

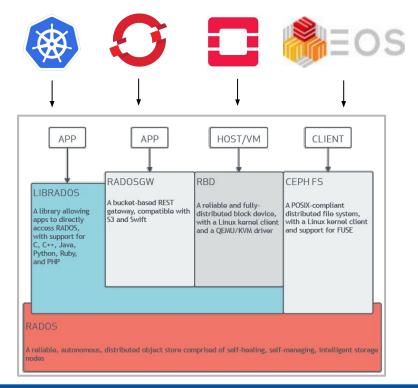
Evaluating CephFS Performance vs. Cost on High-Density Commodity Disk Servers

Andreas J. Peters, Dan van der Ster CERN IT Storage Group

2 June 2021

15th International dCache Workshop

Introduction


- High luminosity data taking will increase demands on WLCG storage:
 - Throughput, Capacity, Durability
- **Open source storage** systems (OSS) have compelling features and maturity
 - Which role can they play in future physics storage systems?
- **Off-the-shelf** software misses important high-level features
 - And offer unknown efficiency on our cost-optimized hardware
- One solution is to layer **HEP-specific gateways** on top of the OSS systems
- We describe and evaluate a **novel combination** of storage systems:

Introduction - Ceph

- Ceph is a popular backend component in the Open Infrastructure stack
 - **Kubernetes + OpenShift** to deploy containerized apps
 - **OpenStack** to manage virtual and physical resources
 - Block/Object/File storage on Ceph
- Is it efficient to layer EOS on top to expose the infrastructure to the WLCG?

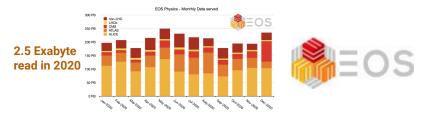
CephFS and its application at CERN

- Clustered filesystem used in NFS-like scenarios:
 - Home directories, HPC scratch areas, shared storage for distributed applications
- Scale-out architecture for data and metadata:
 - Data and FS hierarchy persisted in RADOS, a reliable distributed object store.
 - Durability with replication (e.g. 3 copies) or erasure coding (e.g. EC4,2).
 - Objects spread across failure domains with CRUSH -- tolerate host/rack/row/switch failures.
- Read-after-write consistency just like a local filesystem
 - MDS servers delegate client capabilities to allow operations to be carried out async or sync as needed: buffered IO when possible, direct IO when needed.

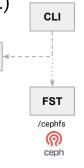
CephFS and its application at CERN

- CERN operates CephFS in production since 2017; currently:
 - HPC Scratch: all-flash co-located on SLURM compute nodes, switch-local MDS
 - 3x replication, 110TiB usable capacity
 - OpenStack Manila: mixed HDD/SSD for general purpose shared storage in the cloud
 - 3x replication, 1PiB usable capacity
 - Enterprise Groupware: all-flash co-located on OpenStack hypervisors
 - EC2,2; 100TiB usable capacity
- These and ~30PiB of other Ceph clusters have been robust and performing
 - Data consistent after infrastructure outages; failure recovery is basically transparent
 - Hardware replacement and flexibility demonstrated across
 3 procurement cycles

CephFS and its application at CERN



- CephFS misses features and experience essential to the HEP community:
 - Authentication mechanisms and user/group management:
 - SciTokens, X.509, Kerberos
 - quota and access control via eGroups
 - Storage **protocols** and **features**:
 - HTTPS, XRootD, third-party copy
 - Experience with high storage throughputs:
 - sustained streaming write performance for LHC data-taking
 - T0 rates 10-100 GiB/s


EOS Open Storage

- Large scale storage developed at CERN for physics and regular users: 350PB
- Implemented as plugins to the XRootD framework:
 - Files stored replicated or erasure-coded; presented in hierarchical namespace using QuarkDB.
 - FST services provide access to data stored in local or remote storage (XFS, Webdav, etc.)
 - MGM caches metadata and maps filenames to inodes; FSTs store data by inode
 - Local or remote FST storage is a simple inode hash prefix and hex inode

