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an efficient NN-based PDE solver
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NN OPTIMISATION PROBLEM

(Lagaris, Likas, Fotiadis, 1998) and "PININs’ (Raissi, Perdikaris, Karniadakis, 2017) + more
» Neural network approximates solution u(x) of PDE

» Loss function: physical laws + additional constraints

_ Beautifully simple idea!
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- inverse problem
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ADVANTAGES OVER STANDARD SOLVERS

» Solve multiple types of PDEs with same simple method

- initial value problem

- boundary value problem
- delay equation

- additional constraints

- inverse problem

» Works on arbitrarily shaped domains and is mesh-free

» PINNs already improve on memory complexity (=3D) and time
complexity (=5D) as compared to FDM (Avrutskiy,2020)

» Cosmologist’s dream: have competitive NN-based cosmo codes
This calls for time efficiency improvements in 3+1D



Hidden Fluid Mechanics (Raissi, Yazdani, Karniadakis, Science 2020)

Training Data

|dentify location hole

PROMISING PINNS

(see talk by Karniadakis MLTP 2020)

https://www.youtube.com/watch?v=FQQvsqU-K00
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https://www.youtube.com/watch?v=FQ0vsqU-K00
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MAIN DRAWBACK OF PINNS

» Fine tuning of hyper parameters NN for each problem at hand
Also remarked in (DeepXDE; Lu, Meng, Zao, Karniadakis, 2020). See also (PyDEns; Koryagin, Khudorozkov, &

Tsimfer, 2019) + (NeuroDiffEq; Chen, Sondak, Pavlos Protopapas, Mattheakis, Liu, Agarwal, Di Giovanni, 2019)

E.g. we failed to solve for the harmonic oscillator

i(t) + wu(t) = 0; ulty) =1; u(tg) =0 —  u(t) = cos(wt)
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MAIN DRAWBACK OF PINNS

» Fine tuning of hyper parameters NN for each problem at hand
Also remarked in (DeepXDE; Lu, Meng, Zao, Karniadakis, 2020). See also (PyDEns; Koryagin, Khudorozkov, &
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PINNs are motivated by UAT (Cybenko 1989)

Theorem 1. Let ¢ be any continuous discriminatory function. Then finite sums of
the form

N
G(x) = ) ao(yjx + 6)) (2)

73

are dense in C(1,). In other words, given any f € C(I,) and ¢ > 0, there is a sum, G(x),
of the above form, for which

|G(x) — f(x)|<e  forall xel,.

Proof: based on binning a function

(Riemann Sum - Wikipedia)
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BACK TO THE BASICS: UNIVERSAL APPROXIMATION THEOREM

» For many PDEs there exist more efficient basis functions!
Fourier series, polynomials, ...

mathisfun.com

» Plus: how a NN actually learns:

https://cs.stanford.edu/people/karpathy/convnetjs/demo/regression.html



https://cs.stanford.edu/people/karpathy/convnetjs/demo/regression.html
http://mathisfun.com

We propose to use AND a secular expansion

Just like e.g. time-series extrapolation

(Godfrey, Gashler, 2017)
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DNNSOLVE ~ TWO-STREAM FOURIER+SECULAR BASIS

N
1D ﬁ(.’L‘) = Z d}. sin(fk:c -+ (f)k) + dN+k0'(wk:II -+ bk) -+ d2N+k sin(fka: -+ d)k)o(wka: + bk) +a

k=1

Fourier Secular
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DNNSOLVE ~ TWO-STREAM FOURIER+SECULAR BASIS

|
1D w(r) = Z di sin( frx + or) + dnyro(wrx + by) + don sk sin( frx + op )o(wrx + b)) + a

k=1

Fourier Secular

3D

<@ e

N
7

Input Dense Multiply ~ Multiply Concatenate Dense Output
Fourier/Secular (no a.f.)
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OUR LOSS FUNCTION

» We use sum of RMSE (empirically: faster convergence & better accuracy )

i - "o

L(u(T), ay) =, | — E [Q/[u]l:.r‘- "].’_“” [ — g [B,,[u]( .‘1'})]3—(1,,13 | E [Bm_z[“]( T} fl]")
\" ’ [ T | \
J i | } J A

PDE I.C. b.c.

