Supersymmetric Dark Matter and SuperGUT Unification Models

(Supersymmetric) Dark Matter

How Much Dark Matter

WMAP 7

Komatsu etal

Precise bounds on matter content

How Much Dark Matter

WMAP7

Komatsu etal

Precise bounds on matter content

 $\Omega_{\rm m}h^2 = 0.1334 \pm 0.0056$ $\Omega_{\rm b}h^2 = 0.0226 \pm 0.0006$

 $\Omega_{\rm cdm} h^2 = 0.1109 \pm 0.0056$

or $Ω_{cdm} h^2 = 0.0997 - 0.1221$ (2 σ)

SUSY Dark Matter

MSSM and R-Parity

Stable DM candidate

1) Neutralinos

 $\chi_i = lpha_i \widetilde{B} + eta_i \widetilde{W} + \gamma_i \widetilde{H}_1 + \delta_i \widetilde{H}_2$

2) Sneutrino

Excluded (unless add L-violating terms)

3) Other: Axinos, Gravitinos, etc The Constrained and Very Constrained MSSM

- CMSSM as a 4+ parameter theory
- VCMSSM models 3+ parameter theory (mSUGRA)
- No-Scale models 1+ parameter theory
- SuperGUT theories unification at some input scale M_{in} > M_{GUT} - plus GUT parameters.

SUSY Superpotential + Soft terms

$$W = h_{u}H_{2}Qu^{c} + h_{d}H_{1}Qd^{c} + h_{e}H_{1}Le^{c} + \mu H_{2}H_{1}$$

$$\mathcal{L}_{\text{soft}} = -\frac{1}{2}M_{\alpha}\lambda^{\alpha}\lambda^{\alpha} - m_{ij}^{2}\phi^{i*}\phi^{j}$$

$$-A_{u}h_{u}H_{2}Qu^{c} - A_{d}h_{d}H_{1}Qd^{c} - A_{e}h_{e}H_{1}Le^{c} - B\mu H_{2}H_{1} + h.c.$$

SUSY Superpotential + Soft terms

$$W = h_{u}H_{2}Qu^{c} + h_{d}H_{1}Qd^{c} + h_{e}H_{1}Le^{c} + \mu H_{2}H_{1}$$

$$\mathcal{L}_{soft} = -\frac{1}{2}M_{\alpha}\lambda^{\alpha}\lambda^{\alpha} - m_{ij}^{2}\phi^{i*}\phi^{j}$$

$$-A_{u}h_{u}H_{2}Qu^{c} - A_{d}h_{d}H_{1}Qd^{c} - A_{e}h_{e}H_{1}Le^{c} - B\mu H_{2}H_{1} + h.c.$$

$$\langle H_1 \rangle = \begin{pmatrix} v_1 \\ 0 \end{pmatrix} \qquad \langle H_2 \rangle = \begin{pmatrix} 0 \\ v_2 \end{pmatrix} \qquad \tan \beta = \frac{v_2}{v_1}$$

SUSY Superpotential + Soft terms

$$W = h_{u}H_{2}Qu^{c} + h_{d}H_{1}Qd^{c} + h_{e}H_{1}Le^{c} + \mu H_{2}H_{1}$$

$$\mathcal{L}_{soft} = -\frac{1}{2}M_{\alpha}\lambda^{\alpha}\lambda^{\alpha} - m_{ij}^{2}\phi^{i*}\phi^{j}$$

$$-A_{u}h_{u}H_{2}Qu^{c} - A_{d}h_{d}H_{1}Qd^{c} - A_{e}h_{e}H_{1}Le^{c} - B\mu H_{2}H_{1} + h.c.$$

$$\langle H_1 \rangle = \begin{pmatrix} v_1 \\ 0 \end{pmatrix} \qquad \langle H_2 \rangle = \begin{pmatrix} 0 \\ v_2 \end{pmatrix} \qquad \tan \beta = \frac{v_2}{v_1}$$

R-parity conservation assumed (sorry Herbie)

