Correlation Functions and Fluctuation X-ray Scattering and Imaging

Ivan Vartaniants

DESY, Hamburg, Germany National Research University, 'MEPhI', Moscow, Russia

Coherent X-ray Scattering and Imaging Group at DESY

Present members:

- Y-Y. Kim
- D. Lapkin
- D. Assalauova
- A. Ignatenko
- R. Khubbutdinov
- S. Zolotarev (visitor)
- D. Egorov (summer student)
- S. Dubinina (summer student)

Former members:

- A. Zozulya (now@XFEL)
- A. Mancuso (now@XFEL)
- O. Yefanov (now@CFEL)
- R. Dronyak
- J. Gulden (now@FH-Stralsund)
- U. Lorenz (now@Uni. Potsdam)
- A. Singer (now@Cornell Uni.)
- R. Kurta (now@XFEL)
- I. Besedin (now@MISR)
- P. Skopintsev (now@PSI)
- A. Shabalin (now@DESY)
- D. Dzhigaev (now@Lund Uni.)
- O. Gorobtsov (now@Cornell Uni.)
- I. Zaluzhnyy (now@Tubingen Uni.)
- M. Rose
- S. Lazarev (now@BRUKER)
- L. Gelisio (now@XFEL)
- J. Stellhorn (now@Hiroshima Uni.)
- J. Carnis (now@CFEL)
- N. Mukharamova (now@DESY)

Acknowledgments for this work

- R. Kurta (XFEL)
- M. Altarelli (Max Planck Institute for Dynamical Systems)
- I. Zaluzhnyy (University of Tubingen)
- N. Mukharamova (DESY)
- D. Lapkin (DESY)
- B. Ostrovskii (FSRC "Crystallography and Photonics" RAS, Moscow)
- M. Scheele (University of Tubingen)
- F. Schreiber (University of Tubingen)
- M. Nielsen (DTU)
- and many others...

Cross-correlation functions

in signal processing

If we have two real random processes $x_1(t)$ and $x_2(t)$ then cross-correlation function is defined as

 $\Gamma(t_1, t_2) = \langle x(t_1) x(t_2) \rangle$

Here averaging <...> is performed over different realizations of the random process

Normalized correlation function

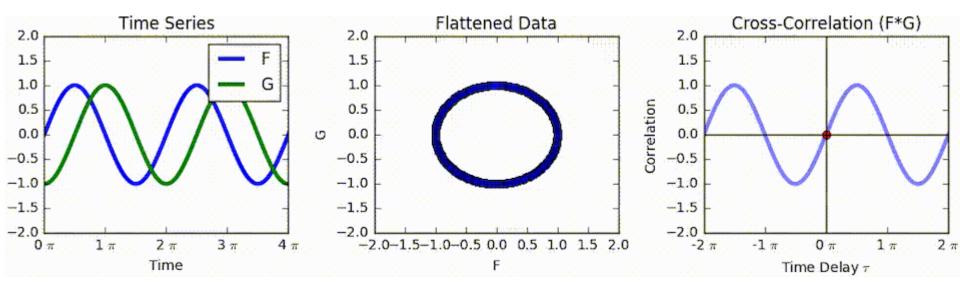
From Schwarz inequality

$$\gamma(t_1, t_2) = \frac{\Gamma(t_1, t_2)}{\sqrt{\Gamma(t_1, t_1)}\sqrt{\Gamma(t_2, t_2)}}$$

$$0 \le |\gamma(t_1, t_2)| \le 1$$

- When $|\gamma(t_1, t_2)|=0$ two processes $x_1(t)$ and $x_2(t)$ are not correlated
- When $|\gamma(t_1, t_2)|=1$ two processes $x_1(t)$ and $x_2(t)$ are completely correlated

Cross-correlation functions



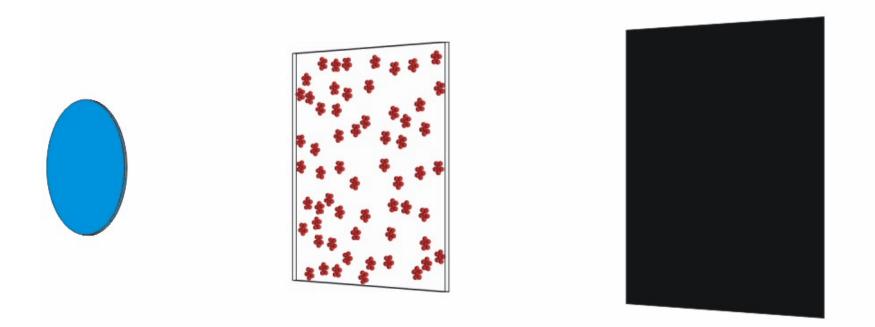
Cross-correlation of two functions F(t) and G(t):

$$F * G(\tau) = \int_{-\infty}^{\infty} F(t)G(t+\tau)dt$$

By Divergentdata - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?c urid=57768455