» Loss weights a are necessary to escape local minima

» Only tuning we will encounter is the intrinsically required mild tuning of
these weights in 3D!



Data and loss weights:  2000+1 points, ap = ag = asq = 1

Neural network size: 35 nodes per branch (10 for oscillon)
Training: 150 epochs of (mini-batches of size 256)
+ until convergence

Evolution solution during training

Two Frequencies Mathieu Equation

w
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RESULTS 1 D Data and loss weights:  2000+1 points, ap = ag = asq = 1

Neural network size: 35 nodes per branch (10 for oscillon)
Training: 150 epochs of Adam (mini-batches of size 256)
+ BFGS until convergence

» Accuracies of the tested ODEs

Epochs logo(7)
Mathieu equation
Decaying exponential
Harmonic oscillator

Damped harmonic oscillator
Y

'l'_.‘\ r'_.‘ —
‘ll'l.ll"' — Uulxr;)

Linear equation

Delay equation

Stiff equation
Gaussian

Two frequencies equation

| Oscillon profile equation

all results are obtained with one random initialisation, hence don’t correspond to our best results
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RESULTS 1D

» Contributions of the sine, secular and non-linear branches

Harmonic Oscillator Damped Harmonic Oscillator
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To do: reduce noise from superfluous neurons T



Data and loss weights:  1000+200+200 points, agp =10, aqg = asq = 1

Neural network size: 10 nodes per branch

Training: 210 epochs of Adam (mini-batches of size 256)
+ BFGS until convergence

Accuracies of the tested PDEs

PDE

Wave equation (1)
Wave equation (2)
Traveling wave
Heat equation (1)

Heat equation (2)

2
\ | <

Heat equation (3) 4. : | 2 : a(Z;) — ()

Poisson equation (1)

Poisson equation (2)
Advective diffusion equation
Burgers’ equation

Parabolic equation

Poisson equation (3, disk)




Data and loss weights:  1000+1200+500 points, a: see table

Neural network size: 10 nodes per branch (20 for Lamb-Oseen)

Training: 210 epochs of Adam (mini-batches of size 256)
+ BFGS until convergence

Accuracies of the tested PDEs

Epochs (xq, g, gn)
Wave equation (1) 706 (1,10.1)

Wave equation (2) (1.10,1)

Traveling wave 5 (1,1.1)

Heat equation (1) 5 (1,10,10)

Heat equation (2) 1484 (1,10,10) Z | () (= ]|2
’ U\IL;) —u\r;|

Poisson equation (1) 1546 (1.1.1)
Poisson equation (2) 3277 (1.1,1)

Poisson equation (3) 1640 ( 1,1,1)

Taylor-Green vortex 1165 (1,10,1)

Lamb-Oseen vortex 7389 (1.1,1)
Vorticity equation 11232 | (1,L1) -
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» No hyper parameter tuning: every d-dimensional PDE is solved with the
same architecture and initialisation and reaches precision 10-3-10¢
(Only mild tuning for loss weights in 3D)
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DNNSOLVE IMPROVES ON ONE-STREAM PINNS

» No hyper parameter tuning: every d-dimensional PDE is solved with the
same architecture and initialisation and reaches precision 10-3-10¢
(Only mild tuning for loss weights in 3D)

» We use d * O(100-200) trainable parameters and O(7000) epochs of Adam
(or O(100) with mini-batches)

Compare e.g.to 1000-8000 trainable parameters and 15000-80000 epochs
for1,2D examples presented in (DeepXDE; Lu, Meng, Zao, Karniadakis, 2020)
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KINKS & OSCILLONS

Data and loss weights:

Training:

N-field sine-Gordon

D
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Neural network size:

300+1 points, ap=ag =dsqo =1
10 nodes per branch

500 epochs of Adam
+ BFGS until convergence
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BOUNCES?

