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What are Parton Distribution Functions?

@ Consider a process with one hadron in the initial state

@ According to the Factorization Theorem we can write the cross section as

@ —Z/ Euesan (£ a0s) +0 ()
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What are Parton Distribution Functions?

@ The initial condition cannot be computed in Perturbation Theory
(Lattice? In principle yes, but ...)

@ ... but the energy scale dependence is governed by DGLAP evolution
equations

F 0" @) = PY(E a5) 2 4V (E, @)

|nac>2 ( 3 >(f7 @) = ( ﬁ;’g g;’i )(&%)@( 3 )(5, @)

@ ... and the splitting functions P can be computed in PT and are known
up to NNLO

(LO - Dokshitzer; Gribov, Lipatov; Altarelli, Parisi; 1977)
(NLO - Floratos, Ross, Sachrajda; Gonzalez-Arroyo, Lopez, Yndurain; Curci, Furmanski, Petronzio, 1981)
(NNLO - Moch, Vermaseren, Vogt; 2004)
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Why care about PDFs (and their uncertainties)?

LHC parton kinematics

T
= (M/14 TeV) exp(zy)
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Why care about PDFs (and their uncertainties)?

Q@ (Gev)

LHC parton kinematics

10° L

= (M/14 TeV) exp(zy)

Xlz

M=1Tev

M =100 GeV

=M M=10TeV

Guffanti (Univ. Freiburg)

1 o(pp — HW) [pb]

!
150

0.1F

MRST ——
005 F (TG -

[ Alekhin -~
o(pp— HW) [pb]
V5 = 1.96 TeV.

0.03

V5 = 14 Tev
03 4
IR I T
100 120 140 160 180 200 100 120 140 160 180 200
My [GeV] My [GeV]
[A. Djouadi and S. Ferrag, hep-ph/0310209]
PDF errors

4/43



- |
Why care about PDFs (and their uncertainties)?

@ Errors on PDFs are in some cases the dominating theoretical error on
precision observables

Ex. U(ZO) at the LHC: 6ppr ~ 3%, dnnio ~ 2%
[J. Campbell, J. Huston and J. Stirling, (2007)]
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R
Why care about PDFs (and their uncertainties)?

@ Errors on PDFs are in some cases the dominating theoretical error on
precision observables

Ex. U(ZO) at the LHC: 6ppr ~ 3%, dnnio ~ 2%
[J. Campbell, J. Huston and J. Stirling, (2007)]

@ Errors on PDFs might reduce sensitivity to New Physics
Ex. Extra Dimensions discovery in dijet cross section at the LHC:
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[S. Ferrag (ATLAS), hep-ph/0407303]
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Problem

Faithful estimation of errors on PDFs

@ Single quantity: 1-o error
@ Multiple quantities: 1-o contours

@ Function: need an "error band" in the space of functions (i.e. the
probability density P[f] in the space of functions f(x))

Expectation values are Functional integrals

(FIF)) = /fo[f(x)]P[f(X)]
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|
Problem

Faithful estimation of errors on PDFs

@ Single quantity: 1-o error
@ Multiple quantities: 1-o contours

@ Function: need an "error band" in the space of functions (i.e. the
probability density P[f] in the space of functions f(x))

Expectation values are Functional integrals

(FIF)) = /fo[f(x)]P[f(X)]

Determine an infinite-dimensional object (a function) from a finite set of data
points ... mathematically ill-defined problem.
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Solution
Standard Approach

@ Introduce a simple functional form with enough free parameters

q(x, @) = x*(1 = x)°P(x; A1, ..., \n).

@ Fit parameters minimizing x?2.
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Solution
Standard Approach

@ Introduce a simple functional form with enough free parameters
q(x, @) = x*(1 = x)°P(x; A1, ..., \n).

@ Fit parameters minimizing x?2.

Open problems:

@ Error propagation from data to parameters and from parameters to
observables is not trivial.

@ Theoretical bias due to the chosen parametrization is difficult to
assess.

A. Guffanti (Univ. Freiburg) PDF errors 7/43



R
Shortcomings of the Standard approach

What is the meaning of a one-o uncertainty?

@ Standard Ay? = 1 criterion is too restrictive
to account for large discrepancies among
experiments.

[Collins & Pumplin, 2001]
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N
Shortcomings of the Standard approach

What is the meaning of a one-o uncertainty?