• It's therefore straightforward to use CephFS as a local FST filesystem

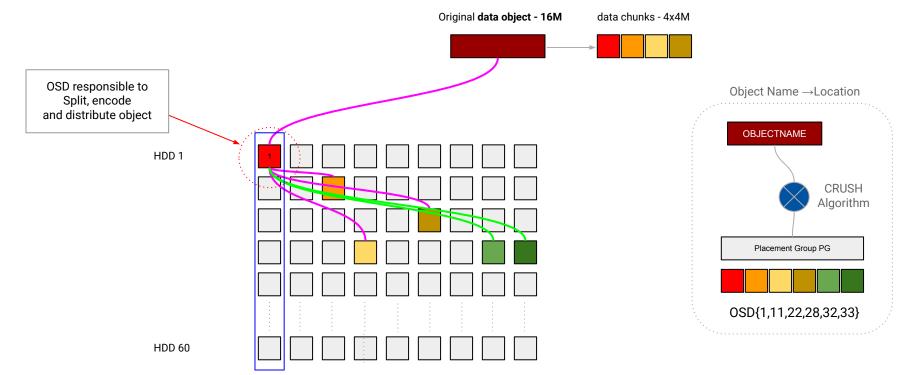
- Redundancy and data high-availability delegated to the CephFS layer
- EOS configured to store data with a single copy
- FST filesystems can be **moved in production** from node to node in case of failures

MGM

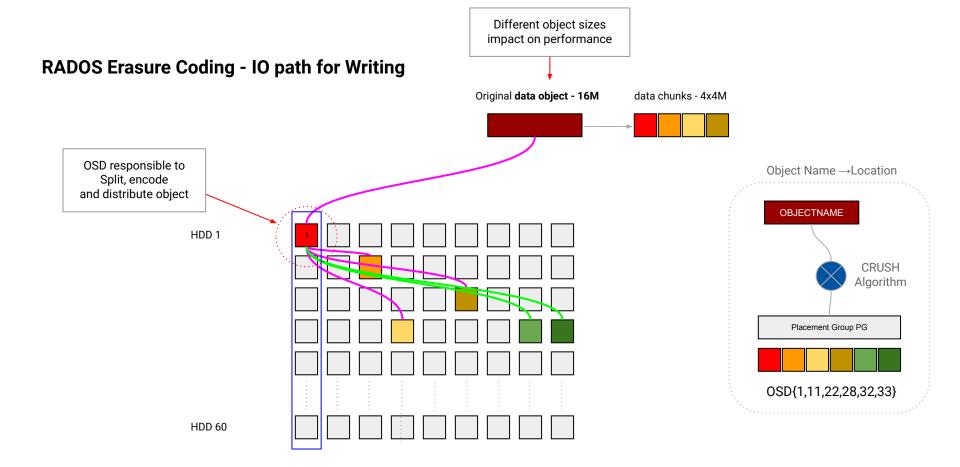
System Architecture

- **PoC** implemented using eight servers with specs:
 - Dual Intel Xeon Silver 4216 CPUs and 192 GiB RAM
 - Mellanox ConnectX-5 network interface supporting 100Gb/s Ethernet
 - **60x 14TB enterprise SATA HDDs** connected via a SAS3616 HBA
 - 2x 1TB SSDs: one for operating system, one for Ceph
 - ~3GiB RAM per HDD
- **Different** from the current EOS production hardware:
 - 96x HDDs with 192 GiB RAM
 - too little RAM per HDD for efficient Ceph OSD operations