4 N-fleld bench mark example (BubbleProfiler; Athron et al, 2019) (SimpleBounce; Sato, 2020)

(FindBounce; Guada, 2020) (OptiBounce; Bardsley, 2021) see also (Piscopo, Spannowsky, Waite, 2019)

ng ng
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dNNsolve @, FindBounce
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CONCLUSIONS

» dNNsolve: a two-stream Fourier + secular architecture

» dNNsolve improves on PINNs:
(1) it can solve a wide range of PDEs without (or mild in 3D) hyper parameter tuning
and good precision 10-3-10¢
(2) it requires much fewer NN parameters and converges much faster during training

» We gained new insights how to further improve dNNsolve

- automatised a weight tuning
- reduce noise from superfluous neurons

» Code becomes available soon

» We are open for new ideas/collaborations T—l/la V\zl@ 8 ol
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TEXT

ADAM VS BFGS

® Deswed solution

® Adam (speed x 2)




TEXT

1D ODES

Mathieu equation:
u'(t) + (a—2q cos(2t))u(t) =0 a=1,9q=0.2
u(0) =1
u'(0) =0

Damped harmonic oscillator:
u"(t) + pu'(t) +wult) =0
u(0) =1
u'(0) =0

with analytical solution

4

u(t) = e 71/2 (cos(f t) + isin(f t)) . f=Vw?-52/4

2



TEXT

1D ODES

Two frequencies:

u"'(t) +u(t) + Ay cos(wr t) + Az sin(wa t), A1 =24 =6,w1 =5,w2 =10
u(0) =1
u'(0) =0
with analytical solution
1
u(t) = 13—2(121 cos(t) + 11 cos(5t) — 80sin(t) + 8sin(10t)
Oscillon Profile equation:

u’(t) + L (1) + mPu(t) —2u3(t) =0, d=1
uw +mu=0 when t— o
u'(0) =0

with analytical solution

m
cosh(mt)

u(t) =



TEXT

1D ODES

Decaying exponential:

{ u'(t) + Pult) =0 3 =10.52
u(0) =1

with analytical solution
u(t) = e 7t

Harmonic oscillator:

u(0) =1

u"(t) +wu(t) =0  w=>5
u'(0) =0

with analytical solution
u(t) = cos(wt)



TEXT

1D ODES

Linear function:

u'(t)—1=0

u(0) =1
with analytical solution

u(t)=1+1t
Delay equation:

{ u'(t) — pu(t) +u(t —d) =0,u(tlt <0)=t—-1, d=1
u(0) =1



TEXT

1D ODES

Stiff equation::
u'(t) +21u(t) —e* =0
u(0) =1
with analytical solution
| ~21t
t) = —
u( 20 (e7" +19¢ ")
Gaussian:
u'(t) +2btu(t) =0 b=10.1
u(0) =1
with analytical solution

u(t) = e~ bt’



TEXT

20 PDES

Advenction diffusion equation:

()l u— l()zf = ()
u(0,z) = 7sin(mz)
u(t,0) = u(t 1) =0
with analytical solution
1 1.2

u(t,z) = 7¢ * sin(mx)

Burger’s equation:

|.a.p-

O + udyu — L7, =
u(0,z) = z(1 —z)
u(t,0) =u(t,1) =0

Parabolic equation on unit disk:

Hu+ 02 u—4=0
u |;)Q = ]
with analytical solution

u(t,r) = %e' it sin(mx)



TEXT

20 PDES

Heat equation 1:
dyu —0.05 2, u =10
u(0, z) = sin(3rzx)
ulan =0

with analytical solution

u(t,z) = Sin(Bﬂ-I)e—().()S(Sﬂ’)zt

Heat equation 2:
Oy — 0.01 92,u =0
u(0,z) = 2sin(97rx) + 0.3 sin(4rx)
ulog =0

with analytical solution

u(t,z) = 2sin(9rz)e 01O _ .3 gin(4rz)e 00147

Heat equation 3:
dyu—0.05 9% u=10
u(0, ) = sin(3rx)
6.,21 |6Q = ()

with analytical solution

u(t,:r) - 0(5(371’:1:)6-0'05(3")2‘



TEXT

20 PDES

Poisson equation 1:

diu + 0% u + 2w sin(wt)sin(7wz) =0
u |3Q =)

with analytical solution
u(t, x) = sin(wx) sin(wt)

Poisson equation 2:

