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 Precise bounds on matter content

                         	
 	
 	
       
Ωmh2 = 0.1334 ± 0.0056      Ωbh2 = 0.0226 ± 0.0006

                              

     Ωcdmh2 = 0.1109 ± 0.0056

or
Ωcdm h2 = 0.0997 - 0.1221  (2 σ)
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MSSM and R-Parity 
 Stable DM candidate

1) Neutralinos

2) Sneutrino
         Excluded (unless add L-violating terms)

3) Other:
        Axinos, Gravitinos, etc

χi = αi
�B + βi

�W + γi
�H1 + δi

�H2

SUSY Dark MatterSUSY Dark Matter
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The Constrained and Very 
Constrained MSSM 

CMSSM - as a 4+ parameter theory

VCMSSM models - 3+ parameter theory (mSUGRA)

No-Scale models - 1+ parameter theory

SuperGUT theories - unification at some input scale 
Min > MGUT  - plus GUT parameters.
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SUSY Superpotential + Soft terms

contain first derivatives of fields, we have

∂µ

(
∂LMSSM

∂ (∂µΦi)
δΦi

)
= ∂µ

(
∂Lsusy

∂ (∂µΦi)
δΦi

)
= ∂µ [Sµ

MSSM + Kµ] (20)

where we recall that ∂µ Kµ is the variation of Lsusy under an infinitesimal supersymmetry
transformation. Therefore

∂µKµ = δLsusy = δLMSSM − δLsoft = δLMSSM −
∂Lsoft

∂Φi
δΦi. (21)

Inserting this equation in eq. (20), and the resulting expression in eq. (19), we obtain

δLMSSM =

[
∂LMSSM

∂Φi
− ∂µ

∂LMSSM

∂ (∂µΦi)

]
δΦi + ∂µ Sµ

MSSM + δLMSSM −
∂Lsoft

∂Φi
δΦi, (22)

or

∂µ Sµ
MSSM =

{
∂Lsoft

∂Φi
−

[
∂LMSSM

∂Φi
− ∂µ

∂LMSSM

∂ (∂µΦi)

]}
δΦi (23)

Inserting this expression in eq. (17), we rewrite the interaction lagrangian between the
MSSM and the light gravitino as

Lint, eff =
i√

3 m3/2 MP

χ̄

{
∂Lsoft

∂Φi
−

[
∂LMSSM

∂Φi
− ∂µ

∂LMSSM

∂ (∂µΦi)

]}
δΦi + h. c. (24)

As we prove in Appendix B, the part in square parenthesis does not contribute to the
amplitudes of physical processes having one light gravitino in the initial or final state (in
short, one can take the on shell expression for ∂µ Sµ

MSSM, since the term in square parenthesis
vanishes on shell; notice that the procedure just outlined provides the on-shell expression
of ∂µ Sµ

MSSM without the need to explicitly work out the equations of motion of the fields
entering in the supercurrent). Namely:

Lint, eff =
i√

3m3/2 MP

χ̄
∂Lsoft

∂Φi
δΦi + h. c. (25)

This is the effective theory for the MSSM-light gravitino interaction in non-derivative form.
To get an explicit expression, we recall the MSSM superpotential and soft supersymmetry
breaking Lagrangian:

W = huH2Quc + hdH1Qdc + heH1Lec + µH2H1 (26)

Lsoft = −
1

2
Mαλαλα − m2

ijφ
i∗φj (27)

−AuhuH2Quc − AdhdH1Qdc − AeheH1Lec − BµH2H1 + h.c.

where generation indices on the matter fields have been supressed. From this, we find

iLint, eff =
i m2

ij√
3MP m3/2

(
χ̄ χi

L φ∗j − χ̄i
L χ φj

)
−

i√
3MP m3/2

[
AjWj,i χ̄ χi

L − (AjWj,i)
∗ χ̄i

L χ
]

−
Mα

4
√

6MP m3/2

F (α)a
µν χ̄ [γµ, γν ] λ(α)a −

i gα Mα√
6MP m3/2

(
φ∗i T a

ij φj
)
χ̄ γ5 λ(α)a (28)
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where it is to be understood that in (84) that H1 refers to the scalar component of the Higgs
H1 and ψL and ψec represents the fermionic component of the left-handed lepton doublet and
right-handed singlet respectively. Gauge invariance requires that as defined in (82), H1 has
hypercharge YH1 = −1 (and YH2 = +1). Therefore if the two doublets obtain expectation
values of the form

〈H1〉 =
(

v1

0

)
〈H2〉 =

(
0
v2

)
(85)

then (84) contains a term which corresponds to an electron mass term with

me = yev1 (86)

Similar expressions are easily obtained for all of the other massive fermions in the standard
model. Clearly as there is no νc state in the minimal model, neutrinos remain massless.
Both Higgs doublets must obtain vacuum values and it is convenient to express their ratio
as a parameter of the model,

tan β =
v2

v1
(87)

3.1 The Higgs sector

Of course if the vevs for H1 and H2 exist, they must be derivable from the scalar potential
which in turn is derivable from the superpotential and any soft terms which are included.
The part of the scalar potential which involves only the Higgs bosons is

V = |µ|2(H∗
1H1 + H∗

2H2) +
1

8
g′2(H∗

2H2 − H∗
1H1)

2

+
1

8
g2

(
4|H∗

1H2|2 − 2(H∗
1H1)(H

∗
2H2) + (H∗

1H1)
2 + (H∗

2H2)
2
)

+m2
1H

∗
1H1 + m2

2H
∗
2H2 + (BµεijH

i
1H

j
2 + h.c.) (88)

In (88), the first term is a so-called F -term, derived from |(∂W/∂H1)|2 and |(∂W/∂H2)|2
setting all sfermion vevs equal to 0. The next two terms are D-terms, the first a U(1)-D-
term, recalling that the hypercharges for the Higgses are YH1 = −1 and YH2 = 1, and the
second is an SU(2)-D-term, taking T a = σa/2 where σa are the three Pauli matrices. Finally,
the last three terms are soft supersymmetry breaking masses m1 and m2, and the bilinear
term Bµ. The Higgs doublets can be written as