CMSSM Unification Conditions

- Gaugino masses: $M_i = m_{1/2}$
- Scalar masses: $m_i = m_0$

predict μ , B

• Trilinear terms: $A_i = A_0$

CMSSM Unification Conditions

- Gaugino masses: $M_i = m_{1/2}$
- Scalar masses: $m_i = m_0$ predict μ , B
- Trilinear terms: $A_i = A_0$

mSUGRA Unification Conditions

• Gravitino masses: $m_{3/2} = m_0$

• Bilinear term: $B_0 = A_0 - m_0$ predict μ , tan β

Generic m_{1/2} - m₀ plane

m_{1/2}

$m_{1/2}$ - m_0 planes

Ellis, Olive, Santoso, Spanos

MCMC Analysis

Long list of observables to constrain CMSSM parameter space

Buchmueller, Cavanaugh, De Roeck, Ellis, Flacher, Heinemeyer, Isidori, Olive, Paradisi, Ronga, Weiglein

$$\chi^{2} = \sum_{i}^{N} \frac{(C_{i} - P_{i})^{2}}{\sigma(C_{i})^{2} + \sigma(P_{i})^{2}}$$
$$+ \chi^{2}(M_{h}) + \chi^{2}(\text{BR}(B_{s} \to \mu\mu)$$
$$+ \chi^{2}(\text{SUSY search limits})$$
$$+ \sum_{i}^{M} \frac{(f_{\text{SM}_{i}}^{\text{obs}} - f_{\text{SM}_{i}}^{\text{fit}})^{2}}{\sigma(f_{\text{SM}_{i}})^{2}}$$

Observable	Observable
$\Delta \alpha_{\rm had}^{(5)}(m_{\rm Z})$	$m_{\rm W} [{\rm GeV}/c^2]$
$m_{\rm Z} \; [{\rm GeV}/c^2]$	$a_{\mu}^{\exp} - a_{\mu}^{\rm SM}$
$\Gamma_{\rm Z} \; [{\rm GeV}/c^2]$	$m_{\rm h}~[{ m GeV}/c^2]$
$\sigma_{\rm had}^0 [{\rm nb}]$	$BR_{b\to s\gamma}^{exp}/BR_{b\to s\gamma}^{SM}$
$\frac{R_l}{\Lambda_{re}(\ell)}$	$m_{\rm t} \; [{\rm GeV}/c^2]$
$\frac{A_{\rm fb}(\ell)}{A_{\ell}(P_{\rm fb})}$	$\Omega_{\rm CDM} h^2$
$\frac{R_{\rm h}}{R_{\rm b}}$	$BR(B_s \to \mu^+ \mu^-)$
R _c	$BR^{exp}_{B\to\tau\nu}/BR^{SM}_{B\to\tau\nu}$
$A_{\rm fb}(b)$	$\mathrm{BR}^{\mathrm{exp}}_{B_d \to \ell \ell} / \mathrm{BR}^{\mathrm{SM}}_{B_d \to \ell \ell}$
$A_{\rm fb}({ m c})$	$BR^{\exp}_{B\to X_s\ell\ell}/BR^{SM}_{B\to X_s\ell\ell}$
A _b	$BR_{K\to\mu\nu}^{\exp}/BR_{K\to\mu\nu}^{SM}$
Ac	$BR_{K\to\pi\nu\bar{\nu}}^{\exp}/BR_{K\to\pi\nu\bar{\nu}}^{SM}$
$A_{\ell}(\text{SLD})$	$\Delta m_s^{\rm exp}/\Delta m_s^{\rm SM}$
$\sin^2 \theta_{\rm w}^{\ell}(Q_{\rm fb})$	$rac{(\Delta m_s^{ m exp}/\Delta m_s^{ m SM})}{(\Delta m_d^{ m exp}/\Delta m_d^{ m SM})}$
	$\Delta m_K^{ m exp}/\Delta m_K^{ m SM}$

