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Axion and GW

Spontaneous-symmetry breaking of global symmetry

= pNGB e.g. axion could acquire mass term.

If axions couple weakly to SM sector or only coupled to dark sector,

= Difficult to probe = should rely on gravitational effect

One interesting example: “Audible Axion”
[Machado, Ratzinger, Schwaller, Stefanek, ‘18]

Axion is first frozen,

then oscillates at H ~ m Axion couples to dark photon. Scalar field oscillation with alternating ¢ *sigr
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Another interesting dynamics: “Axion rotation”

Axiogenesis [Co,Harigaya, '19] V(D)

>

Kinefic misalignment Peccei-Quinn scalar: P ~ ¢e'

[Co,Harigaya, ‘19] [Chang, Cui, '19] . .
with U(1)-symmetry and axion as phase, a = 0f, ®

The scalar field can be dynamically driven to large value, ¢ > f,.
a) de Sitter fluctuation during inflation [Wu & Petraki, '20]

b) Driven by negative Hubble mass to global minimum [Dine-Randall-Thomas, 1995]
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Both radial oscillation and angular rotation:

10 Elliptic orbit with red-shifting size
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Another interesting dynamics: “Axion rotation” (cont.)
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V(D)

Unwanted matter domination
“Cosmological moduli problem”

Elliptic orbit is dangerous.

U(1)-conserving interactions can damp radial motion.

Angular rotation remains.
[Allahverdi-Mazumdar, ‘08, Co-Harigaya, ‘19]

Circular orbit red-shifts down to the bottom.
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“Axion rotation” couples to dark photons

dark . . .
ohotons Assume Yukawa interaction with

A termions v, y charged under U(1)p and U(1),
T assume to be heav
LD y‘PPQp’(p + h.c.. (not causing e.g. dark electri)c, conduct.)

induced anomaly and axion-dark photon coupling
2
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0 does not oscillate. 64772 uvt po
(similar result is expected for elliptic orbit)

For simplicity, consider only circular orbit

Equation-of-motion of two helicities of dark photon A
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Etfectiveness of tachyonic instability (TI)

Equation-of-motion of two helicities of dark photon A
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The growth rate should exceed Hubble friction: &, = H
Oscillating axion Rotating axion

6 does not change sign.

field oscillates at H ~
leld osciliates a My Helicity is highly asymmetric.

with alternating -sign.

0 « R" (quadratic)

" Two A’helicities are produced. 0 < R~' ~ T (quartic).

ep

167 While H « T? (radiation era),

Need large axion-dark photon coupling. the explosive A"-production is effective
' without large axion-dark photon coupling.

For effective Tl, ——0 = kyy > m,, ~ 6
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Stoping the dark-photon explosion

The production saturates when the back-reaction kicks in.

= 6 slows down by transferring chargeto A. = The produced A’ scatters with the rotating field.

Both happen when A’ obtains energy density comparable to P.

If @ is close to f,, Tl stops earlier because

it becomes ineffective with @ « R~

Rough estimation, the production is complete when

rp < 0(10) factor

and dark-photon energy density p, ~ p, @ production

and the A-momentum distribution has a peak at k.

(To be confirmed by lattice results)

After the A’-production stops,
there is a residual rotation.
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T O(1) free parameter

Must not violate some bound:s:
matter domination during BBN,

or N ¢ bound.
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|. Gravitational waves from axion rotation

EOM for metric tensor perturbation (or GW) is

.. : 1 0 2 T
hi; + 3H hy; aQV hij = 12, I, < anisotropic stress tensor is sourced
Pl

by dark photon energy density ~ p,.

short-lasting source = peak GW signal
/

A. Peak frequency: expect GW have a peak at wave number

(in range of pulsartiming array)

Today frequency:

Observation of a peak = Temperature of dark photon production
1
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|. Gravitational waves from axion rotation (cont.)
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EOM for metric tensor perturbation (or GW) is  hij + 3Hh;; > V2hi; =

: 204
TR . h, ~ < sourced by dark photon ~ p,.
B. GW energy density: Pow = M§1 <hijhzj> /4 17 3HM )4 P PA
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Pew  _Pa _"pl0 GW signal is related to
pr  HMy kM, dark-photon and axion-rotation energy densities.

need lattice results to see energy ratio between dark photons and GW

Today fraction on energy density in GW Expect very polarized GW
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l. Relic dark photons from axion rotation

The dark-photon mass determines whether they are non-relativistic or relativistic.

A. (nearly) massless case: m, ~ 0

Dark photons contributes to the dark radiation.

AN, constraint bounds the energy density of dark photons p,.
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Note: axion fluctuation from dark photons will also contribute to dark radiation,
but will not exceed the above bound. Need lattice for precise results 11



. Relic dark photons from axion rotation (cont.)

B. massive case: dark photons turns non-relativistic at temperature T,
and could be dark matter.
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The warmness constraints: Ty, > 5 keV (Lyman-a), 100 keV (21-cm)

By knowing Ty, we know the mass of dark photon dark matter.
Dark photon becomes non-relativistic when
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GW signals and dark photon dark matter

10 3 I /] Re | / / E
- : A // // // ]
107" £ ’ / ’ E
: / / / /) i
B / / / / .
-8 QY Q7 AN / _
].O ; OOQ),/ %Q)/// C\,Q) // ‘Q)A,/ ?
9 M > v >/ w
1070F S S/ S iy N
v ! 4 7 /
10710 57 v s g S 7
&Y’/l 3 /’ &Y\”// g // 50 ’/
~. 10-11 IR\ @'/, @// % S
hﬁg 4 / / / v/
A
1 —-12 7—/ / // / > 7y .
Céj : 13 / / ,’/ & %
10713} ' , / P
/1 dark mattér too warm ‘withdut particle /casc de to IR
/ ! &
10—14 | /- 7 K p —
10 - /// /// /// ///
/// /// /// //
10716 )/ ) Warmness probed by 21—/cm without part;éle cascade to IR—
/ s ey sy s A
D / p ;
10_17 i_ /// /// /// /// _
10-18 L2l il il il vl il il Tl il il
1010 10‘9 10‘8 10‘7 10‘6 10‘5 10‘4 10 —9 10‘2 10‘1 1 10 10% 109
fow (Hz)

Note: here the scattering via axion-dark photon coupling is neglected, but it could change the distribution of dark photons.

E.g. increasing in p,. and relaxing warmness constraints.



Concrete model (example)

So far, the story of radial damping/thermalization is neglected.
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In summary...

>

V(D)

A dynamics of rotating axion field provides interesting phenomenology:

baryon asymmetry by “Axiogenesis” model, “kinetic misalignment” mechanism
)4 b4 Yy Oy g / g

By coupled to dark photons, axion in circular orbit can induce
the explosive dark-photon production via tachyonic instability.

In contrast to the oscillating axion, e.g. “Audible axion”:

= the rotational velocity 6 does not change sign:
dark photons (and GW) are highly asymmetric in helicity (and polarization).

= the axion-dark photon coupling need not to be large for efficient produchon
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