Gravitational waves and Dark photon dark matter from Axion rotation

2104.02077 Raymond T. Co, Keisuke Harigaya, and Aaron Pierce

Journal club's talk by Peera Simakachorn 15 April 2021

Axion and GW

One interesting example: "Audible Axion" [Machado, Ratzinger, Schwaller, Stefanek, '18]

then oscillates at $H \sim m$.dark photor

Axion is first frozen,

- Spontaneous-symmetry breaking of global symmetry \Rightarrow pNGB e.g. axion could acquire mass term.
- If axions couple weakly to SM sector or only coupled to dark sector, \Rightarrow Difficult to probe \Rightarrow should rely on gravitational effect

Axion couples to dark photon. Scalar field oscillation with alternating ϕ' -sign Tachyonic instability 10-7 Corresponding GW 10⁻⁸ \Rightarrow explosive production of dark photons from two helicities. 10⁻⁹ (of two helicities) $h^2 \Omega_{\rm GW}$ 10⁻¹⁰ $v''_{\pm}(k,\tau) + \omega^2_{\pm}(k,\tau) v_{\pm}(k,\tau) = 0$ 10⁻¹¹ 10⁻¹² with $\omega_{\pm}^2(k,\tau) = k^2 \mp k \frac{\alpha}{f} \phi'$. 10⁻¹³ 0.1 10⁻² 10

 $k / (m a_{osc})$

Another interesting dynamics: "Axion rotation"

Axiogenesis [Co, Harigaya, '19] Kinetic misalignment [Co,Harigaya, '19] [Chang, Cui, '19]

a) de Sitter fluctuation during inflation [Wu & Petraki, '20]

b) Driven by negative Hubble mass to global minimum [Dine-Randall-Thomas, 1995]

Peccei-Quinn scalar: $P \sim \phi e^{i\theta}$ with U(1)-symmetry and axion as phase, $a = \theta f_{\phi}$

The scalar field can be dynamically driven to large value, $\phi \gg f_{\phi}$.

Generating rotation via explicit U(1)-breaking term $V_{\text{break}} \sim \frac{P^l}{M^{l-4}} + \text{h.c.} \propto \cos(l\theta)$ (effective at large ϕ)

Both radial oscillation and angular rotation: Elliptic orbit with red-shifting size

At later times, V_{break} becomes negligible. There is a **conserved charge** (PQ-charge):

$$\frac{d}{dt}(R^3\phi^2\dot{\theta}) = 0$$

 $V(\Phi)$ Φ $\phi = f_{\phi}$

Another interesting dynamics: "Axion rotation" (cont.) $V(\Phi)$ Unwanted matter domination Elliptic orbit is dangerous. "Cosmological moduli problem" U(1)-conserving interactions can damp radial motion. Angular rotation remains. 0.01 $\phi \cos{(\theta)}$ 0.00 $\phi_{\rm ini}$ [Allahverdi-Mazumdar, '08, Co-Harigaya, '19] -0.01-0.02 Circular orbit red-shifts down to the bottom. 0.0006 0.0004 0.0002 ho_{tot} V_{tot} [Simakachorn] inflation 0.0000 SM Vini radiation -0.01**Cosmological history** 0.00 density $\phi \sin(\theta)$ scalar P of the Universe $\phi_{\rm ini}$ $\phi > f_{\phi}$ oscillation & rotation energy rotation $\phi = f_{\phi}$ $\rho_{\Phi} \sim a^{-n}$ for n < 4for potential $V = |P|^{2n/(6-n)}$ Total $\dot{\theta} \propto R^{-3}$ oscillation elliptic orbit circular orbit damping $3H \sim m_{\phi}$ scale factor R

"Axion rotation" couples to dark photons

For simplicity, consider only circular orbit θ does not oscillate. (similar result is expected for elliptic orbit)

Tachyonic instability for modes

if dark photon mass $m_{A'}$ is small.

Assume Yukawa interaction with fermions $\psi, \bar{\psi}$ charged under $U(1)_{PO}$ and $U(1)_d$

$$\mathcal{L} \supset y_\psi P ar{\psi} \psi + ext{h.c..}$$
 (not causing e.g. dark electri

induced anomaly and axion-dark photon coupling

$$\mathcal{L} \supset \frac{e_D^2}{64\pi^2} \theta \epsilon^{\mu\nu\rho\sigma} F'_{\mu\nu} F'_{\rho\sigma},$$

Equation-of-motion of two helicities of dark photon A'_+

$$n_{A'}^2 + \frac{k^2}{R^2} \pm \frac{e_D^2}{8\pi^2} \frac{k}{R} \dot{\theta} \bigg) A'_{\pm} = 0,$$

Fastest growing mode:

$$\frac{k}{R} \simeq \frac{e_D^2}{16\pi^2} \dot{\theta} \equiv k_{\rm TI},$$

"PQ charges in rotation \Rightarrow asymmetry in helicity of A""

Effectiveness of tachyonic instability (TI)

Equation-of-motion of two helicities of dark photon A'_+

$$\frac{\partial^2 A'_{\pm}}{\partial t^2} + H \frac{\partial A'_{\pm}}{\partial t} + \left(m_{A'}^2 + \frac{k^2}{R^2} \pm \frac{e_D^2}{8\pi^2} \frac{k}{R} \dot{\theta} \right) A'_{\pm} = 0 \,, \implies \frac{k}{R} \simeq \frac{e_D^2}{16\pi^2} \dot{\theta} \equiv k_{\rm TI},$$

The growth rate should exceed Hubble friction: $k_{TI} \gtrsim H$

Oscillating axion

Two A'-helicities are produced.