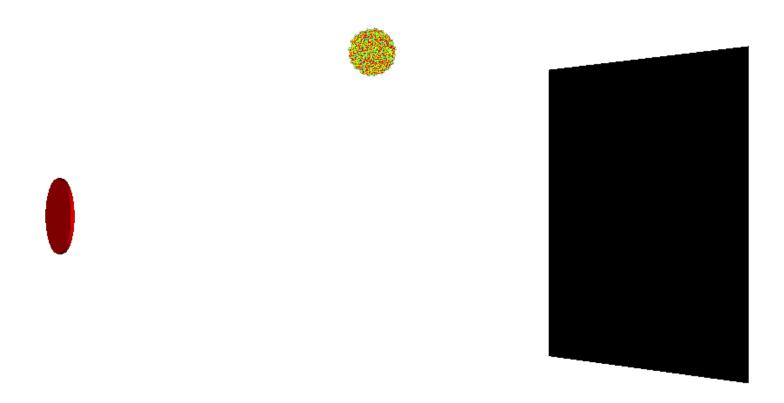
https://en.wikipedia.org/

Fluctuation X-ray Scattering



How to treat measured ensemble of diffraction patterns?

Single Particle Imaging (SPI) experiments



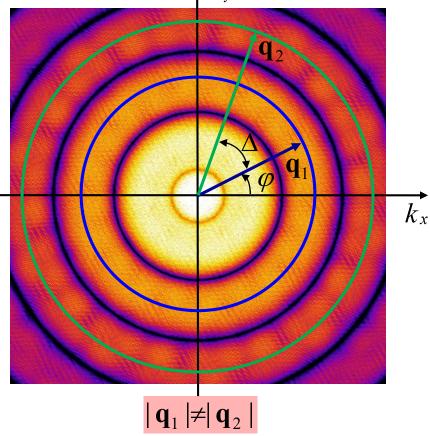
How to treat measured ensemble of diffraction patterns?

Definitions

Two-point angular cross-correlation function

Diffraction pattern (N particles)

 k_y



$$C(q_1, q_2, \Delta) = \left\langle I(q_1, \varphi) I(q_2, \varphi + \Delta) \right\rangle_{\varphi}$$

where $< \dots >_{\phi}$ is an angular average

Fourier series of the CCF $C(q_1,q_2,\Delta)$:

$$C(q_1, q_2, \Delta) = \sum_{n=-\infty}^{\infty} C_{q_1, q_2}^n e^{in\Delta}$$
$$C_{q_1, q_2}^n = \frac{1}{2\pi} \int_{0}^{2\pi} C(q_1, q_2, \Delta) e^{-in\Delta} d\Delta$$

Applying convolution theorem:

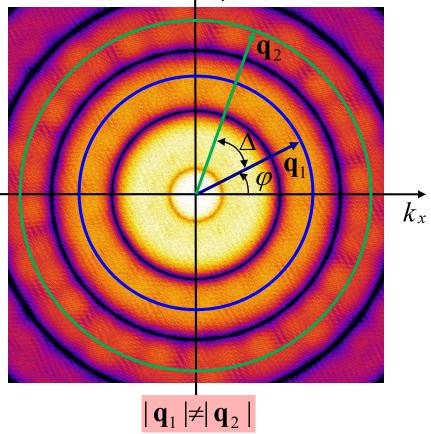
$$C_{q_1,q_2}^n = I_{q_1}^{n^*} I_{q_2}^n$$

M. Altarelli, et al., Phys. Rev. B **82**, 104207 (2010) R.P. Kurta, et al., Phys. Rev. B **85**, 184204 (2012)

Two-point angular cross-correlation function

Diffraction pattern (N particles)

 k_y



$$C(q_1, q_2, \Delta) = \left\langle I(q_1, \varphi) I(q_2, \varphi + \Delta) \right\rangle_{\varphi}$$