〈H1〉 =
(

H0
1

H−
1

)
〈H2〉 =

(
H+

2

H0
2

)
(89)

and by (H∗
1H1), we mean H0

1
∗
H0

1 + H−
1

∗
H−

1 etc.
The neutral portion of (88) can be expressed more simply as

V =
g2 + g′2

8

(
|H0

1 |2 − |H0
2 |2

)2
+ (m2

1 + |µ|2)|H0
1 |2

+(m2
2 + |µ|2)|H0

2 |2 + (BµH0
1H

0
2 + h.c.) (90)
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Tuesday, August 24, 2010



CMSSM Unification Conditions

• Gaugino masses: Mi = m1/2

• Scalar masses: mi = m0

• Trilinear terms: Ai = A0

 predict µ, B
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CMSSM Unification Conditions

• Gaugino masses: Mi = m1/2

• Scalar masses: mi = m0

• Trilinear terms: Ai = A0

mSUGRA Unification Conditions
•   Gravitino masses: m3/2 = m0

• Bilinear term: B0 = A0 - m0  predict µ, tan β

 predict µ, B
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Generic m1/2 - m0 plane
m
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m1/2 - m0 planes
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MCMC Analysis4

Observable Th. Source Ex. Source Constraint Add. Th. Unc.

∆α(5)
had(mZ) [52] [53] 0.02758± 0.00035 –

mZ [GeV/c2] [52] [53] 91.1875± 0.0021 –

ΓZ [GeV/c2] [52] [53] 2.4952± 0.0023 0.001

σ0
had [nb] [52] [53] 41.540± 0.037 –

Rl [52] [53] 20.767± 0.025 –

Afb(#) [52] [53] 0.01714± 0.00095 –

A!(Pτ ) [52] [53] 0.1465 ± 0.0032 –

Rb [52] [53] 0.21629 ± 0.00066 –

Rc [52] [53] 0.1721 ± 0.003 –

Afb(b) [52] [53] 0.0992 ± 0.0016 –

Afb(c) [52] [53] 0.0707 ± 0.0035 –

Ab [52] [53] 0.923 ± 0.020 –

Ac [52] [53] 0.670 ± 0.027 –

A!(SLD) [52] [53] 0.1513 ± 0.0021 –

sin2 θ!
w(Qfb) [52] [53] 0.2324 ± 0.0012 –

mW [GeV/c2] [52] [53] 80.398± 0.025 0.010

mt [GeV/c2] [52] [53] 170.9± 1.8 –

BRSUSY
b→sγ /BRSM

b→sγ [54] [55] 1.13 ± 0.12 0.15

BRBs→µ+µ− [56] [55] < 8.0 × 10−8 0.02 × 10−8

aSUSY
µ − aSM

µ [50] [49,57,58] (29.5 ± 8.7) × 10−10 2.0 × 10−10

Ωh2 [56,59,60] [48] 0.113 ± 0.009 0.012

mh [GeV/c2] [26,34,36,61] [38] see text see text
Table 1
List of experimental constraints used in this work. The values and errors shown are the current best
understanding of these constraints. The rightmost column displays additional theoretical uncertainties
taken into account when implementing these constraints in the CMSSM. The constraint on mh is only
used in the first part of this study.

scan over M1/2 and A0 was then performed, and
provided information about preferred regions in
the CMSSM parameter space. In the study pre-
sented here instead, all free parameters are placed
in the overall χ2 minimum by the fit, thus remov-
ing the need to fix any model parameters during
the scans. Indeed, in the present work, only ex-
perimental constraints are imposed when deriving
confidence level contours, without any direct con-
straints on model parameters themselves. Hence,
the results presented here have a clearer statisti-
cal meaning and are more general with respect to

previous studies.
Second, in Ref. [14] a likelihood analysis of the

CMSSM parameter space was performed, but mh

was not emphasized. Third, in Refs. [19,20,21,
22,23,24], Markov Chain Monte Carlo techniques
were employed to sample the entire CMSSM pa-
rameter space with respect to the likelihoods and
the Bayesian posterior probabilities. The result-
ing probabilty distributions are usually graphi-
cally displayed in two-dimensional planes by in-
tegrating over the unseen dimensions. Given
the limited experimental precision of the data,

4

Observable Th. Source Ex. Source Constraint Add. Th. Unc.

mW [GeV/c2] [44,45] [46] 80.399± 0.025 0.010

aexp
µ − aSM

µ [8,47–49] [7,10,50] (29.5 ± 8.7) × 10−10 2.0 × 10−10

mh [GeV/c2] [51–54] [5,6] > 114.4 (see text) 3.0

BRexp
b→sγ/BRSM

b→sγ [55–59] [60] 1.117 ± 0.076exp ± 0.082th−SM 0.050

mt [GeV/c2] [44,45] [61] 172.4 ± 1.2 –

ΩCDMh2 [62–64] [14] 0.1099± 0.0062 0.012

BR(Bs → µ+µ−) [62,65,66] [60] < 4.7 × 10−8 0.02 × 10−8

BRexp
B→τν/BRSM

B→τν [67] [68,69] 1.94 ± 0.53 –

BRexp
Bd→$$/BRSM

Bd→$$ [65,66] [60] ? < 2.3 × 10−8 0.02 × 10−8

BRexp
B→Xs$$/BRSM

B→Xs$$ [65,66,70] [60] 0.99 ± 0.32 –

BRexp
K→µν/BRSM

K→µν [65,66] [71] 0.992± 0.017 –

BRexp
K→πνν̄/BRSM

K→πνν̄ [65,66] [] ? < 4.5 –

∆mexp
s /∆mSM

s [65,66] [72] 1.11 ± 0.01 0.32
(∆mexp

s
/∆mSM

s
)

(∆mexp
d

/∆mSM
d

)
[65,66] [72,60] 1.057± 0.013 0.085

∆mexp
K /∆mSM

K [65,66] [72] 0.92 ± 0.003 0.14

Table 1. List of experimental constraints used in this work in addition to the electroweak observables listed
in [43]. The top part of the table shows observables that are very sensitive to the CMSSM parameter space,
the middle part lists observables with updated measurements compared to [43] while the bottom part lists
additional experimental constraints. The values and errors shown are the current best understanding of
these constraints. The rightmost column displays additional theoretical uncertainties taken into account
when implementing these constraints in the CMSSM.

electroweak scale we have included the follow-
ing codes: FeynHiggs [51–54] for the evalua-
tion of mh and aSUSY

µ ; a code based on [65,66]
for the flavor observables, a code based on [44,
45] for the electroweak precision observables,
MicrOMEGAs [62–64] and DarkSUSY [77,78] for the
observables related to dark matter. We made ex-
tensive use of the SUSY Les Houches Accord [79]
in the combination of the various codes within the
MasterCode.