For effective TI,
$$\frac{e_D^2}{16\pi^2}\dot{\theta} = k_{\text{TI}} > m_{\phi} \sim \dot{\theta}$$

Need large axion-dark photon coupling.

$$e_D \gtrsim 4\pi$$

Rotating axion

 $\dot{\theta}$ does not change sign. Helicity is highly asymmetric.

 $\dot{ heta} \propto R^0$ (quadratic) $\dot{\theta} \propto R^{-1} \sim T$ (quartic).

While $H \propto T^2$ (radiation era), the explosive A'-production is effective without large axion-dark photon coupling.

Stoping the dark-photon explosion

If $\pmb{\phi}$ is close to f_a , TI stops earlier because it becomes ineffective with $\dot{\theta} \propto R^{-3}$

Rough estimation, the production is complete when

$$H_P \equiv \frac{k_{\text{TI}}}{r_p} \leftarrow \mathcal{O}(10) \text{ factor}$$

and dark-photon energy density $\rho_{A'} \sim \rho_{\theta}$ @ production and the A'-momentum distribution has a peak at k_{TI} . (To be confirmed by lattice results)

- The production saturates when the back-reaction kicks in.
- $\Rightarrow \theta$ slows down by transferring charge to A'. \Rightarrow The produced A' scatters with the rotating field.
 - Both happen when A' obtains energy density comparable to P.

After the A'-production stops, there is a residual rotation.

$$Y_{ heta} = rac{n_{ heta}}{s} = r_{ heta} Y_{ heta,i}, \ \leftarrow ext{ befo} \ \uparrow \ \mathscr{O}(1) ext{ free parts}$$

Must not violate some bounds: matter domination during BBN, or $N_{\rm eff}$ bound.

Consequences of dark-photon explosion

scale factor R

I. Gravitational waves from axion rotation

EOM for metric tensor perturbation (or GW) is

$$\ddot{h}_{ij} + 3H\dot{h}_{ij} - rac{1}{a^2}
abla^2 h_{ij} = rac{2}{M_{
m Pl}^2}\Pi_{ij}^{TT}, \quad \leftarrow ext{anisotropic stress tensor is source} \ ext{ by dark photon energy density } \sim$$

 $k_{\rm GW} \approx$

$$f_{\rm GW} = 2 \text{ nHz } \left(\frac{r_p}{20}\right)^{\frac{1}{2}} \left(\frac{k_{\rm TI}}{3 \times 10^{-13} \,\text{eV}}\right)^{\frac{1}{2}} \left(\frac{10}{g_*(T_p)}\right)^{\frac{1}{12}}.$$

Today frequency:

 $\Omega_{
m GW}$

$$T_p \simeq 5.5 \text{ MeV}\left(\frac{f_{\text{GW}}}{2 \text{ nHz}}\right) \left(\frac{20}{r_p}\right) \left(\frac{10}{g_*(T_p)}\right)^{\frac{1}{6}}$$

short-lasting source \Rightarrow peak GW signal

A. Peak frequency: expect GW have a peak at wave number

$$\epsilon k_{\mathrm{TI}} \equiv r_p H_p.$$

(in range of pulsar-timing array)

Observation of a peak \Rightarrow Temperature of dark photon production

I. Gravitational waves from axion rotation (cont.)

EOM for metric tensor perturbation (or GW)

B. GW energy density: $\rho_{\rm GW} = M_{\rm pl}^2 \left\langle \dot{h_{ij}} \dot{h_{ij}} \right\rangle$

Today fraction on energy density in GW

$$\begin{split} \Omega_{\rm GW} h^2 &\simeq 3 \times 10^{-10} \left(\frac{2 \text{ nHz}}{f_{\rm GW}}\right)^8 \left(\frac{\dot{\theta}_p}{\text{MeV}}\right)^4 \left(\frac{\phi_p}{10 \text{ MeV}}\right)^4 \left(\frac{r_p}{20}\right)^6 \left(\frac{g}{g}\right)^2 &\simeq 4 \times 10^{-13} \left(\frac{0.1 \text{ Hz}}{f_{\rm GW}}\right)^8 \left(\frac{\dot{\theta}_p}{100 \text{ GeV}}\right)^4 \left(\frac{\phi_p}{10^8 \text{ GeV}}\right)^4 \left(\frac{r_p}{20}\right)^4 \\ \end{split}$$

The shape could broadening due to scattering that change A'-momentum distribution.