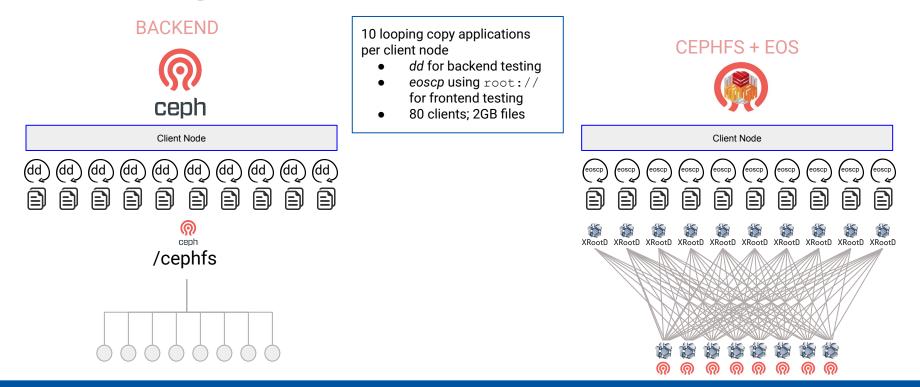
Ceph Backend Storage

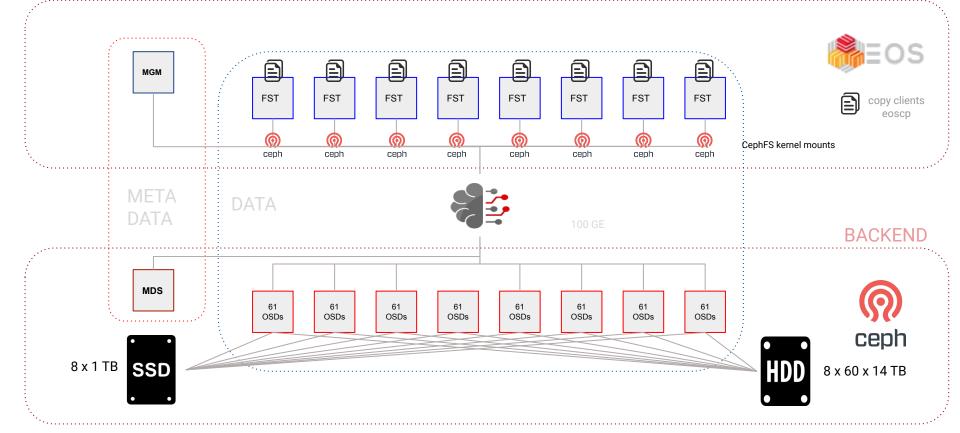


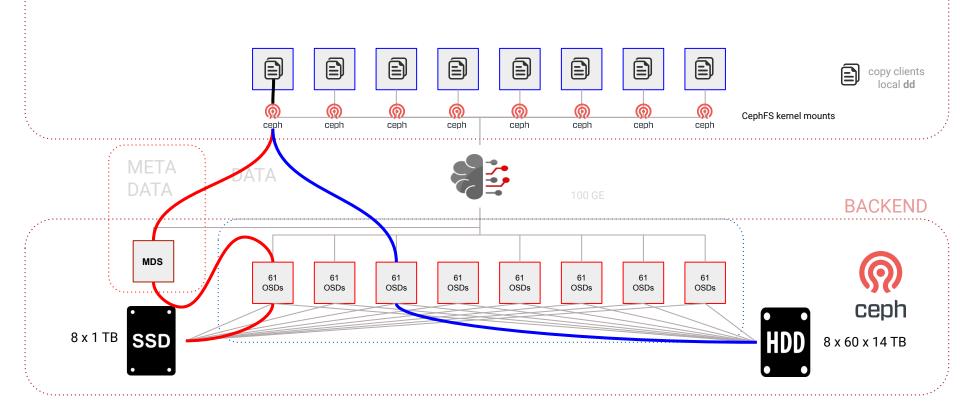
• Ceph Octopus version 15.2.8


- Single VM, not local to the disk servers, runs the MON, MGR, MDS daemons
- CephFS with various RADOS pool configurations:
 - **cephfs_metadata** on SSD-only OSDs; **cephfs_data** pools on HDD-only OSDs
 - /ec42: Reed-Solomon coding with k=4, m=2
 - each host has at most one object chunk; 4096 placement groups, 51.2 per OSD
 - \circ **/ec82**: Reed-Solomon coding with k=8, m=2
 - each host has at most two object chunks; 2048 placement groups, 42.6 per OSD
 - /ec162: Reed-Solomon coding with k=16, m=2