The deviation of (g − 2)µ from the SM predic-
tion by more than 3 σ can easily be accomodated
wuthin the (C)MSSM, if sign(µ) = sign(aSUSY

µ ).
Consequently, we analyze and discuss only the
case µ > 0.

The CMSSM parameter space has been sam-

pled using the MCMC technique. We treat m1/2,
m0, A0 and tanβ as free parameters, and the
Higgs mixing parameter µ and the pseudoscalar
Higgs mass mA as dependent parameters deter-
mined by the electroweak vacuum conditions.

A global χ2 function is defined, which combines
all calculations with experimental constraints:

χ2 =
N∑

i

(Ci − Pi)2

σ(Ci)2 + σ(Pi)2
+

M∑

i

(fobs
SMi

− ffit
SMi

)2

σ(fSMi
)2

(1)

Here N is the number of observables stud-
ied, Ci represents an experimentally measured
value (constraint) and each Pi defines a CMSSM
parameter-dependent prediction for the corre-

Long list of observables to
constrain CMSSM parameter space

Buchmueller, Cavanaugh, De Roeck, Ellis, Flacher, Heinemeyer, Isidori, 
Olive, Paradisi, Ronga, Weiglein
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in Section 6.1 the implications of removing the (g − 2)µ

constraint. We also discuss the predictions of our fits for
BR(b → sγ), Ωχh2 and Mh, presenting the likelihood
functions for each of these observables without their own
contributions. None of these observables exhibits any sig-
nificant tension with the others.

2 Description of the Frequentist Statistical
Method Employed

We define a global χ2 likelihood function, which combines
all theoretical predictions with experimental constraints:

χ2 =
N

∑

i

(Ci − Pi)2

σ(Ci)2 + σ(Pi)2

+ χ2(Mh) + χ2(BR(Bs → µµ))

+ χ2(SUSY search limits)

+
M
∑

i

(fobs
SMi

− ffit
SMi

)2

σ(fSMi
)2

(1)

Here N is the number of observables studied, Ci repre-
sents an experimentally measured value (constraint) and
each Pi defines a prediction for the corresponding con-
straint that depends on the supersymmetric parameters.
The experimental uncertainty, σ(Ci), of each measure-
ment is taken to be both statistically and systematically
independent of the corresponding theoretical uncertainty,
σ(Pi), in its prediction. We denote by χ2(Mh) and
χ2(BR(Bs → µµ)) the χ2 contributions from the two mea-
surements for which only one-sided bounds are available
so far, as discussed below. Furthermore we include the
lower limits from the direct searches for SUSY particles
at LEP [64] as one-sided limits, denoted by “χ2(SUSY
search limits)” in eq. (1).

We stress that, as in [4,53], the three standard model
parameters fSM = {∆αhad, mt, MZ} are included as fit
parameters and allowed to vary with their current exper-
imental resolutions σ(fSM). We do not include αs as a fit
parameter, which would have only a minor impact on the
analysis.

Formulating the fit in this fashion has the advantage
that the χ2 probability, P (χ2, Ndof), properly accounts
for the number of degrees of freedom, Ndof , in the fit and
thus represents a quantitative and meaningful measure for
the “goodness-of-fit.” In previous studies [53], P (χ2, Ndof)
has been verified to have a flat distribution, thus yielding
a reliable estimate of the confidence level for any par-
ticular point in parameter space. Further, an important
aspect of the formulation is that all model parameters
are varied simultaneously in the MCMC sampling, and
care is exercised to fully explore the multi-dimensional
space, including possible interdependencies between pa-
rameters. All confidence levels for selected model param-
eters are performed by scanning over the desired parame-
ters while minimizing the χ2 function with respect to all

other model parameters. That is, in order to determine
the function χ2(x) for some model parameter x, all the
remaining free parameters are set to values corresponding
to a new χ2 minimum determined for fixed x. The function
values where χ2(x) is found to be equal to χ2

min +∆χ2 de-
termine the confidence level contour. For two-dimensional
parameter scans we use ∆χ2 = 2.28(5.99) to determine
the 68%(95%) confidence level contours.

Only experimental constraints are imposed when de-
riving confidence level contours, without any arbitrary
or direct constraints placed on model parameters them-
selves.3 This leads to robust and statistically meaning-
ful estimates of the total 68% and 95% confidence levels,
which may be composed of multiple separated contours.
Finally, the sensitivity of the global fit to different con-
straint scenarios can be studied by removing one of the
experimental constraints or by rescaling one of the exper-
imental uncertainties, as discussed in Sect. 3 in [4]. Stud-
ies of such scenarios are particularly helpful in identifying
which experimental data are most useful in constraining
the theoretical model and hence in precisely studying how
hyper-volumes in parameter space become more tightly
constrained (either now or in the future).

Since each new scenario in which a parameter is re-
moved or an uncertainty re-scaled represents, fundamen-
tally, a new χ2 function which must be minimized, mul-
tiple re-samplings of the full multi-dimensional param-
eter space are, in principle, required to determine the
most probable fit regions for each scenario. However, these
would be computationally too expensive. To avoid this dif-
ficulty, we exploit the fact that independent χ2 functions
are additive and result in a well defined χ2 probability.
Hence, we define “loose” χ2 functions, χ2

loose, in which the
term representing some constraint, e.g., ΩCDM, is removed
from the global χ2 function. The χ2

loose function represents
the likelihood that a particular set of model parameter val-
ues is compatible with a sub-set of the experimental data
constraints, without any experimental knowledge of the
removed constraint.

An exhaustive, and computationally expensive, 25 mil-
lion point pre-sampling of the χ2

loose function is then per-
formed in the full multi-dimensional model parameter
space using a MCMC. Constraint terms representing the
various experimental scenarios are then re-instated or re-
moved to form different χ2 functions, one for each scenario
studied. If the scenario requires an additional constraint
to be removed from the χ2

loose function, the density of
points pre-sampled for the χ2

loose function was carefully
tested and verified to also be an unbiased and sufficiently
complete sampling of the studied model parameter space
for the full χ2 function by using dedicated MCMC sam-
ples of approximately one million sampling points each,
where the particular constraint in question was removed.