Ofu+ 0%, u+ 10(t — 1) cos(bz) +25(t — 1)(z — 1) sin(Hz) =0
u(0,z) = (1 — x) sin(5x)
u(l,z) =u(t,0) =u(t,1) =0

with analytical solution
u(t,z) = (1 —t)(1 — z)sin(5x)

Poisson equation on unit disk:

du+ 9% u— e~ (£ +102%) _
ulan =0



TEXT

20 PDES

Wave equation:

with analytical solution

Wave equation:

with analytical solution

Traveling Wave equation:

with analytical solution

Zu— 02 u=0
u(0,2) = sin(37x)
du(0,2) =0
wlpn =0

u(t, ) = cos(3nt) sin(3mx)

u— 02 u=0
w(0, ) = sin(37x)
u(0,2) =0
O-ulpo =0

u(t, z) = cos(3mt) cos(3mx)

u(0,2) = sin(27x)
u|po = sin(27t)

{ Au — dyu =0

u(t,z) = cos (2w (t + x))



TEXT

3D PDES

Taylor-Green vortex:

dyu + ud,u + vo,u + i%e““ sin 2z — (Op,u + Oy, )u =0
Opv +ud,v + voyv + e~ sin2y — (0, + Oy v) = 0
dyu+ dyv =10

Dirichlet BC

with analytical solution

{ u(t,z,y) = cos(z)sin(y)e %
v(t, z,y) = sin(x) cos(y)e 2

Vorticity equation:

w = dyv — dyu
Oyw + udw + voyw — 5 - 1073 (Dppw + 9y, Jw — 0.75 [sin (27 (z + y)) + cos (2m(z + y))] = 0

pu+ dyv =0
where
w(0,z,y) = [cos(3mz) — cos(3my)]
u(t,0,y) = u(t. 1, y)
u(t, z,0) =u(t,z,1)
u(t,0,y) = u(t. 1. y)
v(t,z,0) = u(t,z, 1)



TEXT

3D PDES

Lamb-Oseen vortex:

w = 0,v — dyu
Orw + udzw + vOyw — 5 - 1073 (Opaw + Oy )w = 0
dpyu+ Oyv =10

where

47t 4t

1 2 2
w(0,z,y) = — exp [—I Y ]
Dirichlet BC

with analytical solution

| w2 L 22
o y r*+vy
“(t9x9 y) - _27‘.(1.2 + y2) (1 - X [_ 4t ])

N x? + y?
'L’(t,é'l?,'.‘l) - 27‘.(1.2 4 q2) (1 B [— 4t ])




TEXT

3D PDES

Heat equation 1:
du— (03, + 95, )u=0
Dirichlet BC

with analytical solution

u(t, z,y) = ettt

Heat equation 2:
Ou — (02, + 3§y)u =
Dirichlet BC

with analytical solution
U(t, P y) - (1 o y)ex+t



TEXT

3D PDES

Poisson equation 1:

dfu+ 02,u + 92 u+ 3n? sin(xt) sin(rzx) sin(my) = 0
ulan =0

with analytical solution

u(t, z,y) = sin(wt) sin(wzx) sin(wy)

Poisson equation 2:

dpu+ 07, u+0ad,u—6=0
Dirichlet BC

with analytical solution

u(t,z,y) = u(t,z,y) = t* +2% + y2

Poisson equation 3:

Ofu+ 07, u+0;,u—6=0
Dirichlet BC

with analytical solution

u(t,z,y) =t +2° —y°



TEXT

3D PDES

Wave equation:

with analytical solution

Ofu — (2, u+ 02 u) =
u(0, x, y) 1n(7r.r) snn(wy)
Qu(0,z,y) =0

ulan =0

u(t, z,y) = cos(V2rt)sin(rz) sin(ry)

Wave equation:

with analytical solution

dfu — (0, u + 03, u) =
u(0,z,y) = sm(37rx) sm(47ry)
Qu(0,z,y) =0
u |;)Q =)

u(t, z,y) = cos(Hmt) sin(3rx) sin(4ry)

Traveling wave equation:

with analytical solution

Ou — };(i),u + dyu) =0
u(0,z,y) = sin(3rz + 27y)
Dirichlet BC

u(t, z,y) = sin(3rx + 2wy + «t)



