̃ + qΦq̃ − µ2

ISSΦ

λΛ

MPl
〈f f̃〉 = µ2

ISS ;
λΛ

MPl
〈Φ〉 = −M

〈FΦ〉 〈Φ〉

M2
λ

m2
scalar

∼ Nf .
1

1 + Nq

Nf

(

Mf

λ′µ5

)2

Φ ∼ Mf/λ
′

ki = (5/3, 1, 1)

kiαi

m0, m1/2

1010 1014

2

Wcl = Φq.q̃ − (mQΛ)Φ

Wcl = Φijqi.q̃j − (µ2
ISS)ijΦji + λ′Tr(Φ)f̃ f +Mf f̃ f

(µISS =
√

ΛmQ)

ΛbΛ̄b̄ = µb+b̄

b = 3N − FQ > 0

b̄ = 3n− FQ < 0

p = q(r+ − r−)

E = 1
4πε0r3

(

3(p.r)r

r2
− p

)

dHg < 2.1× 10−28ecm

(f.f̃)Φ = (f.f̃)(Φ+ θ2F )

α1 = α2 = α3 = 0

Welec =
λ

MPl
QQ̃ff̃ +Mff̃ +mQQQ̃

Wcl =
λΛ

MPl
Φf f̃ +Mff̃ + qΦq̃ − µ2

ISSΦ

λΛ

MPl
〈f f̃〉 = µ2

ISS ;
λΛ

MPl
〈Φ〉 = −M

〈FΦ〉 〈Φ〉

M2
λ

m2
scalar

∼ Nf .
1

1 + Nq

Nf

(

Mf

λ′µ5

)2

Φ ∼ Mf/λ
′

ki = (5/3, 1, 1)

kiαi

m0, m1/2

1010 1014

2



The NLSP can eventually decay to the LSP (the gravitino)

•Neutralino: displaced vertex with decay to photon                    
                    or jet/lepton pairs 

 
•Stau: displaced vertex with ionization track and decay 
           predominantly to jets

•Co-NLSP: neutralino/stau mass difference less than tau-mass - mix of two 

NLSP
stop mass contours of 500GeV and 1TeV are indicated as dotted lines, and the 500GeV gluino
contour is indicated as a solid line. We have indicated 3 different NLSP regions on the figure,
each giving quite distinct experimental signatures:

• Neutralino NLSP (Marked in green): no ionization track and either missing energy or
displaced vertex with decay predominantly to photon (χ0

1 → G̃γ) or jet/lepton pairs (χ0
1 →

G̃Z → G̃+ jets/ll̄).

• Stau NLSP (Marked in blue): ionization track plus possible displaced vertex with decay
predominantly to jets (τ̃R → G̃τ → G̃ντ + jets/l′ l̄).

• Neutralino/stau co-NLSP (Marked in red): if the mass difference between the neutralino
and stau is less than mτ , then the NNLSP is unable to decay to the NLSP, and each
component behaves effectively a separate NLSP. One expects a mix of those previous two
cases.

We now consider the decay length of the NLSP as follows. First consider the decays: they
go through the interaction term which for on-shell particles is [8]

L =
1

F0

(

(m2
f −m2

f̃
)f̄Lf̃ +

Mλ̃i

4
√
2
¯̃λiσ

µνF i
µν

)

G̃+ h.c. (7)

where G̃ is the Goldstino and as we have already stated F0 is the absolute scale of supersymmetry
breaking. The decay length derived from Eq.(7) is given by

Ldecay =
1

κ

(

100GeV

mNLSP

)5 ( F0

(100 TeV )2

)2

0.1mm (8)

where the factor κ is a calculable number depending on the mixing in the NLSP, and is of order
unity (precisely unity for the stau in fact). The interesting case is when decay takes place inside
the detector which conservatively requires Ldecay < 10m. For NLSP masses less that 500GeV ,
this translates into

√

F0 ! 104 TeV . (9)

Thus F0 will be at the lower end of the possible range.