3 For reasons of stability of higher-order contributions, we
limit the range of tanβ to values below tanβ = 60. As ex-
plained in Section 3 below, we furthermore impose a cut on
parameter regions where the higher-order corrections relating
the running mass to the on-shell mass of the pseudo-scalar
Higgs boson get unacceptably large.
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Δχ2 map of m0 - m1/2 plane
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Mass spectrum of best 
fit point is relatively light
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Elastic cross section for 
direct detection

CMSSM Ellis, Olive, Sandick
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Uncertainties due to ΣπN
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Benchmarks as a 
function of ΣπN
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Elastic cross section from 
MCMC analysis
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Indirect Detection in the CMSSM

Ellis, Olive, Savage, and Spanos
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Spin-Independent contibution to 
capture in the sun
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mSUGRA Models

• tan β fixed by boundary conditions (B0 = A0 - m0)

• ``planes’’ determined by A0/m0

• Gravitino often the LSP (m3/2 = m0)

• No Funnels

• No Focus Point
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Minimal Supergravity Models

G = ϕ ϕ∗ + z z∗ + ln |W|2;  W = f(z) + g(ϕ)

e.g. Barbieri, Ferrara, Savoy

Nilles, Srednicki, Wyler

€ 

V =
∂g
∂ϕ

2

+ m3 / 2 ϕ
∂g
∂ϕ

+ 3 z − 3( )g + h.c.
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + m3 / 2

2ϕϕ*

3g for trilinear terms
2g for bilinear terms

m0 = m3/2 ; A0 = (3 - √3) m0; B0 = A0 - m0

For Polonyi models <z> = √3 -1, and
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In the CMSSM, any choice
of B/tan β is allowed.

The condition 
B0 = A0 - m0 restricts
tan β to a specific value.
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m1/2 - m0 planes

VCMSSM (mSUGRA)
Ellis, Olive, Santoso, Spanos
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Elastic cross section for 
direct detection

VCMSSM (mSUGRA)
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No-Scale Supergravity
potential

G =
K

M2
P

+ F
(
φi

)
+ F † (φ∗

i )

K = −3 M2
P ln

[
z + z∗

MP
−

φi φ∗
i

3 M2
P

]
(38)

where for simplicity we consider only one hidden sector complex field, z. The scalar potential
takes a globally supersymmetric form

V = eG− 1

3
K |W,i|2 (39)

plus D-terms. It is import to note here the absence of all of the soft supersymmetry breaking
masses. That is, at the scale at which supergravity is broken (which we assume to be greater
than the grand unified scale), m2

0 = A0 = B0 = 0. These terms will be generated radiatively
from the non-zero gaugino mass, which at the supersymmetry breaking scale is given by

mλ =
1

2

∣∣∣∣e
G/2 G,z

G,zz∗
(ln Reh)∗,z∗

∣∣∣∣ , (40)

where h(z) is the gauge kinetic function assumed to be diagonal in its gauge indices. For
the no-scale Kähler potential, one then finds that

mλ =
1

2
m1/3

3/2

h,z

Reh
(41)

For a suitable choice of h [23], the gravitino mass can be made much smaller than the gaugino
mass.

Phenomenological models based on no-scale supergravity have been recently constructed
[42], and we use two examples of low energy spectra based on that work. In the first example,
we choose a supersymmetry breaking scale of MP , and a universal gaugino mass m1/2 = 600
GeV. Recall that m0 = A0 = B0 = 0. The low energy spectra also depend on two couplings
in the GUT scale superpotential corresponding to the term cubic in the Higgs adjoint (λ′)
and a mixing term between the adjoint and the Higgs 5-plets (λ). In this example, we take
λ = −0.06 and λ′ = 1. Because we are specifying B0 at the input scale, we are not free to
choose tanβ. In this example, it is calculated to be tan β = 47.8. When run to the weak
scale, this model has gaugino masses of M1 = 275 GeV, M2 = 534 GeV. The soft Higgs
masses are m2

Hu
= −10242 GeV m2

Hd
= −6152 GeV. When loop corrections are included

in calculating the low energy spectrum, we find µ = 840 GeV, and neutralino masses of
283, 550, 913 and 919 GeV. The gluino mass is 1510 GeV. The scalar Higgs masses are 119
and 734 GeV. We have fixed the gravitino mass to m3/2 = 10−4 eV.

We show in Figure 3 the cross sections for the production of a gravitino and each of the
neutralino eigenstates These cross section are evaluated numerically from the exact square
amplitudes. We see that they indeed approach a constant value at high

√
s. For this choice of

parameters, the processes producing the first two neutralinos have a resonance at
√

s = MH0
1
,

12

potential

G =
K

M2
P

+ F
(
φi

)
+ F † (φ∗

i )

K = −3 M2
P ln

[
z + z∗

MP
−

φi φ∗
i

3 M2
P

]
(38)

where for simplicity we consider only one hidden sector complex field, z. The scalar potential
takes a globally supersymmetric form

V = eG− 1

3
K |W,i|2 (39)

plus D-terms. It is import to note here the absence of all of the soft supersymmetry breaking
masses. That is, at the scale at which supergravity is broken (which we assume to be greater
than the grand unified scale), m2

0 = A0 = B0 = 0. These terms will be generated radiatively
from the non-zero gaugino mass, which at the supersymmetry breaking scale is given by

mλ =
1

2

∣∣∣∣e
G/2 G,z

G,zz∗
(ln Reh)∗,z∗

∣∣∣∣ , (40)

where h(z) is the gauge kinetic function assumed to be diagonal in its gauge indices. For
the no-scale Kähler potential, one then finds that

mλ =
1

2
m1/3

3/2

h,z

Reh
(41)

For a suitable choice of h [23], the gravitino mass can be made much smaller than the gaugino
mass.