 $\Delta \chi^2 \text{ map of } m_0 - m_{1/2} \text{ plane}_{\text{Mastercode}}$

Buchmueller, Cavanaugh, De Roeck, Ellis, Flacher, Heinemeyer, Isidori, Olive, Ronga, Weiglein

Mass spectrum of best fit point is relatively light

Mastercode

Buchmueller, Cavanaugh, De Roeck, Ellis, Flacher, Heinemeyer, Isidori, Olive, Ronga, Weiglein

Elastic cross section for direct detection

Uncertainties due to $\Sigma_{\pi N}$

Ellis, Olive, and Savage

BENCHMARKS AS A FUNCTION OF $\Sigma_{\pi N}$

Ellis, Olive, Savage, and Spanos

Elastic cross section from MCMC analysis

Mastercode

CMSSM

Buchmueller, Cavanaugh, De Roeck, Ellis, Flacher, Heinemeyer, Isidori, Olive, Ronga, Weiglein

Indirect Detection in the CMSSM

Ellis, Olive, Savage, and Spanos

Spin-Independent contibution to capture in the sun

mSUGRA Models

- $\tan \beta$ fixed by boundary conditions (B₀ = A₀ m₀)
- ``planes'' determined by A₀/m₀
- Gravitino often the LSP $(m_{3/2} = m_0)$
- No Funnels
- No Focus Point

Minimal Supergravity Models

e.g. Barbieri, Ferrara, Savoy Nilles, Srednicki, Wyler

$$G = \phi \phi * + z z^* + \ln |W|^2; W = f(z) + g(\phi)$$

$$V = \left|\frac{\partial g}{\partial \varphi}\right|^2 + m_{3/2} \left(\varphi \frac{\partial g}{\partial \varphi} + \left(\sqrt{3}\langle z \rangle - 3\right)g + hc.\right) + m_{3/2}^2 \varphi \varphi^*$$

3g for trilinear terms 2g for bilinear terms

For Polonyi models $\langle z \rangle = \sqrt{3} - 1$, and

 $m_0 = m_{3/2}$; $A_0 = (3 - \sqrt{3}) m_0$; $B_0 = A_0 - m_0$

In the CMSSM, any choice of B/tan β is allowed.

The condition $B_0 = A_0 - m_0$ restricts tan β to a specific value.

 $m_{1/2}$ - m_0 planes

VCMSSM (mSUGRA)

Ellis, Olive, Santoso, Spanos

Elastic cross section for direct detection

VCMSSM (mSUGRA)

$$G = \frac{K}{M_P^2} + F(\phi^i) + F^{\dagger}(\phi^*_i)$$
$$K = -3 M_P^2 \ln \left[\frac{z + z^*}{M_P} - \frac{\phi^i \phi^*_i}{3 M_P^2}\right]$$

$$V = e^{G - \frac{1}{3}K} |F_i|^2$$
gauge kinetic
function
$$m_{\lambda} = \frac{1}{2} m_{3/2}^{1/3} \frac{h_{,z}}{Reh}$$

Gravitino mass set independently from m_{1/2} and m₀

$m_{1/2}$ - m_0 planes with $A_0 = B_0 = 0$

VCMSSM (incl. no-scale supergravity)

Super GUT Models

Ellis, Mustafayev, Olive also: Polonsky + Pomerol; Calibbi, Mambrini, Vempati; Carquin, Ellis, Gomez, Lola, Rodriguez-Quintero

- What if the input scale for supersymmetry breaking, M_{in}, is > M_{GUT}?
- Additional RGE running (between M_{in} and M_{GUT}) implies more splitting between sparticle masses
- co-annihilation region squeezed to lower m_{1/2} (due to increased splitting at high M_{in})
- focus point region shifts to higher m₀ (due to increased running of soft Higgs masses at high M_{in})
- funnel region persist to low m₀ and may remain consistent with g-2