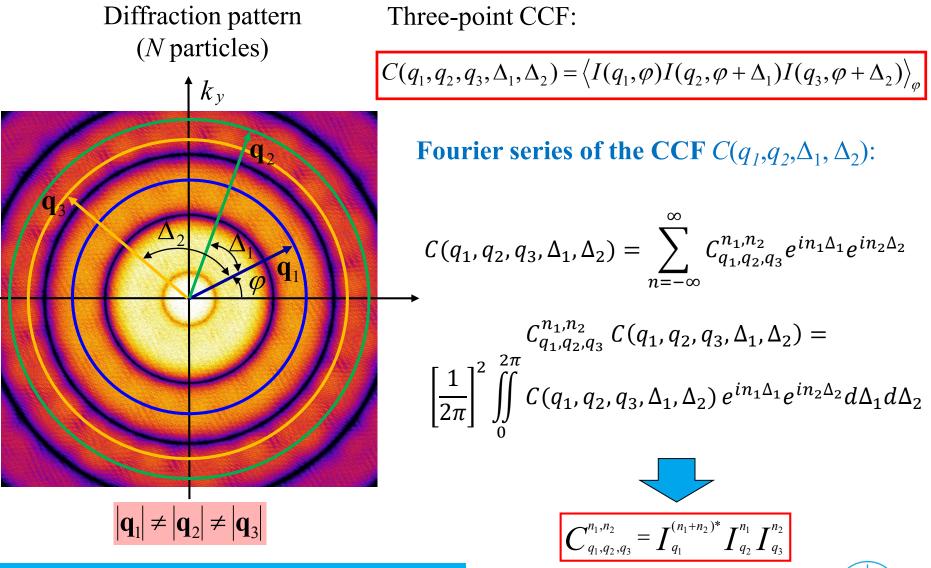
where $< \ldots >_{\phi}$ is an angular average

When we would have in diffraction pattern two peaks at momentum transfer vectors q_1 and q_2 , ACCF will have a peak at angle

$$\Delta = \widehat{\boldsymbol{q}_1 \boldsymbol{q}_2}$$

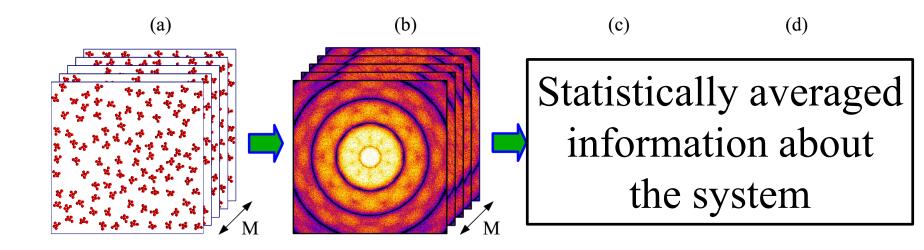
M. Altarelli, et al., Phys. Rev. B 82, 104207 (2010) R.P. Kurta, et al., Phys. Rev. B 85, 184204 (2012)

Three-point angular cross-correlation function



Z. Kam, *Macromolecules* **10**, 927 (1977) Z. Kam, *J. Theor. Biol.* **82**, 1 (1980)

Analysis of ensemble averaged CCFs



(a) A large number M of realizations of a disordered system composed of N

- identical particles;
- (b) Measured set of diffraction patterns;
- (c) Statistically averaged information about the system

R. Kurta, et al., Adv. Chem. Phys., v. 161, Eds. S. A. Rice&A. R. Dinner. (2016), pp. 1-39

Analysis of ensemble averaged CCFs

CCF averaged over a sufficiently large number *M* of diffraction patterns

$$\left\langle C_q(\Delta) \right\rangle_M = 1/M \sum_{m=1}^M C_q^m(\Delta)$$

Fourier analysis

$$\left\langle C_q^n \right\rangle_M = 1 / M \sum_{m=1}^M \left\{ C_q^n \right\}_m$$

Long history of the use of angular cross-correlation functions in physics

Long history of the use of angular CCFs

Determination of Macromolecular Structure in Solution by Spatial Correlation of Scattering Fluctuations

Zvi Kam

Polymer Department, Weizmann Institute of Science, Rehovot, Israel. Received April 11, 1977 Macromolecules, 10, 927 (1977)