@ Standard Ax? = 1 criterion is too restrictive
to account for large discrepancies among
experiments.

[Collins & Pumplin, 2001]

@ Introduce a TOLERANCE criterion, i.e. take ° rros
the envelope of uncertainties of experiments uEIEREEREL
to determine the Ay? to use for the global fit | 4
(CTEQ). -
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Shortcomings of the Standard approach

What is the meaning of a one-o uncertainty?

@ Standard Ax? = 1 criterion is too restrictive
to account for large discrepancies among
experiments.

[Collins & Pumplin, 2001]

@ Introduce a TOLERANCE criterion, i.e. take °

the envelope of uncertainties of experiments
to determine the Ax? to use for the global fit i
(CTEQ). =

@ Make it DYNAMICAL, i.e. determine Ax?

separately for each hessian eigenvector
(MSTW).
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Shortcomings of the standard approach

What determines PDF uncertainties?

@ Uncertainties in standard fits often increase when adding new
data to the fit.

@ Related to the need of extending the parametriztion in order to
accomodate the new data

Smaller high-z gluon (and slightly smaller cvs) results in larger small-z gluon — now
shown at

Gluon at Q%= 10‘ GeV?

—— MSTW 2008 NNLO
— MRST 2006 NNLO

10* 10° 107 10" 1
X

Ratio to MSTW 2008 NNLO

Larger small-2 uncertainty due to extrat free parameter.

[R. Thorne, PDF4LHC]
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[R. D. Ball, L. Del Debbio, S. Forte, J. |. Latorre, A. Piccione, J. Rojo, M. Ubiali and AG]
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The NNPDF methodology

.

(mei1) (nety2)
Ans Axs o 4;

Ays

(net) et ) (et
50
. Py

Freiburg) PDF errors 11/43



.
The Neural Network Approach in a Nutshell

@ Generate N,g, Monte-Carlo replicas of the experimental data.

@ Fit a set of Parton Distribution Functions on each replica, thus defining a
sampling of probability density on the space of the PDFs.

@ Expectation values for observables are Monte Carlo integrals

1 Nrep

(FIi(x, @) = & ;
re k=1

F(H0® (x, @)

.. the same is true for errors, correlations, etc.
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Monte Carlo replicas generation

@ Generate artificial data according to distribution

i

Nsys
O ® _ (4 4 10, [O(exp +Z iy + 1) g

where r; are univariate gaussian random numbers

@ Validate Monte Carlo replicas against experimental data
(statistical estimators, faithful representation of errors, convergence rate

increasing Niep)
Praton
Central values Enos

@ (O(1000) replicas needed to reproduce correlations to percent accuracy
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Proper Fitting avoiding Overlearning

@ Let’'s see how proper fitting works in a toy model

L. 1 L L 1 1 1 L
01 02 03 04 05 06 07
x
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Proper Fitting avoiding Overlearning

@ Let’'s see how proper fitting works in a toy model

Zﬁér;\w.‘fﬁg:“
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f(x)
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Proper Fitting avoiding Overlearning

@ Let’'s see how proper fitting works in a toy model
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Proper Fitting avoiding Overlearning

@ Let’'s see how proper fitting works in a toy model
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Proper Fitting avoiding Overlearning

@ Let’'s see how proper fitting works in a toy model

flx)
°
o
-l
i
e
.

-

-—
-

L. 1 L L 1 1 1 L L L
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x

@ Need a redundant parametrization to avoid parametrization bias.

@ Need a way of stopping the fit before overlearning sets in to avoid
fitting statistical noise.
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Why use Neural Networks?

Output

* m(3)“‘9(3)l

Hidden

f (ﬂ(z)“. 0(2)‘

Input

@ Neural Networks are non-linear statistical tools.

@ Any continuous function can be approximated with neural network with
one internal layer and non-linear neuron activation function.

@ Efficient minimization algorithms for complex parameter spaces.

