

LUXE Inverse Compton Source Considerations

M. Zepf

Helmholtz Institut Jena and University of Jena

06.04.2021

Bremstrahlung

- Efficiency ~ 10^{-3} - at >0.9E_{max}
- Scales with converter thickness
- Simple to implement

• $1/\gamma$ cone angle HI JENA

Bremstrahlung layout

- Pure photon/photon interaction at high $\chi > 1$
- Breit-Wheeler Pair production
 - $-hv_{\gamma}Nhv_{laser} > m_ec^2(1-cos(\alpha))$
- Magnet to separate out leptons from IP

Inverse Compton Alternative

- Replace Bremsstrahlung Target with ICS
 - Photon energy ~ $\omega'=4\gamma^2\omega$ (ignoring recoil)
 - Normal incidence (OAP with hole) for max ω^\prime
- Approximate conditions a0<0.3
 - $N_{gamma_photons} \sim a0^2/137$ per optical cycle
- 5µm focus => Focus OF E-beam needs to be ICS source
 - Match electron beam focus for best efficiency!

www.hi-jena.de

12.04.21

Pulseduration can be longer

- Interaction time set by Rayleigh Range, electron pulse duration
- G-pulse duration set by electron pulse duration
 - $-\gamma^2$ compression in time due to relativistic effects
- For $z_R \sim 300 \mu m \Rightarrow t_{pulse_max} = z_R c \sim 1 ps$
 - Pulse durations up to 1ps don't affect γ pulse duration
 - For E_{laser}=const, t_{pulse}< z_R c => N_{gamma_photons}~const
 => don't need very short pulse!

ICS at low a0

ICS a

- Relativistic Mass increase for a0>1 —
- Photon recoil —

Polarised gamma-source

3ω ICS, 45° collision angle

- Polarised gamma source => see Daniel's talks
- Would require channeling crystal for polarised bremsstrahlung

Advantages of ICS source

- Lower background on detectors
 - better defined angular distribution
- Better defined input into reaction
 - Better reaction reconstruction
 - Note: Dressed states mean we don't know pair energy in rest frame!
- Polarised
- Added complication of secondary IP
- Need to do some laser development

ength do we need?

- Ideally as short as possible
 - High energy fundamental
- Perfectly co-timed
- a0 <~1 for narrow band interaction
- a0>1 for maximum hard photon flux

05.04.21

Real world limitations

Wavelength

- Tripling can be very efficient (90%@1054nm), Quadrupling can reach ~25% BUT...
- Phase matching achieved in bi-refringent X-tal
 - No (good) solution for very short wavelengths (800nm/4=200nm, 800m/3=266nm)

05.04.21

- Group Velocity $v_g = d\omega/dk$ walkoff
 - Short pulses increasingly inefficient at short wavelengths
- Tripling 800nm won't work!

HI JENA Helmholtz Institute Jena

www.hi-jena.de

11

Ti:Sapphire Spectrum

3ω range: 290-366nm 4.3 - 3 eV

- Ti:Sapphire has a broad spectrum
- Only small fraction around 800nm is used for high intensity pulse
- Ti:S Spectrum covers region for efficient tripling

Tripling Ti:Sapphire at 900nm

CThP6 Fig. 3. Output pulse energy and energy conversion efficiency at 300 nm as a function of the input pulse energy of the Ti:Sapphire laser at 900 nm

- Ti: Sapphire can amplify 1060nm-700nm
- Tripling at 900nm shown to be 30% efficient
- LBO crystals are available @large aperture HI

.....

JETI spectrum

- Spectrally we can separate a 900nm pulse
 - Required bandwidth ~1-10nm for 1ps-100fs
 - ~30nm for 30fs pulse at 800nm

www.hi-jena.de

06.04.21

Laser Modifications

- 900nm pulse amplified to 300mJ
 - 3% of total energy (would be 25% of JETI40)
 - Negligible impact on IP
- Frequency tripling to~300nm (4.1 eV)

Coatings

- Sufficiently broad coatings are standard
 - But some 800nm coatings do not cover 900nm
 - Needs to be specified at order
 - GDD mirror dispersion also needs to be accounted for
 - 900nm pulse is >100fs, not very sensitive

Overall Layout

 ICS generation can be accomodated in Bremsstrahlung chamber

Layout

- Similar layout to main IP
- Use zero degree OAP (with hole) for highest gamma energy

HI JENA Helmholtz Institute Jena

Summary

- Laser modifications
 - Front end to produce 900nm+broadband pulse
 - 3% of total energy in 900nm
 - Second compressor + Beamline
 - High flux of ~10 GeV photons
 - Narrowband possible
- Laser Development required
 - Based on literature high chance of success