J. theor. Biol. (1980) 82, 15-39

The Reconstruction of Structure from Electron Micrographs of Randomly Oriented Particles

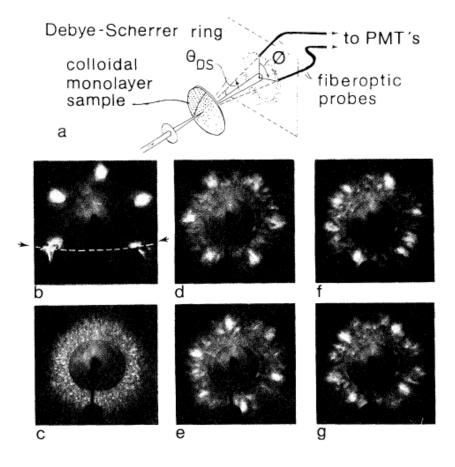
Ζνι Καμ

Polymer Department The Weizmann Institute of Science Rehovot, Israel

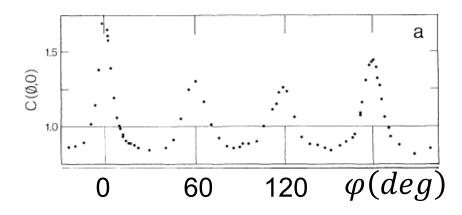
Long history of the use of angular CCFs

Scattering experiment on a charged polymer spheres in aqueous colloidal suspension

Intensity cross-correlation function



$$C(\varphi) = \frac{\langle I(q_1, \varphi = 0) I(q_2, \varphi) \rangle}{\langle I(q_1) \rangle \langle I(q_2) \rangle}$$

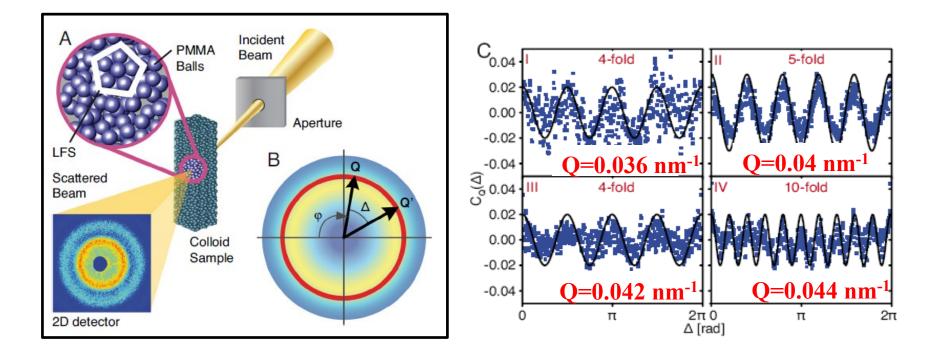


Measured intensity crosscorrelation function in 2D liquid

Photographs of typically observed scattered light distributions

Clark et al., PRL 50, 1459 (1983)

Break down in 2009



Ivan Vortaniante LEVS

Angular cross-correlation function

$$C_{Q}(\Delta) = \frac{\langle I(Q, \varphi) I(Q, \varphi + \Delta) \rangle_{\varphi} - \langle I(Q, \varphi) \rangle_{\varphi}^{2}}{\langle I(Q, \varphi) \rangle_{\varphi}^{2}}$$

DESY

Wochner P et al., PNAS 106, 11511 (2009)

Our work

First publications:

- M. Altarelli, R.P. Kurta, and I. A. Vartanyants, Phys. Rev. B 82 104207 (2010).
- R.P. Kurta, M. Altarelli, E. Weckert and I. A. Vartanyants, Phys. Rev. B **85** 184204 (2012).
- R.P. Kurta, R. Dronyak, M. Altarelli, E. Weckert, and I.A. Vartanyants, New J. Phys. **15** 013059 (2013).

Reviews:

- R.P. Kurta, M. Altarelli, and I.A. Vartanyants, Adv. Cond. Matter Phys. 959835, (2013)
- R. Kurta, M. Altarelli, and I.A. Vartanyants, Adv. Chem. Phys., v. **161**, Eds. S. A. Rice&A. R. Dinner. (2016), pp. 1-39
- I. Zaluzhnyy, R. P. Kurta, M. Scheele, F. Schreiber, B. I. Ostrovskii, and I. A. Vartanyants, Materials, **12**, 3464 (2019).