 - each host has at most three object chunks; 1024 placement groups, 38.4 per OSD
 - The RADOS placement groups were balanced to a max deviation of one per OSD.

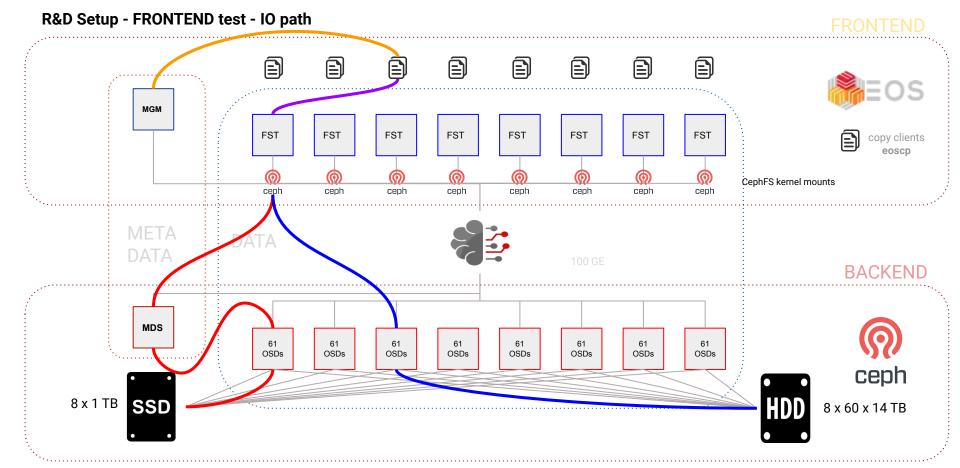
RADOS Erasure Coding - IO path for Writing



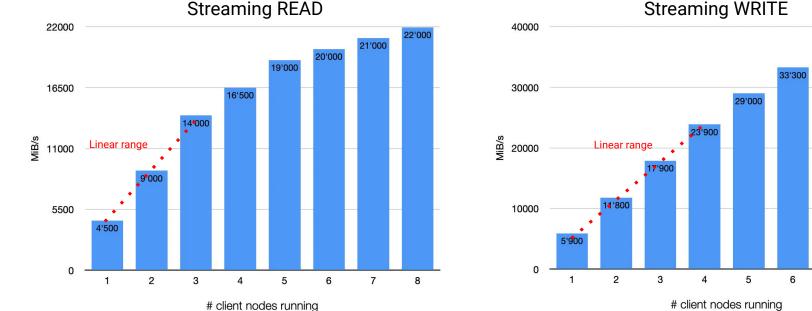

Test Setup on client nodes


R&D Setup

FRONTEND



FRONTEND



CephFS Client Scalability Measurements

Aggregated instance streaming bandwidth vs number of active client nodes with EC4,2 CephFS mount

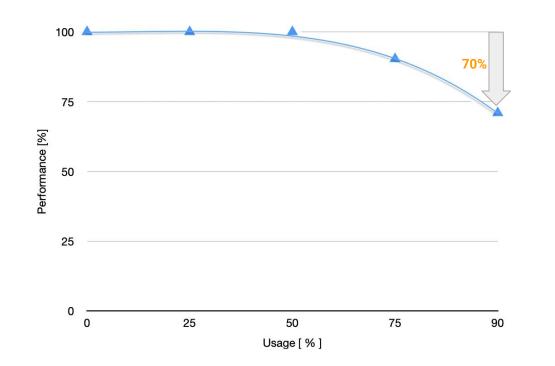
Streaming WRITE

Peters/Van der Ster: Evaluating CephFS Performance vs. Cost on High-Density Commodity Disk Servers