@ They provide a parametrization which is redundant and robust against
variations.
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Neural Networks

... just another basis of functions

Multilayer feed-forward networks

@ Each neuron receives input from neurons in preceding layer and feeds
output to neurons in subsequent layer

@ Activation determined by weights and thresholds

G=9g(d wig—6
J

@ Sigmoid activation function
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Neural Networks

... just another basis of functions

Multilayer feed-forward networks

@ Each neuron receives input from neurons in preceding layer and feeds
output to neurons in subsequent layer

@ Activation determined by weights and thresholds

G=9g(d wig—6
J

@ Sigmoid activation function

1
X) =
g( ) 1+e_ﬂx
A 1-2-1 NN:
3), (1 1
55 )( § )) = @ 16
0 — o e — 2
1+e 14T T8 g2 T8
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Neural Networks

Training Method

Genetic Algorithm

@ Set network parameters randomly.

@ Make clones of the set of parameters.
@ Mutate each clone.

@ Evaluate x? for all the clones.

© Select the clone that has the lowest x2.
© Back to 2, until stability in x? is reached.
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Neural Networks
Training Method

Genetic Algorithm

@ Set network parameters randomly.

@ Make clones of the set of parameters.
@ Mutate each clone.

@ Evaluate x? for all the clones.

© Select the clone that has the lowest x2.
© Back to 2, until stability in x? is reached.

Pros:
@ Allows to minimize the fully correlated x?2

@ Explores the full parameter space, reducing the risk of being trapped in a local
minimum
Cons:
@ Slow convergence

@ 2 decreases monotonically - need to find a suitable stopping criterion
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Neural Networks

Stopping criterion

Stopping criterion based on Training-Validation separation

@ Divide the data in two sets: Training and Validation
@ Minimize the x? of the data in the Training set

@ Compute the x? for the data in the Validation set

@ When validation x? stops decreasing, STOP the fit
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Neural Networks

Stopping criterion

Stopping criterion based on Training-Validation separation

@ Divide the data in two sets: Training and Validation
@ Minimize the x? of the data in the Training set

@ Compute the x? for the data in the Validation set

@ When validation x? stops decreasing, STOP the fit
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RESULTS
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The Past

NNPDF1.0/1.2

@ NNPDF 1.0 .
[R. D. Ball et al., arXiv:0808.1231]
o Global DIS fit
o First application of the full NNPDF Methodology (multiple exps., multiple
PDFs)
@ NNPDF 1.2

[R. D. Ball et al., arXiv:0906.1958]
e Constraining strangeness (dimuon data)
e Extraction of physical parameters (CKM matrix elements)

o, CKM it it @ Result for the combined fit

hves |Ves|] = 0.96+0.07

N Veg| = 0.24440.019
o0 p[Ves, Veg] = 0.21

o Ved

0z 0z 024 oz 02
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NNPDF 2.0

Technical improvements

@ Fast DGLAP evolution based on higher-order interpolating polynomials

@ Improved treatment of normalization errors (# method)
o For details see [R. D. Ball et al., arXiv:0912.2276]

@ Improvements in training/stopping

o Target Weighted Training

o Improved stopping for avoiding under-/over-learning

@ For all the deatils see: [R. D. Ball et al., arXiv:1002.4407]
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NNPDF2.0

Dataset
OBS | Data set
Deep Inelastic Scattering
FJ/FP NMC-pd
= NG
SLAC
108 £ X NWCpd
f oy - . BCDMS
whl | 2 ] F3 SLAC
] oo o4 i BODMS
o E| @ Nrvomn o
> al| x zEUSH2 2 NC
§10 % * E:Eggg T)gfé&y 0% XK o X%i H1
g : EEE%TAQSPY ¥ § 8% §§ ¥ One ZEUS
S0 | % $REHL H1
NE Fl o poracon ISE R FL =
o1 . 7005 CHORUS
F 1 dimuon prod. NuTeV
10§ Drell-Yan & Vector Boson prod.
B I R ol ki Y doP¥ JdMPdy E605
10° 10" 10° 10? 10* 1 doP¥ /dM? dxe E866
W asymm. CDF
Z rap. distr. DO/CDF

@ 3477 data points
(for comparison MSTWO08 includes 2699 data points)
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NNPDF2.0

Proper inclusion of NLO corrections

@ Inclusion of higher order corrections to hadronic processes in parton fits

is often too expensive

@ Often higher order corrections are included as (local) K factors rescaling

the LO cross section

@ We use FastNLO for inclusive jet Relative Accuracy w.r.t to Exact calculation

cross section 107
[T. Kluge et al.,hep-ph/0609285]

10 ¢

@ We developed our own FastDY for
fixed target Drell-Yan and vector
boson production at colliders