Application to different systems:

- Hexatic phase of liquid crystals
- Mesocrystals formed from nanocrystals
- Dynamics of molecules in liquids

X-ray cross-correlation analysis of free-standing liquid crystal films

R. Kurta *et al.*, Phys. Rev. E Brief Reports **88**, 044501 (2013)
I. Zaluzhnyy *et al.*, Phys. Rev. E **91**, 042506 (2015)
I. Zaluzhnyy *et al.*, Phys. Rev. E **94**, 030701(R) (2016)
I. Zaluzhnyy *et al.*, Soft Matter **13**, 3240 (2017)
I. Zaluzhnyy *et al.*, Mol. Cryst. Liq. Cryst., **647**, 169 (2017)
I. Zaluzhnyy *et al.*, Phys. Rev. E, **98**, 052703 (2018)

Applications

Liquid crystal displays (LCDs)

Polymer dispersed liquid crystal devices (smart glasses)

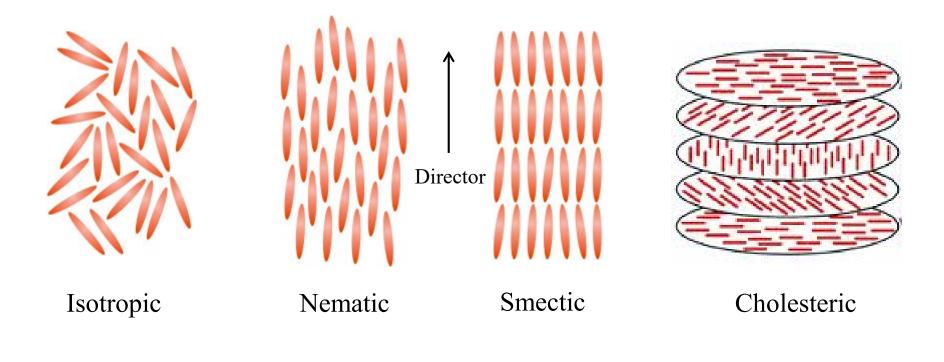
Liquid crystal tunable filters (LCTFs)

Soap

http://wikipedia.org

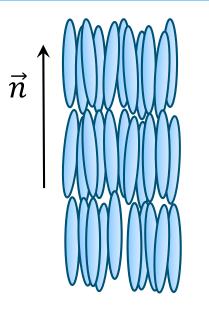
Liquid crystal thermometers

Liquid crystal phases

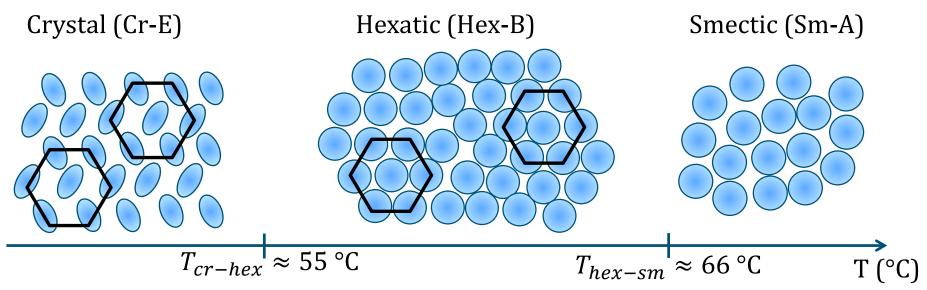


Molecular structure of a typical rod-shaped liquid crystal (LC) molecule

Smectic and hexatic phases in liquid crystals



- Elongated organic molecules form equidistant layers
- In-plane structure of each layer:
 - Smectic (Sm-A) liquid-like (short-range order)
 - Crystal (Cr-E or Cr-B) long-range order
 - Hexatic (Hex-B) short-range positional and long-range orientational order

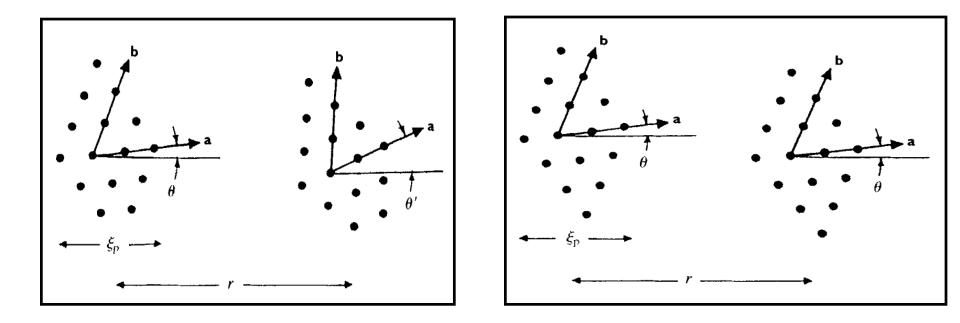


B. Halperin and D. Nelson, PRL, 41, 121, (1978)

Bond-orientational order and hexatic phase

Smectic A: positional and BO short-range order.