GUTSuperpotential

 $W_{5} = \mu_{\Sigma} \operatorname{Tr} \hat{\Sigma}^{2} + \frac{1}{6} \lambda' \operatorname{Tr} \hat{\Sigma}^{3} + \mu_{H} \hat{\mathcal{H}}_{1\alpha} \hat{\mathcal{H}}_{2}^{\alpha} + \lambda \hat{\mathcal{H}}_{1\alpha} \hat{\Sigma}_{\beta}^{\alpha} \hat{\mathcal{H}}_{2}^{\beta}$ $+ (\mathbf{h}_{10})_{ij} \epsilon_{\alpha\beta\gamma\delta\zeta} \hat{\psi}_{i}^{\alpha\beta} \hat{\psi}_{j}^{\gamma\delta} \hat{\mathcal{H}}_{2}^{\zeta} + (\mathbf{h}_{\overline{5}})_{ij} \hat{\psi}_{i}^{\alpha\beta} \hat{\phi}_{j\alpha} \hat{\mathcal{H}}_{1\beta}$

New couplings: λ and λ'

 λ affects running of soft Higgs masses, adjoint and Yukawas ; λ^{\prime} affects only the adjoint

New soft masses and μ terms

GUTSuperpotential

$$W_{5} = \mu_{\Sigma} \operatorname{Tr} \hat{\Sigma}^{2} + \frac{1}{6} \lambda' \operatorname{Tr} \hat{\Sigma}^{3} + \mu_{H} \hat{\mathcal{H}}_{1\alpha} \hat{\mathcal{H}}_{2}^{\alpha} + \lambda \hat{\mathcal{H}}_{1\alpha} \hat{\Sigma}_{\beta}^{\alpha} \hat{\mathcal{H}}_{2}^{\beta} + (\mathbf{h}_{10})_{ij} \epsilon_{\alpha\beta\gamma\delta\zeta} \hat{\psi}_{i}^{\alpha\beta} \hat{\psi}_{j}^{\gamma\delta} \hat{\mathcal{H}}_{2}^{\zeta} + (\mathbf{h}_{\overline{5}})_{ij} \hat{\psi}_{i}^{\alpha\beta} \hat{\phi}_{j\alpha} \hat{\mathcal{H}}_{1\beta}$$

New couplings: λ and λ'

 λ affects running of soft Higgs masses, adjoint and Yukawas ; λ ' affects only the adjoint

New soft masses and μ terms

Model Specified by 7+ parameters $m_0, m_{1/2}, A_0, M_{in}, \lambda, \lambda', \tan \beta, sgn(\mu)$ $m_{\overline{5},1} = m_{10,1} = m_{\overline{5}} = m_{10} = m_{\mathcal{H}_1} = m_{\mathcal{H}_2} = m_{\Sigma} \equiv m_0,$ $A_{\overline{5}} = A_{10} = A_{\lambda} = A_{\lambda'} \equiv A_0,$ $M_5 \equiv m_{1/2}.$

m_{1/2} - mo planes

SuperGUT CMSSM

Ellis, Mustafayev, Olive

Evolution of mass parameters near coannihilation region

SuperGUT CMSSM

Evolution of mass parameters near focus point

SuperGUT CMSSM

 $m_{1/2}$ - m_0 planes

SuperGUT CMSSM

Ellis, Mustafayev, Olive

m_{1/2} - m₀ planes

Ellis, Mustafayev, Olive

 $m_{1/2}$ - m_0 planes

Ellis, Mustafayev, Olive

No-Scale Supergravity Models

- Phenomenologically viable only if the input scale for supersymmetry breaking, M_{in}, is > M_{GUT}
- co-annihilation region responsible for relic density
- focus point no longer defined ($m_0 = 0$)
- funnel region not present with neutralino LSP
- Gravitino mass not determined