) is
$$\ddot{h}_{ij} + 3H\dot{h}_{ij} - \frac{1}{a^2}\nabla^2 h_{ij} = \frac{2}{M_{\text{Pl}}^2}\Pi_{ij}^{TT}$$
,
 $\dot{h}_{ij} \sim \frac{2\rho_{A'}}{3HM_{\text{Pl}}^2} \leftarrow \text{sourced by dark photon} \sim \rho_{A'}$

GW signal is related to dark-photon and axion-rotation energy densities.

need lattice results to see energy ratio between dark photons and GW

10

II. Relic dark photons from axion rotation

- A. (nearly) massless case: $m_{A'} \approx 0$
- Dark photons contributes to the dark radiation.
- $\Delta N_{
 m eff}$ constraint bounds the energy density of dark photons $ho_{A'}$

The dark-photon mass determines whether they are non-relativistic or relativistic.

$$0.1 \left(\frac{\Omega_{\rm GW} h^2}{10^{-10}}\right)^{\frac{1}{2}} \left(\frac{r_p}{20}\right) \left(\frac{g_*(T_p)}{10}\right)^{\frac{7}{6}}$$

11

if dark photons are massive, they can be non-relativistic at late-times and serves as dark matter.

scale factor R

Note: axion fluctuation from dark photons will also contribute to dark radiation, but will not exceed the above bound. Need lattice for precise results

II. Relic dark photons from axion rotation (cont.)

B. massive case: dark photons turns non-relativistic at temperature T_{NR} and could be dark matter.

scale factor R

The warmness constraints: $T_{NR} > 5 \text{ keV}$ (Lyman- α), 100 keV (21-cm)

By knowing T_{NR} , we know the mass of dark photon dark matter. Dark photon becomes non-relativistic when

$$k_{\text{peak}}(T_{NR}) = k_{\text{TI}}\left(\frac{T_{NR}}{Tp}\right) = m_{A'} \quad \Rightarrow \quad m_{A'} \simeq 10^{-8} \text{ eV}\left(\frac{10^{-14}}{\Omega_{\text{GW}}h^2}\right)^{\frac{1}{2}} \left(\frac{f_{\text{GW}}}{0.1 \text{ Hz}}\right) \left(\frac{20}{r_p}\right) \left(\frac{g_*(T_p)}{200}\right)^{\frac{1}{6}}$$

$$T_{NR} \simeq \rho_{A',p} \left(\frac{T_{NR}}{T_p}\right)^4 \qquad T_{NR} = \frac{4}{\sqrt{3}} \left(\frac{\rho_{\rm DM}}{s}\right) \left(\frac{g_*(T_p)}{g_*({\rm eV})}\right)^{\frac{1}{3}} \left(\frac{\rho_R}{\rho_{\rm GW}}\right)^4 \\ \simeq 4 \text{ keV} \left(\frac{10^{-14}}{\Omega_{\rm GW}h^2}\right)^{\frac{1}{2}} \left(\frac{20}{r_p}\right) \left(\frac{g_*(T_p)}{10^{-14}}\right)^{\frac{1}{2}} \left(\frac{20}{r_p}\right)^{\frac{1}{2}} \left(\frac{1}{2}\right)^{\frac{1}{2}} \left(\frac{1$$

(stronger $\Omega_{
m GW}$, larger $ho_{A'}$, smaller T_{NR})

GW signals and dark photon dark matter

Note: here the scattering via axion-dark photon coupling is neglected, but it could change the distribution of dark photons. E.g. increasing in $\rho_{A'}$ and relaxing warmness constraints.

Concrete model (example)

10^{-1} saxion fails to thermalize Assume PQ field interacts with SM charged leptons L, \overline{L} $W = (y_L P\ell + m_L L)\bar{L}, \qquad \bigcup_{U=1}^{\infty} 10^{-2}$ induces radial damping rate unsuccessful dimen $\Gamma_{\rm th} \simeq \alpha_2 y_L^2 T$, (fail to thermalize when large y_L is required because this could lead to thermal correction of potential.) 10^{-3} , 10^{2}

So far, the story of radial damping/thermalization is neglected.

 m_S (keV)

14

In summary...

A dynamics of rotating axion field provides interesting phenomenology: baryon asymmetry by "Axiogenesis" model, "kinetic misalignment" mechanism

By coupled to dark photons, axion in circular orbit can induce the explosive dark-photon production via tachyonic instability.

 \Rightarrow the rotational velocity $\dot{\theta}$ does not change sign:

In contrast to the oscillating axion, e.g. "Audible axion": dark photons (and GW) are highly asymmetric in helicity (and polarization).

 \Rightarrow the axion-dark photon coupling need not to be large for efficient production.

Expected peak GW signal with $f_{\rm GW} \propto \sqrt{\dot{\theta}}$ and $\Omega_{\rm GW} \propto \rho_A^2$.

The relic dark photons can be dark radiation/matter and their properties can be related to GW signal.