In order to get more precise information we need to consider the relation between F0 and
ΛG or ΛS . This is very model dependent, but simplifies if we take there to be only one source of
supersymmetry breaking (i.e. one potential Goldstino) and one dominant source of mediation
for gauginos or scalars. Under this assumption the relation between the Λ’s and F0 can be
expressed with two parameters kG and kS as

ΛG = kGF0/Mmess ; ΛS = kSF0/Mmess . (10)

In GGM, kG and kS are independent parameters which encode the difference between the gauge
and scalar mass scales ΛG and ΛS . In ordinary gauge mediation, kG = kS , and this corresponds
to a simple one-scale special case of GGM. In general, as will be reviewed shortly, the range of
values for kG and kS is highly model-dependent.
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The NLSP is either neutralino or stau or co-NLSP

NLSP
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Figure 4: The NLSP regions in the ΛG, ΛS parameter space for Mmess = 1010 GeV (left figure)
and Mmess = 1014 GeV (right figure). The NLSP is χ0

1 in the green region, χ0
1/τ̃ co-NLSP in

the red region and τ̃ in the blue region.
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Decay inside detector?
(Bagger Matchev Pierce Zhang)

NLSP
In order to present model-independent information it is useful to express F0 with reference

to ΛG: i.e. we replace F0 = k−1
G ΛGMmess. The decay length Ldecay derived from Eq.(7) is given

by

k2GLdecay =
1

κ

(

100GeV

mNLSP

)5 (√
ΛGMmess

100TeV

)4

0.1mm (11)

We then plot contours of k2GL. The reason that this is the most useful parameterization is that
in the regions where ΛG > ΛS the NLSP is mainly slepton, as can be seen from Fig. 4, and
its mass is dominated by renormalization group contributions from the gauginos (except when
ΛG/ΛS ∼ O(1−10)). Thus mNLSP is mainly a function of ΛG (just as the stop mass is in fact).
On the other hand in the regions where ΛG < ΛS the NLSP is mainly a bino-like neutralino and
again its mass is expected to be dominated by ΛG. Hence the RHS of Eq. (11) is predominantly
a function of ΛG.

We show the results for the decay lengths log10(k
2
GLdecay) in Figure 5 for the three values

of the messenger mass. We see that the contours follow a vertical, horizontal and vertical again
pattern, which we now explain. Starting at the top of the figures, when ΛS is large the NLSP is
the neutralino, and the decay length does not change with decreasing ΛS as both mNLSP and ΛG

are constant. When the NLSP species changes from neutralino to the lightest stau, there is a kink
in the contour. This is partly due to the change in κ, and also to the change in the behaviour
of the NLSP mass with ΛG and ΛS . In this regime the stau mass is dominated by ΛS and,
although k2GLdecay is proportional to Λ2

G the factor of 1/m5
τ̃ means that k2GLdecay is proportional

to 1/Λ5
S . When these two parameters are of the same of order of magnitude the contour thus

appears flat in ΛS . Finally, when ΛG/ΛS ∼ 10 the stau mass begins to be dominated by ΛG

and generated mostly through RG running and so the contour is again approximated by a line
of constant ΛG.

It is instructive to now consider the values of kG that one expects to have in various different
top-down scenarios in order to see whether decays inside the detector are a possibility:

• Ordinary mediation: Here one has only one messenger and ΛG = ΛS and kG is the coupling
of the messenger to the SUSY breaking F -term. Typically one takes kG ∼ 1. In this case
Figure 5 gives directly the decay lengths of the NLSP. Evidently low messenger scales are
required for decay inside the detector. For Mmess = 106 GeV decay always happens inside
the detector. Intermediate scales Mmess = 1010 GeV would require high values of ΛG, ΛS

which leads to very high masses outside the early discovery region.