Phenomenological models based on no-scale supergravity have been recently constructed
[42], and we use two examples of low energy spectra based on that work. In the first example,
we choose a supersymmetry breaking scale of MP , and a universal gaugino mass m1/2 = 600
GeV. Recall that m0 = A0 = B0 = 0. The low energy spectra also depend on two couplings
in the GUT scale superpotential corresponding to the term cubic in the Higgs adjoint (λ′)
and a mixing term between the adjoint and the Higgs 5-plets (λ). In this example, we take
λ = −0.06 and λ′ = 1. Because we are specifying B0 at the input scale, we are not free to
choose tanβ. In this example, it is calculated to be tan β = 47.8. When run to the weak
scale, this model has gaugino masses of M1 = 275 GeV, M2 = 534 GeV. The soft Higgs
masses are m2

Hu
= −10242 GeV m2

Hd
= −6152 GeV. When loop corrections are included

in calculating the low energy spectrum, we find µ = 840 GeV, and neutralino masses of
283, 550, 913 and 919 GeV. The gluino mass is 1510 GeV. The scalar Higgs masses are 119
and 734 GeV. We have fixed the gravitino mass to m3/2 = 10−4 eV.

We show in Figure 3 the cross sections for the production of a gravitino and each of the
neutralino eigenstates These cross section are evaluated numerically from the exact square
amplitudes. We see that they indeed approach a constant value at high

√
s. For this choice of

parameters, the processes producing the first two neutralinos have a resonance at
√

s = MH0
1
,
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m1/2 - m0 planes with A0 = B0 = 0

VCMSSM (incl. no-scale supergravity)
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Super GUT Models

What if the input scale for supersymmetry breaking, Min, is 
> MGUT?

Additional RGE running (between Min and MGUT) implies 
more splitting between sparticle masses

co-annihilation region squeezed to lower m1/2 - (due to 
increased splitting at high Min)

focus point region shifts to higher m0 - (due to increased 
running of soft Higgs masses at high Min)

funnel region persist to low m0 and may remain 
consistent with g-2

Ellis, Mustafayev, Olive 
also: Polonsky + Pomerol;
Calibbi, Mambrini, Vempati;
Carquin, Ellis, Gomez, Lola, 

Rodriguez-Quintero
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GUTSuperpotential

2 The Minimal SU(5) GUT Superpotential and RGEs

In the SU(5) GUT, the D̂c
i and L̂i superfields of the MSSM reside in the 5 representation,

φ̂i, while the Q̂i, Û c
i and Êc

i superfields are in the 10 representation, ψ̂i. In the minimal
scenario, one introduces a single SU(5) adjoint Higgs multiplet Σ̂(24), and the two Higgs
doublets of the MSSM, Ĥd and Ĥu are extended to five-dimensional SU(5) representations
Ĥ1(5) and Ĥ2(5) respectively. The minimal renormalizable superpotential for this model is

W5 = µΣ Tr Σ̂2 +
1

6
λ′ Tr Σ̂3 + µHĤ1αĤα

2 + λĤ1αΣ̂α
βĤ

β
2

+(h10)ijεαβγδζ ψ̂
αβ
i ψ̂γδ

j Ĥζ
2 + (h5)ijψ̂

αβ
i φ̂jαĤ1β (1)

where Greek letters denote SU(5) indices, i, j = 1..3 are generation indices and ε is the totally
antisymmetric tensor with ε12345 = 1. This simple model predicts (approximately) correctly
the observed ratio of the τ and b quark masses, but the corresponding predictions for the
lighter charged-lepton and charge -1/3 quark masses are at best qualitatively successful. It
is possible to add to (1) terms that are non-renormalizable quartic and of higher order in
the Higgs fields that could rectify these less successful predictions: such terms would not
contribute to the RGEs and low-energy observables that we study. In this paper, we will
work in the third-generation-dominance scheme where Yukawas of first two generations are
neglected, i.e., we assume h5,10 ∼

(
h5,10

)
33

≡ h5,10.

We work in a vacuum that breaks SU(5) → SU(3) × SU(2) × U(1), in which 〈Σ̂〉 =
v24Diag(2, 2, 2,−3,−3) and the GUT gauge bosons acquire masses MX,Y = 5gGUTv24. The
fine-tuning condition µΣ−3λv24 = O(MZ) must be imposed in order to obtain the gauge hi-
erarchy, in which case the triplet Higgs states have masses MH3

= λv24/gGUT . The amplitude
for proton decay via a dimension-five operator ∝ 1/MH3

, and so is relatively suppressed for
large λ. However, the amplitude also depends on other model parameters, so it is difficult to
quantify this argument, which would in any case be avoided in suitable non-minimal SU(5)
models. In this paper we compare results for the values λ = 1 and 0.1, treating the former
as our default value.

The RGEs for the Yukawa couplings in the superpotential (1) that are applicable between
Min and MGUT are:
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=
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=
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, (4)
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=
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63

20
λ′2 − 30g2
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]
, (5)

where g5 is the SU(5) gauge coupling above the GUT scale. We note that the Yukawa
coupling λ contributes directly to the RGEs for h5 and h10 while λ′ contributes indirectly
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2 The Minimal SU(5) GUT Superpotential and RGEs

In the SU(5) GUT, the D̂c
i and L̂i superfields of the MSSM reside in the 5 representation,

φ̂i, while the Q̂i, Û c
i and Êc

i superfields are in the 10 representation, ψ̂i. In the minimal
scenario, one introduces a single SU(5) adjoint Higgs multiplet Σ̂(24), and the two Higgs
doublets of the MSSM, Ĥd and Ĥu are extended to five-dimensional SU(5) representations
Ĥ1(5) and Ĥ2(5) respectively. The minimal renormalizable superpotential for this model is

W5 = µΣ Tr Σ̂2 +
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+(h10)ijεαβγδζ ψ̂
αβ
i ψ̂γδ

j Ĥζ
2 + (h5)ijψ̂

αβ
i φ̂jαĤ1β (1)

where Greek letters denote SU(5) indices, i, j = 1..3 are generation indices and ε is the totally
antisymmetric tensor with ε12345 = 1. This simple model predicts (approximately) correctly
the observed ratio of the τ and b quark masses, but the corresponding predictions for the
lighter charged-lepton and charge -1/3 quark masses are at best qualitatively successful. It
is possible to add to (1) terms that are non-renormalizable quartic and of higher order in
the Higgs fields that could rectify these less successful predictions: such terms would not
contribute to the RGEs and low-energy observables that we study. In this paper, we will
work in the third-generation-dominance scheme where Yukawas of first two generations are
neglected, i.e., we assume h5,10 ∼

(
h5,10

)
33

≡ h5,10.