ceph

34'300

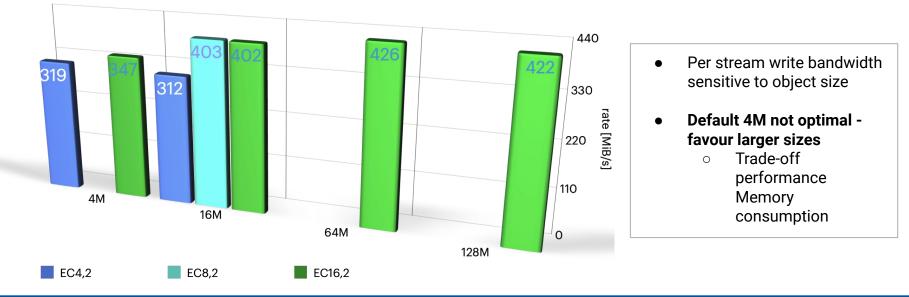
8


33'400

7

BACKEND

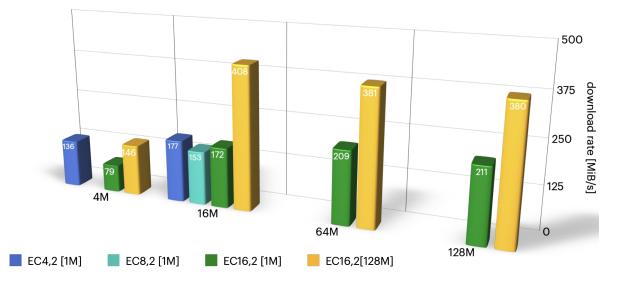
Impact of OSD usage on write performance



- Demonstrated to fill OSDs up to 95% with active reweighting
- Over 50% volume usage write performance degrades slowly towards 70% of initial instance performance
- Correlated with increased IO wait on disks

Streaming Write performance

Write performance for various erasure coding layouts EC k,m and object sizes. The test runs 80 concurrent streams and files with 2 GB size. Shown is the single stream IO bandwidth.


Peters/Van der Ster: Evaluating CephFS Performance vs. Cost on High-Density Commodity Disk Servers

BACKEND

Streaming Read Performance

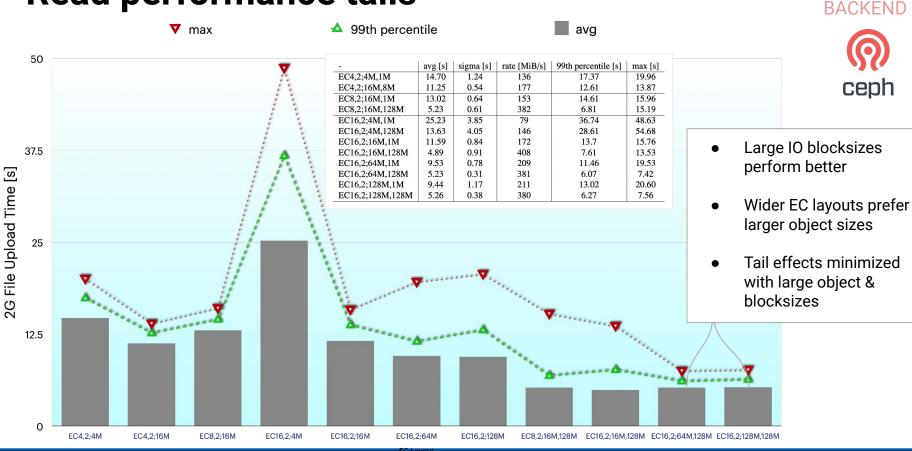
Read performance for various erasure coding layouts EC (k,m), object sizes (x axes) and [1M] and [128M] *IO blocksizes*. The test runs 80 concurrent streams and files with 2 GB size and a default kernel read-ahead setting of 8MB. Shown is the single stream IO bandwidth.