Hexatic B: short-range positional, and long-range BO order.



J.D. Brock, et al., Contemporary Physics 30, 321 (1989)

Scattering from hexatic phase

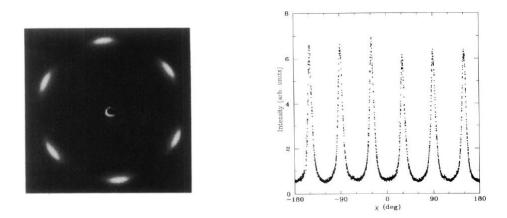


Fig. 2. X-ray diffraction pattern of hexatic membrane and corresponding χ scan

Fourier expansion of the azimuthal scattering profile:

$$I(\varphi) = I_0 \left[\frac{1}{2} + \sum_{m=1}^{\infty} C_{6m} cos(6m(\varphi - \varphi_0)) \right]$$

In the previous studies fitting procedure was used to determine Fourier components of intensity *C*_{6m}

Multicritical scaling theory (MCST)

In the frame of the MCST the BO parameters:

$$C_{6m} = [C_6]^{\sigma_m}$$

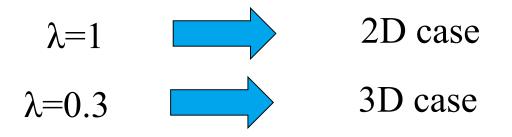
With exponent σ_m :

$$\sigma_m = m + x_m \cdot m(m-1)$$

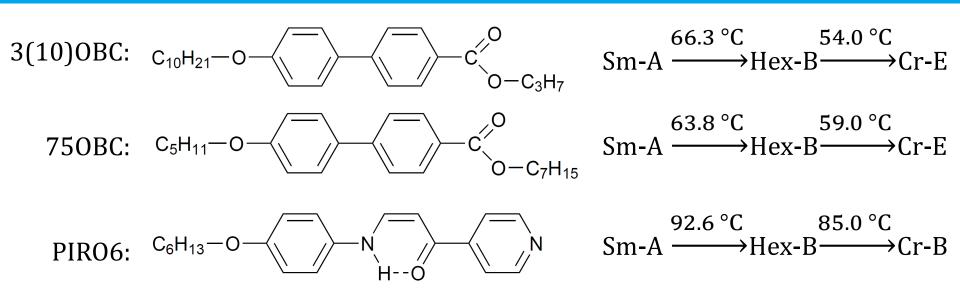
where:

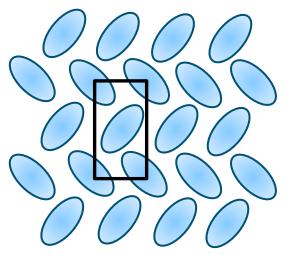
$$x_m \cong \lambda - \mu m + \nu m^2$$

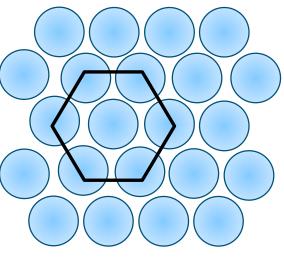
Theory predicts that:



Samples





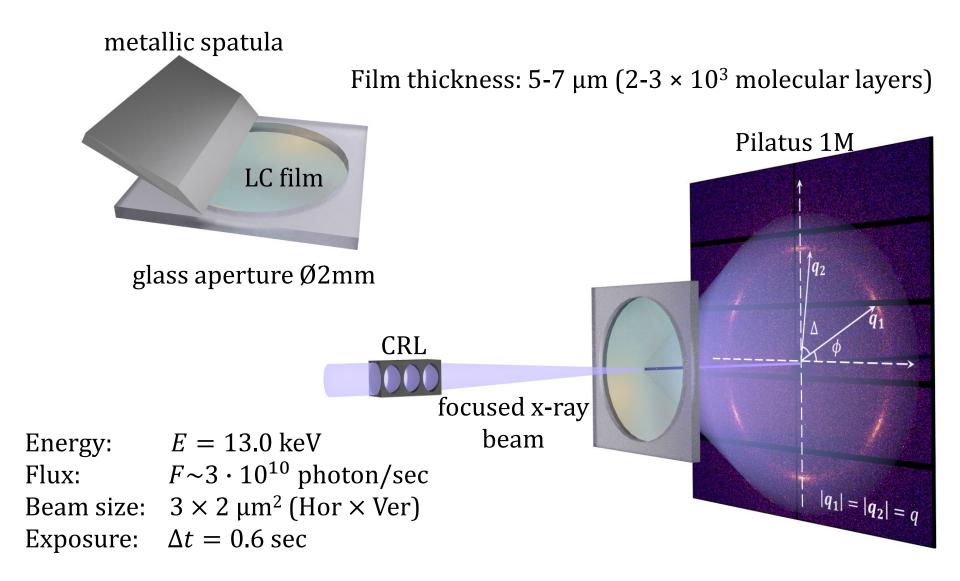


Cr-B

Cr-E

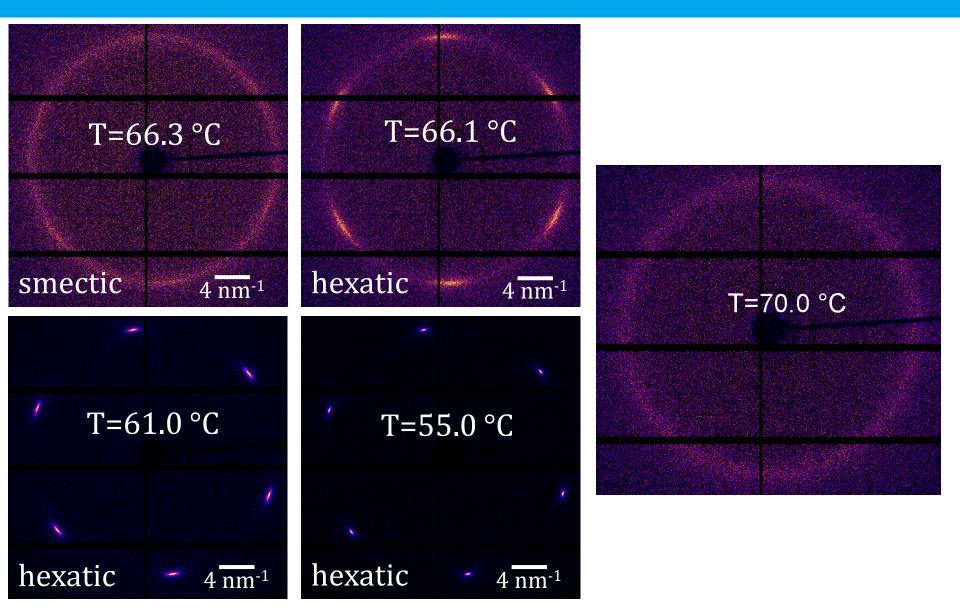
I. Zaluzhnyy et al., Soft Matter 13, 3240 (2017)

X-ray diffraction experimenta at P10 beamline (PETRA III)

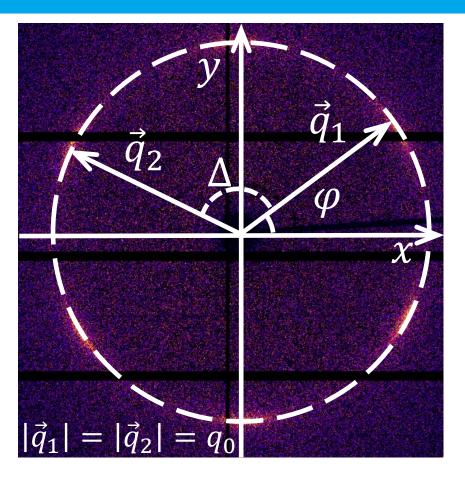


I. Zaluzhnyy et al., PRE, **91**, 04256, (2015)

Measured diffraction patterns



XCCA: two-point cross-correlation function (CCF)