• Suppressed ordinary gauge mediation: Ref. [20] presented a simple scheme for gauge me-
diation in which a single messenger field was coupled to a metastable SUSY-breaking
sector of the type introduced in Ref. [21]. In these models the Goldstino superfield is a
composite particle (a “meson”) and hence the effective coupling to the messenger fields

is suppressed by a factor kG ∼ kS ∼ Λcomp

MX
$ 1 where MX is some fundamental scale

and Λcomp is the scale of compositeness. The general expectation is that kG, kS $ 1 and
indeed phenomenological viability demands it. For example the values chosen in Ref. [20]
give kG, kS ∼ 10−7. Hence decay inside the detector (or even inside the Solar system) is
clearly impossible for any values of Mmess or ΛG, ΛS .
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where          is of order one (mixing in NLSP) and       is the effective number of 
messengers to the gaugino  (                                )  
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Figure 5: This figure shows the logarithm of the decay length in metres of the NLSP,
log10(k

2
GLdecay) for Mmess = 1 × 106 GeV (top), Mmess = 1 × 1010 GeV (middle) and

Mmess = 1× 1014 GeV (bottom), as well as contours for each case.
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Figure 5: This figure shows the logarithm of the decay length in metres of the NLSP,
log10(k

2
GLdecay) for Mmess = 1 × 106 GeV (top), Mmess = 1 × 1010 GeV (middle) and

Mmess = 1× 1014 GeV (bottom), as well as contours for each case.
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In order to present model-independent information it is useful to express F0 with reference
to ΛG: i.e. we replace F0 = k−1

G ΛGMmess. The decay length Ldecay derived from Eq.(7) is given
by

k2GLdecay =
1

κ

(

100GeV

mNLSP

)5 (√
ΛGMmess

100TeV

)4

0.1mm (11)

We then plot contours of k2GL. The reason that this is the most useful parameterization is that
in the regions where ΛG > ΛS the NLSP is mainly slepton, as can be seen from Fig. 4, and
its mass is dominated by renormalization group contributions from the gauginos (except when
ΛG/ΛS ∼ O(1−10)). Thus mNLSP is mainly a function of ΛG (just as the stop mass is in fact).
On the other hand in the regions where ΛG < ΛS the NLSP is mainly a bino-like neutralino and
again its mass is expected to be dominated by ΛG. Hence the RHS of Eq. (11) is predominantly
a function of ΛG.

We show the results for the decay lengths log10(k
2
GLdecay) in Figure 5 for the three values

of the messenger mass. We see that the contours follow a vertical, horizontal and vertical again
pattern, which we now explain. Starting at the top of the figures, when ΛS is large the NLSP is
the neutralino, and the decay length does not change with decreasing ΛS as both mNLSP and ΛG

are constant. When the NLSP species changes from neutralino to the lightest stau, there is a kink
in the contour. This is partly due to the change in κ, and also to the change in the behaviour
of the NLSP mass with ΛG and ΛS . In this regime the stau mass is dominated by ΛS and,
although k2GLdecay is proportional to Λ2

G the factor of 1/m5
τ̃ means that k2GLdecay is proportional

to 1/Λ5
S . When these two parameters are of the same of order of magnitude the contour thus

appears flat in ΛS . Finally, when ΛG/ΛS ∼ 10 the stau mass begins to be dominated by ΛG

and generated mostly through RG running and so the contour is again approximated by a line
of constant ΛG.

It is instructive to now consider the values of kG that one expects to have in various different
top-down scenarios in order to see whether decays inside the detector are a possibility:

• Ordinary mediation: Here one has only one messenger and ΛG = ΛS and kG is the coupling
of the messenger to the SUSY breaking F -term. Typically one takes kG ∼ 1. In this case
Figure 5 gives directly the decay lengths of the NLSP. Evidently low messenger scales are
required for decay inside the detector. For Mmess = 106 GeV decay always happens inside
the detector. Intermediate scales Mmess = 1010 GeV would require high values of ΛG, ΛS

which leads to very high masses outside the early discovery region.