BACKFND

- Per-stream read bandwidth is sensitive to object and IO blocksize
- Performance is modest for small IO blocksizes
- Best read performance is obtained for the largest tested IO blocksize (128M)

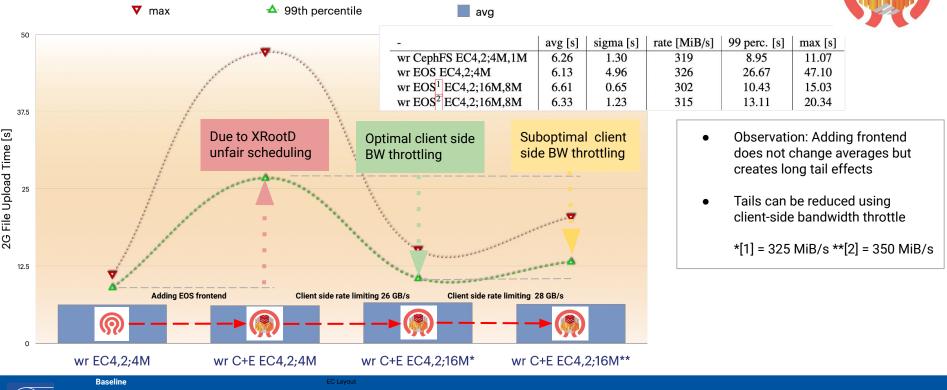
Def'n: "blocksize" is the size of each r/w IO

Write performance tails

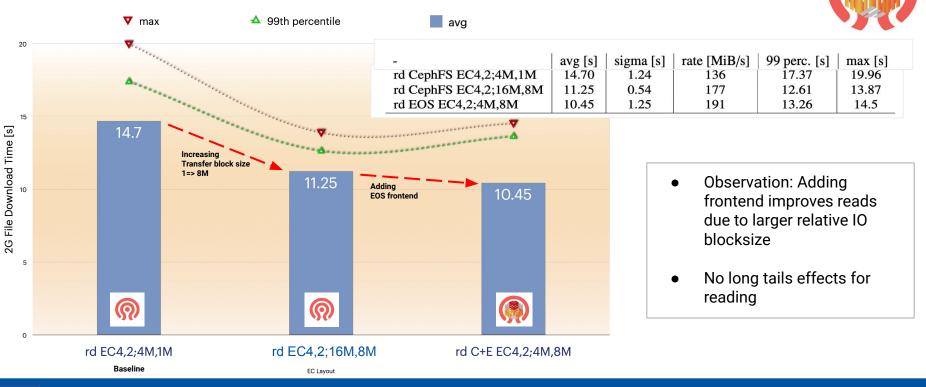

99th percentile avg **V** max -ceph 50 avg 99th Wider EC layouts 37.5 2G File Upload Time [s] 99% avg [s] sigma [s] rate [MiB/s] 99th percentile [s] max s provide higher EC4,2;4M 6.26 1.30 319 max 8.95 11.07 1% performance EC4.2:16M 6.4 1.42 312 9.16 13.81 EC8,2;16M 4.95 0.89 403 7.1 10.08 EC16,2;4M 5.76 0.95 347 7.57 10.56 EC16,2;16M 1.03 402 10.31 4.96 8.10 25 Large object sizes EC16.2:64M 4.7 426 41.62 2.68 17.32 4.73 2.07 422 13.36 EC16.2:128M 29.95 perform better but tail effects increase 12.5 0 EC4,2;4M EC4,2;16M EC8,2;16M EC16,2;4M EC16,2;16M EC16,2;64M EC16,2;128M EC Layout

Peters/Van der Ster: Evaluating CephFS Performance vs. Cost on High-Density Commodity Disk Servers

BACKEND


Read performance tails

CEPHFS + EOS


CephFS+EOS Write Performance Impact?