Same GUT Superpotential

$$W_{5} = \mu_{\Sigma} \operatorname{Tr} \hat{\Sigma}^{2} + \frac{1}{6} \lambda' \operatorname{Tr} \hat{\Sigma}^{3} + \mu_{H} \hat{\mathcal{H}}_{1\alpha} \hat{\mathcal{H}}_{2}^{\alpha} + \lambda \hat{\mathcal{H}}_{1\alpha} \hat{\Sigma}_{\beta}^{\alpha} \hat{\mathcal{H}}_{2}^{\beta} + (\mathbf{h}_{10})_{ij} \epsilon_{\alpha\beta\gamma\delta\zeta} \hat{\psi}_{i}^{\alpha\beta} \hat{\psi}_{j}^{\gamma\delta} \hat{\mathcal{H}}_{2}^{\zeta} + (\mathbf{h}_{\overline{5}})_{ij} \hat{\psi}_{i}^{\alpha\beta} \hat{\phi}_{j\alpha} \hat{\mathcal{H}}_{1\beta}$$

No-Scale models require $m_0 = A_0 = B_0 = 0$

$$m_{\overline{5},1} = m_{10,1} = m_{\overline{5}} = m_{10} = m_{\mathcal{H}_1} = m_{\mathcal{H}_2} = m_{\Sigma} \equiv m_0 = 0,$$

$$A_{\overline{5}} = A_{10} = A_{\lambda} = A_{\lambda'} \equiv A_0 = 0,$$

$$B_{\Sigma} = B_H \equiv B_0 = 0,$$

$$M_5 \equiv m_{1/2}.$$

Model Specified by 4+ parameters $m_{1/2}, M_{in}, \lambda, \lambda', sgn(\mu)$

Same GUT Superpotential

$$W_{5} = \mu_{\Sigma} \operatorname{Tr} \hat{\Sigma}^{2} + \frac{1}{6} \lambda' \operatorname{Tr} \hat{\Sigma}^{3} + \mu_{H} \hat{\mathcal{H}}_{1\alpha} \hat{\mathcal{H}}_{2}^{\alpha} + \lambda \hat{\mathcal{H}}_{1\alpha} \hat{\Sigma}_{\beta}^{\alpha} \hat{\mathcal{H}}_{2}^{\beta} + (\mathbf{h}_{10})_{ij} \epsilon_{\alpha\beta\gamma\delta\zeta} \hat{\psi}_{i}^{\alpha\beta} \hat{\psi}_{j}^{\gamma\delta} \hat{\mathcal{H}}_{2}^{\zeta} + (\mathbf{h}_{\overline{5}})_{ij} \hat{\psi}_{i}^{\alpha\beta} \hat{\phi}_{j\alpha} \hat{\mathcal{H}}_{1\beta}$$

No-Scale models require $m_0 = A_0 = B_0 = 0$

$$m_{\overline{5},1} = m_{10,1} = m_{\overline{5}} = m_{10} = m_{\mathcal{H}_1} = m_{\mathcal{H}_2} = m_{\Sigma} \equiv m_0 = 0,$$

$$A_{\overline{5}} = A_{10} = A_{\lambda} = A_{\lambda'} \equiv A_0 = 0,$$

$$B_{\Sigma} = B_H \equiv B_0 = 0,$$

$$M_5 \equiv m_{1/2}.$$

But really,

Model Specified by 3+ parameters $m_{1/2}, M_{in}, \lambda/\lambda', sgn(\mu)$

Model Specified by 3+ parameters $m_{1/2}, M_{in}, \lambda/\lambda', sgn(\mu)$

As in mSUGRA models, $tan\beta$ determined (now from $B_0 = 0$)

But $B_0 = 0$ is a condition applied at M_{in} MSSM B parameter must now be matched to GUT B parameters

 B_{Σ}, B_H

$$B = B_H - \frac{6\lambda}{\mu\lambda'} \left[(B_{\Sigma} - A_{\lambda'})(2B_{\Sigma} - A_{\lambda'}) + m_{\Sigma}^2 \right]$$

Borzumati + Takahashi

Ellis, Mustafayev, Olive

Detection prospects

No-Scale Supergravity

Summary

- CMSSM-mSUGRA different theories
- focus point/funnels absent in mSUGRA
- Gravitino often the LSP in mSUGRA
- No real reason for $M_{in} = M_{GUT}$
- M_{in} > M_{GUT} can restore the phenomenological viability of No-Scale Supergravity models
- Differentiating between these will be a challenge