We work in a vacuum that breaks SU(5) → SU(3) × SU(2) × U(1), in which 〈Σ̂〉 =
v24Diag(2, 2, 2,−3,−3) and the GUT gauge bosons acquire masses MX,Y = 5gGUTv24. The
fine-tuning condition µΣ−3λv24 = O(MZ) must be imposed in order to obtain the gauge hi-
erarchy, in which case the triplet Higgs states have masses MH3

= λv24/gGUT . The amplitude
for proton decay via a dimension-five operator ∝ 1/MH3

, and so is relatively suppressed for
large λ. However, the amplitude also depends on other model parameters, so it is difficult to
quantify this argument, which would in any case be avoided in suitable non-minimal SU(5)
models. In this paper we compare results for the values λ = 1 and 0.1, treating the former
as our default value.

The RGEs for the Yukawa couplings in the superpotential (1) that are applicable between
Min and MGUT are:
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=
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where g5 is the SU(5) gauge coupling above the GUT scale. We note that the Yukawa
coupling λ contributes directly to the RGEs for h5 and h10 while λ′ contributes indirectly

3

New couplings:  λ and λ’
λ affects running of soft Higgs masses, 
adjoint and Yukawas ; λ’ affects only the 
adjoint

New soft masses and μ terms

Model Specified by 7+ parameters

for minimal SU(5) can be found in Ref. [22, 30] with appropriate changes of notation2,3.
The model is specified by the following set of parameters

m0, m1/2, A0, Min, λ, λ′, tanβ, sign(µ) (11)

where the trilinear superpotential Higgs couplings, λ, λ′, are specified at Q = MGUT . As-
suming universality at a unification scale Min, we impose

m5,1 = m10,1 = m5 = m10 = mH1
= mH2

= mΣ ≡ m0,

A5 = A10 = Aλ = Aλ′ ≡ A0,

M5 ≡ m1/2. (12)

and evolve all parameters to MGUT using the SU(5) RGEs mentioned earlier. Clearly, the
CMSSM is realized by setting Min = MGUT , and in this case, the couplings λ and λ′ have
no effect on the low-energy spectrum. Bilinear superpotential parameters µH , µΣ and corre-
sponding soft supersymmetry breaking terms decouple from the rest of RGEs and therefore
are omitted. The transition to the MSSM is done at MGUT via the following matching
conditions:

g1 = g2 = g3 = g5 , ht = 4h10,

M1 = M2 = M3 = M5 ,

m2
D1

= m2
L1

= m2

5,1 , m2
Q1

= m2
U1

= m2
E1

= m2
10,1,

m2
D3

= m2
L3

= m2

5
, m2

Q3
= m2

U3
= m2

E3
= m2

10
,

m2
Hd

= m2
H1

, m2
Hu

= m2
H2

. (13)

Note that we do not impose b− τ Yukawa unification at MGUT ; although exact unification is
possible in the MSSM, it is not guaranteed over the entire parameter space, and in a GUT
non-renormalizable operators of the type needed to modify the ‘bad’ relations for the first
two generations and/or modify the proton decay predictions [29,32] may also modify mb/mτ .
In the models discussed below, the ratio of hb/hτ is similar to that found in the CMSSM.
Here, we typically find that hb/hτ # 0.65 – 0.75 for tan β = 10, and somewhat lower values
hb/hτ # 0.5− 0.6 for tan β = 55. It is not possible in these models to force Yukawa coupling
unification by choosing a suitable input value of hb/hτ [?]. Therefore, we use the following
matching condition for the down-sector Yukawa couplings:

(hb + hτ )/2 = h5/
√

2 . (14)

The matching conditions for the A terms are the same as those of the corresponding Yukawa
couplings.

2Our sign convention for the A terms is the same as in Ref. [2, 3, 22], but opposite from that in Ref. [30]
and in the ISAJET interface [31].

3 Because of different assumptions, our results cannot be compared directly with those of Ref.[22], though
there are similarities.
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Evolution of mass parameters near coannihilation region
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Evolution of mass parameters near focus point
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No-Scale Supergravity Models

Phenomenologically viable only if the input scale for 
supersymmetry breaking, Min, is > MGUT

co-annihilation region responsible for relic density

focus point no longer defined (m0 = 0)
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Same GUT 
Superpotential

2 The Minimal SU(5) GUT Superpotential and RGEs

In the SU(5) GUT, the D̂c
i and L̂i superfields of the MSSM reside in the 5 representation,

φ̂i, while the Q̂i, Û c
i and Êc

i superfields are in the 10 representation, ψ̂i. In the minimal
scenario, one introduces a single SU(5) adjoint Higgs multiplet Σ̂(24), and the two Higgs
doublets of the MSSM, Ĥd and Ĥu are extended to five-dimensional SU(5) representations
Ĥ1(5) and Ĥ2(5) respectively. The minimal renormalizable superpotential for this model is

W5 = µΣ Tr Σ̂2 +
1

6
λ′ Tr Σ̂3 + µHĤ1αĤα

2 + λĤ1αΣ̂α
βĤ

β
2

+(h10)ijεαβγδζ ψ̂
αβ
i ψ̂γδ

j Ĥζ
2 + (h5)ijψ̂

αβ
i φ̂jαĤ1β (1)

where Greek letters denote SU(5) indices, i, j = 1..3 are generation indices and ε is the totally
antisymmetric tensor with ε12345 = 1. This simple model predicts (approximately) correctly
the observed ratio of the τ and b quark masses, but the corresponding predictions for the
lighter charged-lepton and charge -1/3 quark masses are at best qualitatively successful. It
is possible to add to (1) terms that are non-renormalizable quartic and of higher order in
the Higgs fields that could rectify these less successful predictions: such terms would not
contribute to the RGEs and low-energy observables that we study. In this paper, we will
work in the third-generation-dominance scheme where Yukawas of first two generations are
neglected, i.e., we assume h5,10 ∼

(
h5,10

)
33

≡ h5,10.

We work in a vacuum that breaks SU(5) → SU(3) × SU(2) × U(1), in which 〈Σ̂〉 =
v24Diag(2, 2, 2,−3,−3) and the GUT gauge bosons acquire masses MX,Y = 5gGUTv24. The
fine-tuning condition µΣ−3λv24 = O(MZ) must be imposed in order to obtain the gauge hi-
erarchy, in which case the triplet Higgs states have masses MH3

= λv24/gGUT . The amplitude
for proton decay via a dimension-five operator ∝ 1/MH3

, and so is relatively suppressed for
large λ. However, the amplitude also depends on other model parameters, so it is difficult to
quantify this argument, which would in any case be avoided in suitable non-minimal SU(5)
models. In this paper we compare results for the values λ = 1 and 0.1, treating the former
as our default value.

