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PDES ARE UBIQUITOUS IN NATURE



(Lagaris, Likas, Fotiadis, 1998) and `PINNs’ (Raissi, Perdikaris, Karniadakis, 2017) + more  

▸ Neural network approximates solution u(x) of PDE 

▸ Loss function: physical laws + additional constraints 
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NN OPTIMISATION PROBLEM

PDE i.c. b.c.

Beautifully simple idea!UNSUPERVISED
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- delay equation 
- additional constraints 
- inverse problem 
- … 
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ADVANTAGES OVER STANDARD SOLVERS

▸ Solve multiple types of PDEs with same simple method  
- initial value problem 
- boundary value problem 
- delay equation 
- additional constraints 
- inverse problem 
- … 

▸ Works on arbitrarily shaped domains and is mesh-free 

▸ PINNs already improve on memory complexity (≥3D) and time 
complexity (≥5D) as compared to FDM (Avrutskiy,2020)  

▸ Cosmologist’s dream: have competitive NN-based cosmo codes  
This calls for time efficiency improvements in 3+1D



PROMISING PINNS 
(see talk by Karniadakis MLTP 2020)  
https://www.youtube.com/watch?v=FQ0vsqU-K00

Hidden Fluid Mechanics (Raissi, Yazdani, Karniadakis, Science 2020)

Identify location hole

https://www.youtube.com/watch?v=FQ0vsqU-K00
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MAIN DRAWBACK OF PINNS

▸ Fine tuning of hyper parameters NN for each problem at hand  
Also remarked in (DeepXDE; Lu, Meng, Zao, Karniadakis, 2020). See also (PyDEns; Koryagin, Khudorozkov, & 

Tsimfer, 2019) + (NeuroDiffEq; Chen, Sondak, Pavlos Protopapas, Mattheakis, Liu, Agarwal, Di Giovanni, 2019) 
 
E.g. we failed to solve for the harmonic oscillator 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MAIN DRAWBACK OF PINNS

▸ Fine tuning of hyper parameters NN for each problem at hand  
Also remarked in (DeepXDE; Lu, Meng, Zao, Karniadakis, 2020). See also (PyDEns; Koryagin, Khudorozkov, & 

Tsimfer, 2019) + (NeuroDiffEq; Chen, Sondak, Pavlos Protopapas, Mattheakis, Liu, Agarwal, Di Giovanni, 2019) 
 
E.g. we failed to solve for the harmonic oscillator 
 
 
- 3000 collocation points 
- PINNi ≡ i layers × 20 nodes of sigmoids  
- 20.000 epochs of ADAM 
 
 
Wait.. what’s going on?
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BACK TO THE BASICS: UNIVERSAL APPROXIMATION THEOREM

▸ PINNs are motivated by UAT  (Cybenko 1989) 

▸ Proof: based on binning a function

(Riemann Sum - Wikipedia)
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BACK TO THE BASICS: UNIVERSAL APPROXIMATION THEOREM

▸ For many PDEs there exist more efficient basis functions!  
Fourier series, polynomials, …  

▸ Plus: how a NN actually learns:  
https://cs.stanford.edu/people/karpathy/convnetjs/demo/regression.html

mathisfun.com

https://cs.stanford.edu/people/karpathy/convnetjs/demo/regression.html
http://mathisfun.com
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BACK TO THE BASICS: UNIVERSAL APPROXIMATION THEOREM

▸ We propose to use Fourier series AND a secular expansion 
 
                            Just like e.g. time-series extrapolation

(Godfrey, Gashler, 2017)
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DNNSOLVE         TWO-STREAM FOURIER+SECULAR BASIS

3D

1D

Fourier Secular Non-linear combi



▸ We use sum of RMSE (empirically: faster convergence & better accuracy ) 

▸ Loss weights α are necessary to escape local minima 

▸ Only tuning we will encounter is the intrinsically required mild tuning of 
these weights in 3D!
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OUR LOSS FUNCTION

PDE i.c. b.c.
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RESULTS 1D

▸ Εvolution solution during training 

Data and loss weights:     2000+1 points, α0 = αΩ = αδΩ = 1  
Neural network size:         35 nodes per branch (10 for oscillon) 
Training:                              150 epochs of Adam (mini-batches of size 256)  
                                                + BFGS until convergence 

high and low freq are learned simultaneously
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RESULTS 1D

▸ Accuracies of the tested ODEs

Data and loss weights:     2000+1 points, α0 = αΩ = αδΩ = 1  
Neural network size:         35 nodes per branch (10 for oscillon) 
Training:                              150 epochs of Adam (mini-batches of size 256)  
                                                + BFGS until convergence 

all results are obtained with one random initialisation, hence don’t correspond to our best results
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RESULTS 1D

▸ Contributions of the sine, secular and non-linear branches

To do: reduce noise from superfluous neurons
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RESULTS 2D

▸ Accuracies of the tested PDEs

Data and loss weights:     1000+200+200 points, α0 = 10, αΩ = αδΩ = 1  
Neural network size:         10 nodes per branch 
Training:                              210 epochs of Adam (mini-batches of size 256)  
                                                + BFGS until convergence 
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RESULTS 3D

▸ Accuracies of the tested PDEs

Data and loss weights:     1000+1200+500 points,  α: see table 
Neural network size:         10 nodes per branch (20 for Lamb-Oseen) 
Training:                              210 epochs of Adam (mini-batches of size 256)  
                                                + BFGS until convergence 

to do: automatised weight selectionchoice α required max 4 trials
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▸ No hyper parameter tuning: every d-dimensional PDE is solved with the 
same architecture and initialisation and reaches precision 10–3-10-6 
(Only mild tuning for loss weights in 3D)
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DNNSOLVE IMPROVES ON ONE-STREAM PINNS

▸ No hyper parameter tuning: every d-dimensional PDE is solved with the 
same architecture and initialisation and reaches precision 10–3-10-6 
(Only mild tuning for loss weights in 3D) 

▸ We use d・O(100-200) trainable parameters and O(1000) epochs of Adam 
(or O(100) with mini-batches) 
 
Compare e.g. to 1000-8000 trainable parameters and 15000-80000 epochs 
for 1,2 D examples presented in (DeepXDE; Lu, Meng, Zao, Karniadakis, 2020)
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KINKS & OSCILLONS

position kink is arbitrary 
accuracy is not accurate ;-)

Data and loss weights:     300+1 points, α0 = αΩ = αδΩ = 1  
Neural network size:         10 nodes per branch 
Training:                              500 epochs of Adam 
                                                + BFGS until convergence 



Y. WELLING - DESY JC 01/04/21

BOUNCES?

dNNsolve FindBounce

▸ N-field benchmark example (BubbleProfiler; Athron et al, 2019) (SimpleBounce; Sato, 2020) 

(FindBounce; Guada, 2020) (OptiBounce; Bardsley, 2021)  see also (Piscopo, Spannowsky, Waite, 2019) 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CONCLUSIONS

▸ dNNsolve: a two-stream Fourier + secular architecture  

▸ dNNsolve improves on PINNs:  
(1) it can solve a wide range of PDEs without (or mild in 3D) hyper parameter tuning 
and good precision 10–3-10-6 
(2) it requires much fewer NN parameters and converges much faster during training 

▸ We gained new insights how to further improve dNNsolve  
- automatised α weight tuning  
- reduce noise from superfluous neurons 

▸ Code becomes available soon 

▸ We are open for new ideas/collaborations Thank you!
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