• Suppressed ordinary gauge mediation: Ref. [20] presented a simple scheme for gauge me-
diation in which a single messenger field was coupled to a metastable SUSY-breaking
sector of the type introduced in Ref. [21]. In these models the Goldstino superfield is a
composite particle (a “meson”) and hence the effective coupling to the messenger fields

is suppressed by a factor kG ∼ kS ∼ Λcomp

MX
$ 1 where MX is some fundamental scale

and Λcomp is the scale of compositeness. The general expectation is that kG, kS $ 1 and
indeed phenomenological viability demands it. For example the values chosen in Ref. [20]
give kG, kS ∼ 10−7. Hence decay inside the detector (or even inside the Solar system) is
clearly impossible for any values of Mmess or ΛG, ΛS .
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stop mass contours of 500GeV and 1TeV are indicated as dotted lines, and the 500GeV gluino
contour is indicated as a solid line. We have indicated 3 different NLSP regions on the figure,
each giving quite distinct experimental signatures:

• Neutralino NLSP (Marked in green): no ionization track and either missing energy or
displaced vertex with decay predominantly to photon (χ0

1 → G̃γ) or jet/lepton pairs (χ0
1 →

G̃Z → G̃+ jets/ll̄).

• Stau NLSP (Marked in blue): ionization track plus possible displaced vertex with decay
predominantly to jets (τ̃R → G̃τ → G̃ντ + jets/l′ l̄).

• Neutralino/stau co-NLSP (Marked in red): if the mass difference between the neutralino
and stau is less than mτ , then the NNLSP is unable to decay to the NLSP, and each
component behaves effectively a separate NLSP. One expects a mix of those previous two
cases.

We now consider the decay length of the NLSP as follows. First consider the decays: they
go through the interaction term which for on-shell particles is [8]

L =
1

F0

(

(m2
f −m2

f̃
)f̄Lf̃ +

Mλ̃i

4
√
2
¯̃λiσ

µνF i
µν

)

G̃+ h.c. (7)

where G̃ is the Goldstino and as we have already stated F0 is the absolute scale of supersymmetry
breaking. The decay length derived from Eq.(7) is given by

Ldecay =
1

κ

(

100GeV

mNLSP

)5 ( F0

(100 TeV )2

)2

0.1mm (8)

where the factor κ is a calculable number depending on the mixing in the NLSP, and is of order
unity (precisely unity for the stau in fact). The interesting case is when decay takes place inside
the detector which conservatively requires Ldecay < 10m. For NLSP masses less that 500GeV ,
this translates into

√

F0 ! 104 TeV . (9)

Thus F0 will be at the lower end of the possible range.

In order to get more precise information we need to consider the relation between F0 and
ΛG or ΛS . This is very model dependent, but simplifies if we take there to be only one source of
supersymmetry breaking (i.e. one potential Goldstino) and one dominant source of mediation
for gauginos or scalars. Under this assumption the relation between the Λ’s and F0 can be
expressed with two parameters kG and kS as

ΛG = kGF0/Mmess ; ΛS = kSF0/Mmess . (10)

In GGM, kG and kS are independent parameters which encode the difference between the gauge
and scalar mass scales ΛG and ΛS . In ordinary gauge mediation, kG = kS , and this corresponds
to a simple one-scale special case of GGM. In general, as will be reviewed shortly, the range of
values for kG and kS is highly model-dependent.
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Two light gluino points (direct mediation), a stau NLSP point (many messengers/
strong coupling) and a co-NLSP point (close to ordinary GM)

Benchmark points
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Figure 2: Figures (a,b) show the χ2
tot distribution in the ΛG-ΛS plane for Mmess = 1010 and

1014 GeV respectively. The black lines denote the 68% and 95% confidence regions, and the
black blobs are the benchmark points discussed in the text.

The spectra of the two benchmark points are given in Table 1, and the neighbourhood of
the chosen benchmark points leads to similar spectra. The main features of the spectrum in
these points are that they have light gluinos with masses below 500 GeV and that the NLSP
is a bino-like neutralino2. Detailed discussion of other possibilities for NLSP phenomenology in
the early stages of the LHC will be presented in section 3.