The RGEs for the Yukawa couplings in the superpotential (1) that are applicable between
Min and MGUT are:

dh5

dt
=

h5

16π2

[
5h2

5
+ 48h2

10 +
24

5
λ2 −

84

5
g2
5

]
, (2)

dh10
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=

h10
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5
+

24

5
λ2 −

96

5
g2
5

]
, (3)

dλ

dt
=

λ

16π2

[
48h2

10
+ 2h2

5
+

53

5
λ2 +

21

20
λ′2 −

98

5
g2
5

]
, (4)

dλ′

dt
=

λ′

16π2

[
3λ2 +

63

20
λ′2 − 30g2

5

]
, (5)

where g5 is the SU(5) gauge coupling above the GUT scale. We note that the Yukawa
coupling λ contributes directly to the RGEs for h5 and h10 while λ′ contributes indirectly

3

No-Scale models require m0 = A0 = B0 = 0

Model Specified by 4+ parameters

superpotential for this and the two five-dimensional SU(5) representations Ĥ1(5) and Ĥ2(5)
is

WH = µΣ Tr Σ̂2 +
1

6
λ′ Tr Σ̂3 + µHĤ1αĤα

2 + λĤ1αΣ̂α
βĤ

β
2 , (1)

where Greek letters denote SU(5) indices. The corresponding soft SUSY-breaking lagrangian
terms are

Lsoft ! −m2
H1

|H1|2 − m2
H2
|H2|2 − m2

Σ Tr(Σ†Σ)

−
[
BΣµΣ Tr Σ2 +

1

6
Aλ′λ′ Tr Σ3 + BHµHH1αHα

2 + AλλH1αΣα
βH

β
2 + h.c.

]
. (2)

In addition, Lsoft also contains mass terms for the gaugino fields (M5) for the first- and
second-generation fermionic fields (m5,1 and m10,1) and their third-generation counterparts
(m5 and m10), as well as trilinear scalar couplings (A5 and A10). Note that µH and µΣ are
of O(MGUT ), while the rest of the soft parameters are of O(Mweak).

The minimal SU(5) GUT model assumes universality of corresponding soft SUSY-breaking
terms and is completely specified the following set of parameters

m0, m1/2, A0, B0, Min, λ, λ′, sgn(µ). (3)

In its no-scale incarnation, we impose at the scale Min

m5,1 = m10,1 = m5 = m10 = mH1
= mH2

= mΣ ≡ m0 = 0,

A5 = A10 = Aλ = Aλ′ ≡ A0 = 0,

BΣ = BH ≡ B0 = 0,

M5 ≡ m1/2 . (4)

These soft parameters along with gauge and Yukawa couplings are evolved between Min and
MGUT using the SU(5) RGEs given in Ref. [28].

The renormalization-group equations (RGEs) for the third-generation matter Yukawa
couplings h5 and h10 between Min and MGUT are:

dh5

dt
=

h5

16π2

[
5h2

5
+ 48h2

10
+

24

5
λ2 −

84

5
g2
5

]
, (5)

dh10

dt
=

h10

16π2

[
144h2

10
+ 2h2

5
+

24

5
λ2 −

96

5
g2
5

]
, (6)

where g5 is the SU(5) gauge coupling above the GUT scale. We note that the Yukawa
coupling λ, but not λ′, contributes directly to the RGEs for h5 and h10. Likewise, the RGEs
for the most relevant trilinear parameters between Min and MGUT also involve λ but not λ′:

dA5

dt
=

1

8π2

[
5A5h

2

5
+ 48A10h

2
10

+
24

5
Aλλ

2 −
84

5
g2
5M5

]
, (7)

dA10

dt
=

1

8π2

[
2A5h

2

5
+ 144A10h

2
10

+
24

5
Aλλ

2 −
96

5
g2
5M5

]
, (8)

3
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2 The Minimal SU(5) GUT Superpotential and RGEs

In the SU(5) GUT, the D̂c
i and L̂i superfields of the MSSM reside in the 5 representation,

φ̂i, while the Q̂i, Û c
i and Êc

i superfields are in the 10 representation, ψ̂i. In the minimal
scenario, one introduces a single SU(5) adjoint Higgs multiplet Σ̂(24), and the two Higgs
doublets of the MSSM, Ĥd and Ĥu are extended to five-dimensional SU(5) representations
Ĥ1(5) and Ĥ2(5) respectively. The minimal renormalizable superpotential for this model is

W5 = µΣ Tr Σ̂2 +
1

6
λ′ Tr Σ̂3 + µHĤ1αĤα

2 + λĤ1αΣ̂α
βĤ
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2

+(h10)ijεαβγδζ ψ̂
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i ψ̂γδ

j Ĥζ
2 + (h5)ijψ̂

αβ
i φ̂jαĤ1β (1)

where Greek letters denote SU(5) indices, i, j = 1..3 are generation indices and ε is the totally
antisymmetric tensor with ε12345 = 1. This simple model predicts (approximately) correctly
the observed ratio of the τ and b quark masses, but the corresponding predictions for the
lighter charged-lepton and charge -1/3 quark masses are at best qualitatively successful. It
is possible to add to (1) terms that are non-renormalizable quartic and of higher order in
the Higgs fields that could rectify these less successful predictions: such terms would not
contribute to the RGEs and low-energy observables that we study. In this paper, we will
work in the third-generation-dominance scheme where Yukawas of first two generations are
neglected, i.e., we assume h5,10 ∼

(
h5,10

)
33

≡ h5,10.

We work in a vacuum that breaks SU(5) → SU(3) × SU(2) × U(1), in which 〈Σ̂〉 =
v24Diag(2, 2, 2,−3,−3) and the GUT gauge bosons acquire masses MX,Y = 5gGUTv24. The
fine-tuning condition µΣ−3λv24 = O(MZ) must be imposed in order to obtain the gauge hi-
erarchy, in which case the triplet Higgs states have masses MH3

= λv24/gGUT . The amplitude
for proton decay via a dimension-five operator ∝ 1/MH3

, and so is relatively suppressed for
large λ. However, the amplitude also depends on other model parameters, so it is difficult to
quantify this argument, which would in any case be avoided in suitable non-minimal SU(5)
models. In this paper we compare results for the values λ = 1 and 0.1, treating the former
as our default value.