10°°

E605

E886r
Wasy
Zrap

-0.5
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NNPDF2.0

Parametrization

@ We parametrize 7 PDF combinations at the initial scale with Neural

Networks

Parton Distributions Combination NN architechture
Singlet ((x)) = 2-5-3-1 (37 pars)
Gluon (g(x)) =  2-5-3-1 (37 pars)
Total valence (V(x) = uv(x) + dv(x)) = 2-5-3-1 (37 pars)
Non-singlet triplet (Ts(x)) —  2-5-3-1 (37 pars)
Sea asymmetry (As(x) = d(x) — U(x)) = 2-5-3-1 (37 pars)
Total Strangeness (s™(x) = (s(x) +5(x))/2) — 2-5-3-1 (37 pars)
Strange valence (s~ (x) = (s(x) — §(x))/2) =  2-5-3-1 (37 pars)

259 parameters )
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NNPDF2.0

Results - General features of the fit

Distribution of x2 for sets

2
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NNPDF2.0

Results - Partons - Comparison to older NNPDF set
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NNPDF2.0

Results - Partons - Comparison to other global fits
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NNPDF2.0

Results - Partons - A couple of upshots

@ Reduction of uncertainties with respect to
older NNPDF sets due to inclusion of new
data
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NNPDF2.0

Results - Partons - A couple of upshots

@ Reduction of uncertainties with respect to oo
older NNPDF sets due to inclusion of new

[E R R R R A R

B NNPDF2.0
045 CTEQES
MSTW 2008

@ Uncertainties on PDFs competitive with G A
results from other groups ...

- TN TN TN
L S R B R L T A R
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NNPDF2.0

Results - Partons - A couple of upshots

I NPDF20
NNPDFLO
NNPDF12

@ Reduction of uncertainties with respect to
older NNPDF sets due to inclusion of new
data o
B NNPDF2.0
0451 [Zcreqss
0.4} ES9 MSTW 2008

@ Uncertainties on PDFs competitive with ey
results from other groups ...

@ ... but still retain unbiasedness in regions
where there are little or no experimental
constraints
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NNPDF2.0

Results - Quantitative assesment of impact of modifications

@ We define the distance between central values of PDFs

N (<qf>(1)<qj>(2))2>
d(q) = < a2g] + o3[q] .

and the similarly for Standard Deviations.
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NNPDF2.0

Results - Quantitative assesment of impact of modifications

@ We define the distance between central values of PDFs

d(q) = < (@) = <q/><2))2>
Npart

o%[q] + o2[q]]

and the similarly for Standard Deviations.

@ Comparisons we have performed for NNPDF2.0

NNPDF1.2 vs. NNPDF1.2 + minimization/training improvements
Improved NNPDF1.2 vs. Improved NNPDF1.2 + f,-method

e Fit to DIS dataset with H1/ZEUS data vs. Fit with HERA-I combined
o Fit to DIS dataset vs. Fit to DIS+JET

o Fit to DIS+JET vs. NNPDF2.0 final
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Results

Impact HERA-I combined dataset

@ Overall fit quality to the whole
dataset is good (x? = 1.14)

e oy dataset has relatively
high x2 ~ 1.3

@ o dataset has very low
x° ~ 0.55

@ Same y?-pattern observed in
the HERAPDF1.0 analysis

@ Impact on PDFs is moderate,
affecting mainly Singlet and
Gluon at small-x
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Results

Impact of Tevatron inclusive Jet data

@ We include Tevatron Run-II
inclusive jet data

@ They provide a valuable
constrain on large-x gluon

@ No signs of tension with other
datasets included in the
analysis

@ Run-| data not included but
compatibility with the outcome
of the fit has been checked
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Results

Impact of Drell-Yan and Vector Boson production data

@ Good description of fixed target
Drell-Yan data (E605 proton and
E886 proton and p/d ratio)

@ Vector boson production at
colliders (CDF W-asymmetry and
Z rapidity distribution) harder to fit

@ All valence-type PDF
combinations are affected by
these data

@ Sizable reduction in the
uncertainty of the strange valence
(possible impact on NuTeV
anomaly)
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Results

Vector Boson production at colliders

@ Z rapidity distribution:
e Very good description of DO data (x* = 0.57)
@ Poor description of CDF data (x2 = 2.02)
o MSTWO08 has the same pattern
e Possible inconsistency of the two datasets?