For the rest of the spectrum in Table 1 we note that the first two neutralinos are light, while
the Higgsino-like third and fourth neutralinos are much heavier, at the TeV scale. A similar
story holds for the charginos: one is quite light, approximately 135 GeV and is wino-like while
the other is higgsino-like and at the TeV scale. The left-handed sleptons are at the TeV scale,
while the right-anded ones vary from 400-700 GeV depending on the point and sparticle type.
As usual, the right-handed staus are the lightest of the sleptons due to mixing proportional to
tan β and the relatively large size of λτ . Finally, the squarks all have masses in above 1 TeV.
Thus for these benchmark points the dominant production channel at the LHC is gluino pair
production.

We have computed the total production cross-sections to NLO using PROSPINO [17, 18].
The total gluino production cross sections in pp collissions at 7 TeV are,

PGM1a : σpp→g̃g̃ = 4.09 pb @7TeV (6)

PGM1b : σpp→g̃g̃ = 4.34 pb @7TeV

We present cross-sections in femtobarns for various channels in Table 2. Since before shutdown
the LHC is expected to accumulated approximately 1fb−1 of luminosity, the entries in the table

2The LSP is the gravitino as is standard in gauge mediation.
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Benchmark Point σpp→g̃g̃ σpp→q̃q̃ σpp→g̃q̃ σpp→q̃ ¯̃q σpp→τ̃iτ̃j σpp→τ̃iν̃τ

Stau 17 190 164 54 91 30
Co-NLSP 16 133 128 34 17 12

Table 3: This table shows the production rates for the most important processes for the two
benchmark points under consideration at the LHC with

√
s = 7 TeV. All cross-sections are in

femtobarns.

not performed a detailed simulation, this point should just be within the range of discovery of
the ATLAS detector in the first year of operation [22]. Single production of neutralinos and
charginos in conjuction with a gluino or a squark is negligible.

Finally, we discuss the possibility of a stau-neutralino co-NLSP. If we were to decrease
ΛG very much, this would lead to an unacceptable decrease in the Higgs mass. Therefore we
must increase ΛS in order to achieve mτ̃ ∼ mχ0

1
. The co-NLSP point has ΛG = 1.2 × 105,

ΛS = 4.76 × 104 and tan β = 20.5. The point we have selected has mτ̃1 = 157GeV and mχ0
1
=

157GeV , with neutralino marginally heavier than the stau. As the scalar mass parameter ΛS

has increased somewhat, the squark masses are heavier at this point by around 50GeV compared
with the stau NLSP point. The slepton masses are also higher, and the light smuon and selectron
masses are 181GeV .

@Joerg: Decay channel piecharts?

4 Conclusions

We have made a survey of the phenomenology of Pure General Gauge Mediation – i.e. in which
the Bµ parameter is generated radiatively. We placed a particular emphasis on its testability
in early LHC searches (at 7 TeV). Four benchmark points were presented: two corresponding
to light gluino regions (mg̃ ! 500 GeV with a bino-like neutralino NLSP), one to a stau NLSP
and one to stau/neutralino co-NLSP. These benchmark points are representative of the different
phenomenology that can occur in the regions that are favoured by current experimental fits. We
present a preliminary analysis of the spectrum, production cross sections and branching ratios.
The full set of data in SLHA format for these benchmark points can be found at

http://www.ippp.dur.ac.uk/∼SUSY

We also surveyed and discussed NLSP phenomenology in this set-up, focussing on the possibility
of NLSP decays inside the detector in various different schemes of SUSY breaking. Pure GGM
with medium to low messenger masses (106−10 GeV) can give detectable decays with displaced
vertices inside the detector, and hence direct knowledge of the fundamental scale of SUSY
breaking.
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Benchmark point PGM1a PGM1b