The RGEs for the Yukawa couplings in the superpotential (1) that are applicable between
Min and MGUT are:
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where g5 is the SU(5) gauge coupling above the GUT scale. We note that the Yukawa
coupling λ contributes directly to the RGEs for h5 and h10 while λ′ contributes indirectly
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No-Scale models require m0 = A0 = B0 = 0

Model Specified by 3+ parameters

superpotential for this and the two five-dimensional SU(5) representations Ĥ1(5) and Ĥ2(5)
is

WH = µΣ Tr Σ̂2 +
1

6
λ′ Tr Σ̂3 + µHĤ1αĤα
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2 , (1)

where Greek letters denote SU(5) indices. The corresponding soft SUSY-breaking lagrangian
terms are
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In addition, Lsoft also contains mass terms for the gaugino fields (M5) for the first- and
second-generation fermionic fields (m5,1 and m10,1) and their third-generation counterparts
(m5 and m10), as well as trilinear scalar couplings (A5 and A10). Note that µH and µΣ are
of O(MGUT ), while the rest of the soft parameters are of O(Mweak).

The minimal SU(5) GUT model assumes universality of corresponding soft SUSY-breaking
terms and is completely specified the following set of parameters

m0, m1/2, A0, B0, Min, λ, λ′, sgn(µ). (3)

In its no-scale incarnation, we impose at the scale Min

m5,1 = m10,1 = m5 = m10 = mH1
= mH2

= mΣ ≡ m0 = 0,

A5 = A10 = Aλ = Aλ′ ≡ A0 = 0,

BΣ = BH ≡ B0 = 0,

M5 ≡ m1/2 . (4)

These soft parameters along with gauge and Yukawa couplings are evolved between Min and
MGUT using the SU(5) RGEs given in Ref. [28].

The renormalization-group equations (RGEs) for the third-generation matter Yukawa
couplings h5 and h10 between Min and MGUT are:

dh5

dt
=

h5

16π2

[
5h2

5
+ 48h2

10
+

24

5
λ2 −

84

5
g2
5

]
, (5)

dh10

dt
=

h10

16π2

[
144h2

10
+ 2h2

5
+

24

5
λ2 −

96

5
g2
5

]
, (6)

where g5 is the SU(5) gauge coupling above the GUT scale. We note that the Yukawa
coupling λ, but not λ′, contributes directly to the RGEs for h5 and h10. Likewise, the RGEs
for the most relevant trilinear parameters between Min and MGUT also involve λ but not λ′:

dA5

dt
=

1

8π2

[
5A5h

2

5
+ 48A10h

2
10

+
24

5
Aλλ

2 −
84

5
g2
5M5

]
, (7)

dA10

dt
=

1

8π2

[
2A5h

2

5
+ 144A10h

2
10

+
24

5
Aλλ

2 −
96

5
g2
5M5

]
, (8)

3

But really, 

m1/2, Min, λ/λ�, sgn(µ)
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Model Specified by 3+ parameters
m1/2, Min, λ/λ�, sgn(µ)

As in mSUGRA models, tanβ determined (now from 
B0 = 0)

The adjoint Higgs multiplet Σ̂ can be represented by a traceless matrix:

Σ̂α
β =

√
2Σ̂r(Tr)

α
β , (12)

where the Tr (r = 1..24) are SU(5) generators with Tr(TrTs) = δrs/2, The breaking SU(5) →
SU(3)c × SU(2)L × U(1)Y arises from the Standard-Model singlet component Σ̂24, that
develops a vev of O(MGUT ), 〈Σ̂〉 = 〈Σ̂24〉 diag(2, 2, 2,−3,−3). The latter can be decomposed
as

〈Σ̂24〉 = 〈Σ24〉 + θ2〈F24〉, (13)

where Σ24 and F24 are, respectively, the scalar and auxiliary field components of superfield
Σ̂24. The auxiliary component is determined from the superpotential (1) to be

F †
24 =

(
∂WH

∂Σ̂24

)

Σ̂=Σ

= 2µΣΣ24 −
1

2
√

30
λ′Σ2

24. (14)

We can find both the scalar and auxiliary component vevs by minimizing the relevant part
of the scalar potential that breaks SU(5)

VΣ24
= |F24|2 + ṼΣ24

, (15)

where ṼΣ24
is a subset of soft supersymmetry-breaking terms (2) that contains only Σ24 fields.

Using δ ≡ (MSUSY /MGUT ) as an expansion parameter, we can find perturbative solutions of
the form

〈Σ24〉 = v24 + δv24 + δ2v24 + O
(

M3
SUSY

M2
GUT

)

〈F24〉 = 0 + F24 + δF24 + O
(

M3
SUSY

MGUT

)
. (16)

The first terms on the right-hand sides of (16) correspond to the case of exact supersymmetry:
since 〈Σ̂24〉 breaks only SU(5) and not supersymmetry, it vanishes for the auxiliary field. For
the scalar component vev we get the familiar expression v24 = 2

√
30µΣ/λ′. The subsequent

terms represent corrections induced by the presence of the soft terms [37].
The MSSM Higgs bilinears µ and B can be expressed in terms of SU(5) parameters as

µ = µH −
3√
30

λ〈Σ24〉,

Bµ = BHµH −
3√
30

λ (Aλ〈Σ24〉 + 〈F24〉) . (17)

Using the expansions (16) and eliminating µH , we obtain the following expression for the
MSSM parameter B in terms of the SU(5) quantities and µ:

B = BH −
6λ

µλ′

[
(BΣ − Aλ′)(2BΣ − Aλ′) + m2

Σ

]
, (18)

5

But B0 = 0 is a condition applied at Min

MSSM B parameter must now be matched to GUT B 
parameters

BΣ, BH

Borzumati + Takahashi
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m1/2 - Min planes 
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Detection prospects

No-Scale Supergravity Ellis, Mustafayev, Olive
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Summary

CMSSM-mSUGRA - different theories

focus point/funnels absent in mSUGRA

Gravitino often the LSP in mSUGRA

No real reason for Min = MGUT

Min > MGUT can restore the phenomenological 
viability of No-Scale Supergravity models

Differentiating between these will be a challenge
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