@ CDF W-asymmetry pe
o We fit the direct W-asymmetry data, ~ "F E jgé'é
not the leptoinc asymmetry . y %”
e Poor description of the data Sk y
(x* = 1.85) 2B
B 7
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Results

Phenomenological implications

@ LHC standard Candles

o(WHBr (W — I'y) | o(W™)Br (W™ — I"y) | o(Z2%)Br (z° = /ﬂ*)
NNPDF1.2 11.99 + 0.34 nb 8.47 +0.21 nb 1.94 £+ 0.04 nb
NNPDF2.0 1157 £0.191b 852 £0.14nb T.93£0.031b
CTEQ6.6 12.47 £ 0.28 nb 911 £0.22nb 2.07 £0.05nb
MSTWO08 12.03 £0.22 b 9.09 £0.1771b 2.03 £ 0.04 nb

34/43
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Results

Phenomenological implications

@ LHC standard Candles

o(2%)Br (z° - /ﬂ*)

o(WH)Br (W — I'y) o(W™)Br (W™ — ITy)
NNPDF1.2 11.99 + 0.34 nb 8.47 £0.21nb 1.94 + 0.04 nb
NNPDF2.0 11.57 £ 0.19 nb 8.52 + 0.14 nb 1.93 £0.03nb
CTEQ6.6 12.41 £ 0.28 nb 9.11 £ 0.22 nb 2.07 £ 0.05nb
MSTWO08 12.03 £ 0.22 nb 9.09 £ 0.17 nb 2.03 £ 0.04 nb

@ Impact on NuTeV determination of sin® 6,y

Determinations of the weak mixing angle s|n29W

NuTeVv0l

NuTeVO1 NuTeV0l  EW fit
[

+NNPDF1.2 [S] + NNPDF2.0 [S]

sin®8y,
o
N
N

0.225

0.22

0.215
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LHeC
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LHeC

Deep Inelastic Lepton-Nucleon Scattering at the LHC

HeC experiment:
o

@ Collide LHC proton beam with a lepton
beam

HERA experiments:

£ Hlam ZEUS

fiadtarget axpariments

= AMC

108 | e=a BCOMS
B

=S¢

@ Differrent configurations under
consideration:
e Linac-Ring/Ring-Ring options
@ Machine and physics studies ongoing
e CDR due soon (... too soon .. )

R - @ Wealth of information available at:

! http://www.lhec.org.uk
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LHeC impact on PDF determination

A couple of upshots

@ Opening up the investigation of a new kinematic region:
@ Small-x gluon: study deviations from DGLAP evolution

e Strangeness at small-x
@ Quark separation at large- and small-x
@ Detailed studies of EW effects (sin ©, quark couplings)

@ Complete unfolding of the proton structure within a DIS experiment
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Conclusions

@ Areliable estimation of PDF uncertainties is crucial in order to exploit
the full physics potential of the LHC experiments.

@ The NNPDF methodology based on using Monte Carlo techniques and
Neural Networks is well suited to address problems of standard fits.

@ No sign of strong tension among different datasets

o Officially released NNPDF sets (NNPDF1.0/1.2/2.0) are available within
the LHAPDF interface.

@ Next steps:

o Improved treatment of Heavy Flavour contributions, NNPDF 2.x
@ Inclusion of higher order contributions (QCD/EW effects), NNPDF x.x
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Fast Evolution

@ Implementation of a new strategy to solve DGLAP evolution equation

@ Evolution is performed as interpolation using higher-oder interpolating
polynomials (Hermite polyonomials)

@ Implementation benchmarked against the Les Houches tables
@ Gain in speed by a factor 30 (for a fit to 3000 datapoints)
@ Speed of the evolution scales with number of points in the interpolating

grid (compare to older implementations which scaled with number of
datapoints).
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Methodology

Impact of improved trainig/stopping
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Methodology

Impact of #-method
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Results

Some more phenomenological implications

o(tt) o(H, my = 120 GeV)
NNPDF1.2 | 901 + 21 pb 36.6 £ 1.2 pb
NNPDF2.0 | 913 £ 17 pb 37.3+0.4pb
CTEQ6.6 844 + 17 pb 36.3 £ 0.9pb
MSTWO08 905 + 18 pb 38.4 £ 0.5pb
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