Mmess (GeV) 1010 1014

ΛG (GeV) 5 × 104 5 × 104

ΛS (GeV) 2.5 × 105 2.5 × 105

tan β 46.6 41.2

χ0
1 67 67

χ0
2 136 133

χ0
3 1038 936

χ0
4 1039 938

χ±

1 136 134
χ±

2 1039 937
g̃ 458 453

ẽL, µ̃L 927 1013
ẽR, µ̃R 540 712

τ̃1 392 544
τ̃2 898 964

ν̃1,2 925 1011
ν̃3 889 958

t̃1 1418 1050
t̃2 1729 1471

b̃1 1578 1287

b̃2 1731 1471
ũL, c̃L 2011 1760
ũR, c̃R 1803 1520

d̃L, s̃L 1983 1734

d̃R, s̃R 1774 1460

h0 116.9 115.3
A0,H0 944 1032
H± 947 1035

Table 1: Spectra for the two benchmark points. All masses are in GeV. The NLSP and the light-
est coloured super-particle (gluino) are shown in bold in each case. These spectra and all other
relevant details can be obtained in SLHA format at http://www.ippp.dur.ac.uk/∼SUSY

Benchmark Point σpp→g̃g̃ σpp→χ0
2
χ±

1
σpp→χ+

1
χ−

1
σpp→g̃q̃

PGM1a 4090 2682 1320 18.9
PGM1a 4340 2835 1390 58.7

Table 2: This table shows the production rates for the most important processes for the two
benchmark points under consideration at the LHC with

√
s = 7 TeV. All cross-sections are in

femtobarns.
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Production at 7TeV: most important processes

Benchmark points
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Decays of gluino:

(Prospino2.1:Beenakker, Hopker Spira Plehn)

(SUSY-HIT:Djouadi Muehlleitner Spira)
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χ0
4 1039 938

χ±

1 136 134
χ±

2 1039 937
g̃ 458 453

ẽL, µ̃L 927 1013
ẽR, µ̃R 540 712

τ̃1 392 544
τ̃2 898 964

ν̃1,2 925 1011
ν̃3 889 958

t̃1 1418 1050
t̃2 1729 1471

b̃1 1578 1287

b̃2 1731 1471
ũL, c̃L 2011 1760
ũR, c̃R 1803 1520

d̃L, s̃L 1983 1734

d̃R, s̃R 1774 1460

h0 116.9 115.3
A0,H0 944 1032
H± 947 1035

Table 1: Spectra for the two benchmark points. All masses are in GeV. The NLSP and the light-
est coloured super-particle (gluino) are shown in bold in each case. These spectra and all other
relevant details can be obtained in SLHA format at http://www.ippp.dur.ac.uk/∼SUSY

Benchmark Point σpp→g̃g̃ σpp→χ0
2
χ±

1
σpp→χ+

1
χ−

1
σpp→g̃q̃

PGM1a 4090 2682 1320 18.9
PGM1a 4340 2835 1390 58.7

Table 2: This table shows the production rates for the most important processes for the two
benchmark points under consideration at the LHC with

√
s = 7 TeV. All cross-sections are in

femtobarns.
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Benchmark Point σpp→g̃g̃ σpp→q̃q̃ σpp→g̃q̃ σpp→q̃ ¯̃q σpp→τ̃iτ̃j σpp→χ0
2χ±

1

Stau 17 190 164 54 91 49
Co-NLSP 16 133 128 34 17 50

Table 3: This table shows the production rates for the most important processes for the two
benchmark points under consideration at the LHC with

√
s = 7 TeV. All cross-sections are in

femtobarns.

ΛS = 1.6× 104, which correspond to a moderately large value of tan β = 19. The squark masses
for our benchmark point are in the range 750 − 800 GeV , while the mass of the lightest stop is
617 GeV . The gluino mass is slightly heavier at 880 GeV . The lightest stau mass is 100 GeV ,
just above the bound from direct searches, and the lighest neutralino mass is 156 GeV . The
stau-smuon splitting is 28 GeV . We now turn to the production cross-sections for this point.
As the gluino mass is nearly double that of the neutralino NLSP points PGM1a and PGM1b,
the pp → g̃g̃ cross-section is much smaller. The processes with the largest production cross-
sections for the stau NLSP benchmark point are shown in Table 3.1 in femtobarns. While the
squark production cross-sections are higher than for the PGM1 scenarios, for this point the
total number of SUSY events will be about 600, when one includes the processes with smaller
contributions. While we have not performed a detailed simulation, this point should just be
within the range of discovery of the ATLAS detector in the first year of operation [25]. In the
stau NLSP scenario one does not expect any missing ET since the pair produced staus will turn
up in the calorimeters at the end of the SUSY cascade. Four jets plus two muon-like objects
should thus enable SUSY discovery in these scenarios. Finally, single production of neutralinos
and charginos in conjuction with a gluino or a squark is negligible.