CEPHFS + EOS

CephFS+EOS Read Performance Impact?

Tuning Ceph: Client Bytes on the network

- **RADOS** client **throttles** bytes in flight to 100MB by default, which is limiting in this environment
 - E.g suppose you want to dispatch 128 concurrent 4MB writes... that's 500MB in flight
- Fix: simply increase this throttle for our PoC:

objecter_inflight_op_bytes = 1GB

• Note: does not apply to the kernel CephFS client; only fuse or librados clients

BACKEND

Tuning Ceph: Client capabilities recall

- **EOS fsck** is continually scanning all backend inodes in CephFS
 - Puts pressure on the MDS to load/cache/trim thousands of inodes while staying under it's configured memory limit
 - Each inode consumes around 3kB: 64GB cache holds around 21M inodes at a time
- Can cause MDS to **OOM** if inode caps are granted more rapidly than released:
 - \circ E.g: for each client MDS grants inode caps at 50kHz, but only recalls them at 5kHz
 - (8*50kHz*3kB is more than 1GB per second of inode cache growth)
- Fix: increased recall rates proposed and released upstream: Ceph PR 38574
 - Also new capabilities acquisition throttle to prevent this even without tuning

BACKEND

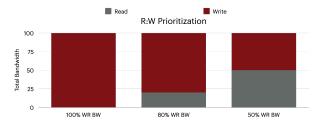
Tuning Ceph: Unexplained Performance Drop

- One day the throughput **dropped** from **25GB/s to 5GB/s** with no obvious explanation
 - Observed in eoscp testing and confirmed with low level rados bench
- Root-cause: one sick HDD
 - Poor SATA connection: 2s latency on small IOs
 - No IO errors, No SMART errors, just slow
 - Quick fix: stop the OSD process so this HDD is no longer used, data backfilled elsewhere
- Ceph has internal metrics and displays to help identify these issues manually, but auto detection is difficult
 - E.g. ceph osd perf shows recent op_commit latencies for all OSDs
 - Working on better op latency anomaly detection
 - to complement existing high network latency detection and SMART failure prediction

Discussions: Performance and Capacity

- PoC demonstrated excellent performance with various EC schemes
 Op to 4GiB/s read and write per FST frontend node for streaming access
- We tested while filling CephFS up to **95% capacity**
 - ongoing automatic balancing OSD utilization with upmap is required
- **Operating** when the cluster is **nearly** full is **hazardous**:
 - Dramatic performance cutoff: probably caused by high disk fragmentation, IO seek latencies
 - might be improved by putting OSD block.db on flash
 - Must reserve adequate spare capacity to account for failure recovery:
 - keep at least (1-<failure domain>)% free

28


-PHES + EOS

CEPHFS + EOS

Discussions: Network Utilization

- Write performance is limited by network connectivity
 - CPU and disk IO util were not bottlenecks
 - Read performance probably limited by HDD seek latencies
- CephFS EC model roughly doubles traffic for reading and writing
 - Write tests: 9GiB/s inbound, 5GiB/s outbound, 5GiB/s disk output
 - **Doubling** the network **connectivity** could saturate the available disk IO throughput
 - Possible using 2x interfaces and Ceph's public/cluster network isolation
- Observed that CephFS prioritizes writes
 - over reads: OK 🗹
 - Ceph Pacific distributed QoS may allow this to be adjusted as needed

Discussions: FST performance

CEPHES + EOS

- EOS frontend has marginal impact on overall performance c.w. native RADOS
- IO write tails to be investigated w.r.t. sync stream scheduling in XRootD
- Possible to **co-locate EOS FST** and **Ceph OSDs**, e.g. mount CephFS locally
 - However: local mounts can cause kernel deadlock under memory pressure
 - Safe alternatives: user-mode CephFS client