Finally, we discuss the possibility of a stau-neutralino co-NLSP. If we were to decrease
ΛG very much, this would lead to an unacceptable decrease in the Higgs mass. Therefore we
must increase ΛS in order to achieve mτ̃ ∼ mχ0

1
. The co-NLSP point has ΛG = 1.2 × 105,

ΛS = 4.76 × 104 and tan β = 20.5. The point we have selected has mτ̃1 = 157 GeV and mχ0
1

=
157 GeV , with neutralino marginally heavier than the stau. As the scalar mass parameter ΛS

has increased somewhat, the squark masses are heavier at this point by around 50 GeV compared
with the stau NLSP point. The slepton masses are also higher, and the light smuon and selectron
masses are 181 GeV . The production cross-sections are broadly similar to the stau NLSP case,
but somewhat smaller due to the higher masses and more compressed spectrum in this case.

4 Conclusions

We have made a survey of the phenomenology of Pure General Gauge Mediation – i.e. in which
the Bµ parameter is generated radiatively, with a particular emphasis on its testability in early
LHC searches (at 7 TeV). Four benchmark points were presented: two corresponding to light
gluino regions (mg̃ ! 500 GeV with a bino-like neutralino NLSP), one to a stau NLSP and
one to stau/neutralino co-NLSP. These benchmark points are representative of the different
phenomenology that can occur in the regions that are favoured by current experimental fits.
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Figure 3: Piecharts giving a rough impression of the gluino decay chains/branching ratios. In
the first step the gluino decays into the products depicted in the inner ring, in the next step the
daughter sparticle decays into the products given in the outer ring (for simplicity we only write
down the additional decay products for this last decay). We do not display those chains with a
branching ratio less than 5%.

points can be found at
http://www.ippp.dur.ac.uk/∼SUSY

In the following section we will present a more general overview of the NLSP phenomenology.
We shall then perform a complementary analysis, in regions of the parameter space where the
NLSP is a stau or a light slepton or there are co-NLSPs (in practice these are areas where
the stau and neutralino are nearly degenerate in mass). Again we focus on areas that may be
relevant to the early LHC searches.

3 Survey of NLSP phenomenology

In gauge mediated models the Lightest Supersymmetric Particle (LSP) is always the gravitino
[8]. There is much interest therefore in the phenomenology of the Next-to-LSP (NLSP) as
this is the metastable state into which any produced superpartner will decay before ultimately
decaying to the gravitino. Therefore it is instructive to map out the NLSP phenomenology in
the whole ΛG, ΛS parameter space, and describe in more detail some of the top-down models
that correspond to the different regions.

For the assumptions we outlined above, the NLSP is either slepton or neutralino. The NLSP
phenomenology is of great interest for two reasons [8]. First it is typically very long lived – its
decay to the gravitino is suppressed: Γ ∝ m5

NLSP /F 2
0 where mNLSP is its mass and F0 is the

intrinsic scale of supersymmetry breaking in the hidden sector (i.e. the potential is 〈V 〉 = F 2
0 ).
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Summary

  Direct, indirect and hybrid scenarios can cover much of available gauge
     mediation parameter space - including ordinary and mildly split 

  A strategy for phenomenology that captures the effects of the vacuum structure is 
     to analyse in                  parameter space.

  Pure General Gauge Mediation phenomenology is accessible at 7TeV in a number of     
     interesting scenarios

  Light gluino (with neutralino NLSP), stau-NLSP and co-NLSP phenomenology 
	


  SLHA data for benchmark points at http://www.ippp.dur.ac.uk/~SUSY
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