FUSE - ok for medium bandwidth requirements 🟹

libcephfs - low performance in multithreaded environments (x)

Discussions and Conclusions

CEPHES + EOS

- **CephFS & EOS** are **easily stackable** and provide **excellent performance** on high-density commodity disk server and 100Gig-E technology
 - CephFS provides
 - an extremely reliable high-performance and flexible storage backend with tunable EC QoS
 - a large and active storage user community beyond HEP
 - EOS provides
 - high-level functionality as strong authentication
 - remote access protocols & third party copy (root/https)
 - fine-grained access and resource control
 - add-on services as
 - Sync&Share
 - Tape Storage

Tape Archive

Future Outlook

CEPHES + EOS

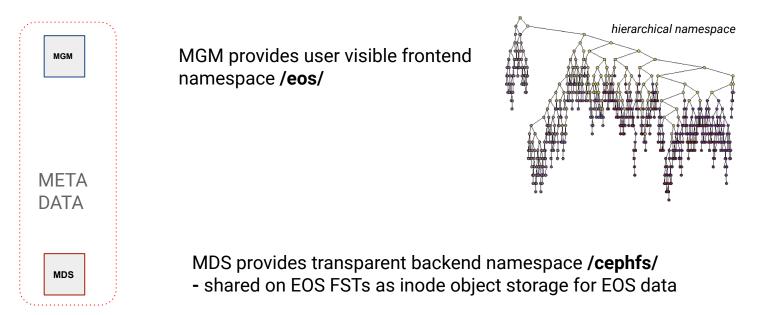
- Prototype: **Test** in EOSHOME (CERNBox) to **evaluate** real life **usability**, **performance** and **operations** gains
 - Removes file-size limits & gives high bandwidth file IO; special high-IOPS or low latency areas
- Improvement: Unify Namespaces and Localize IO
 - Plug-in to use CephFS namespace as EOS namespace
 - Directly access the namespace without the EOS MGM
 - Local XRootD redirect from *root://eos* to local */eos* read-only CephFS mounts
 - Hide CephFS kernel mount in *private namespace* within eosxd client (/eos mounter)
 - Better client-side security than native CephFS: krb5, GSI, OAUTH2 support
 - Allows to add HSM functionality in combination with CERN Tape Archive
 - IO redirect to local *fd* providing 100% native CephFS IO performance for the data path

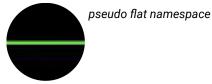
Future Outlook

- **CephFS+EOS** is one of the candidates for **future WLCG storage** deployments
- Tier 1 example:
 - Leverage large existing RADOS installations to provide WLCG disk and tape storage
- Tier 2/3 example:
 - Reliable and cost-effective solution with flexibility for low-latency areas

Thanks!

Extra slides


EOS Frontend Server



- **Eight** additional servers as EOS FST: mount CephFS with the **CentOS 8.2 kernel**
- Each FST has a **separate data directory** in CephFS, configured as **8 EOS filesystems**
- Filesystems can be **moved in production** from node to node in case of node failures

	type			name	groupsize	groupmo	d N(f	s)	N(fs-rw)	sum(u	ısedbyte	s)	
	spaceview			ceph 1		1	0	8	8		2.96	PB	
host	port	id	uuid		path	schedgroup	headroom	boot	configstatus	drain	active	scaninterval	health
st-120hd-100gb009	1095	479	data-09	/o2/e	eos/data-09/	ceph.0	0.00	booted	rw	nodrain	online	604800	ОК
st-120hd-100gb010	1095	480	data-10	/o2/e	eos/data-10/	ceph.0	0.00	booted	rw	nodrain	online	604800	ОК
											•••		
st-120hd-100gb016	1095	486	data-16	/o2/e	eos/data-16/	ceph.0	0.00	booted	rw	nodrain	online	604800	ОК