- > CCF calculation $C(q, \Delta) = \langle I(q, \varphi) I(q, \varphi + \Delta) \rangle_{\varphi}$
- > Fourier coefficients of the CCF $C(q, \Delta) = C_0(q) + 2 \sum_{n=1}^{n=+\infty} C_n(q) \cos(n\Delta)$ $\langle C_n(q) \rangle_M = |I_n(q)|^2$

> Averaging

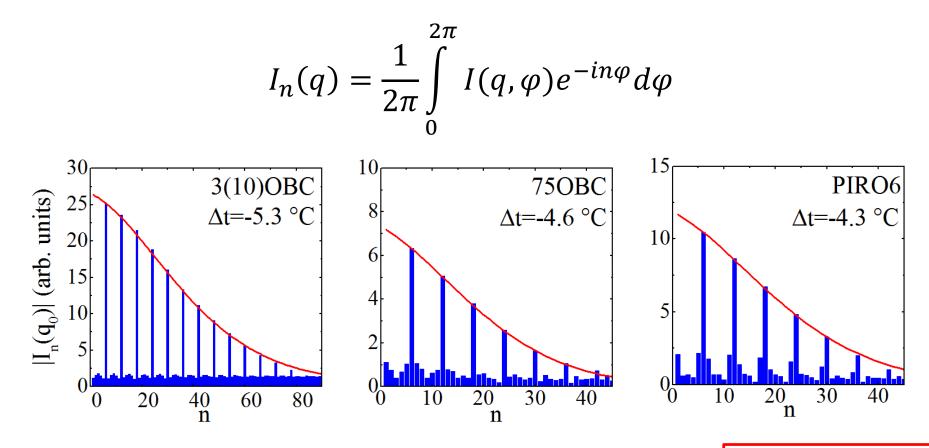
$$\langle C_n(q) \rangle_M = \frac{1}{M} \sum_{m=1}^M \{C_n(q)\}^m$$

By applying XCCA analysis Fourier components of intensity *I*ⁿ(*q*) can be determined directly from diffraction patterns

R. Kurta et al., Adv. Chem. Phys. 161, (2016)

Bond-orientational order

> Angular Fourier components of intensity



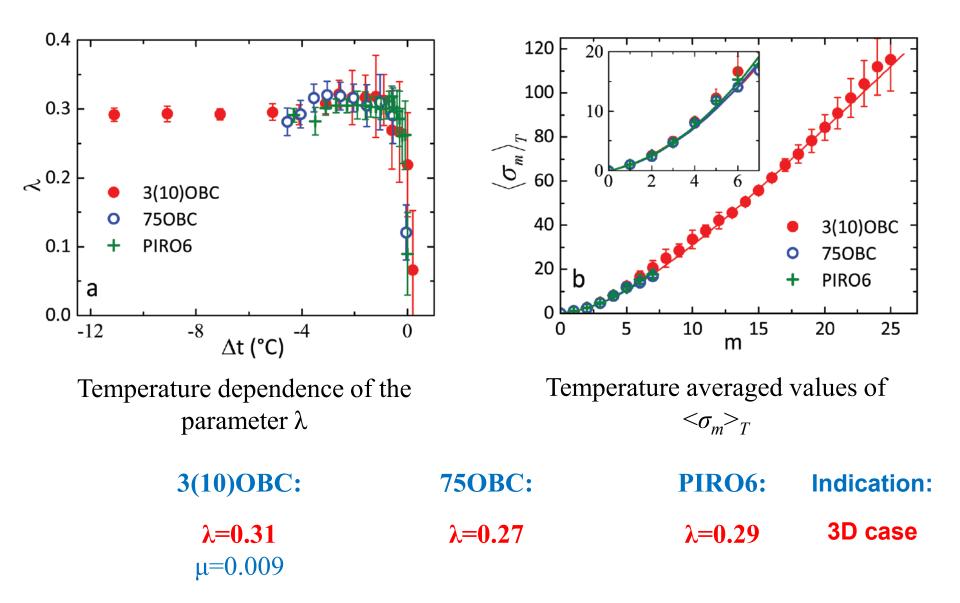
> The bond-orientational (BO) order parameters:

Red curve – prediction of MCST

 C_{6m}

 $I_{6m}(q_0)$

Bond-orientational order



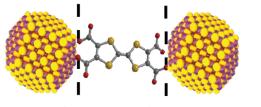
Angular correlations in mesocrystals studied with nanodiffraction

I. Zaluzhnyy *et al.*, Nano Lett. **17**, 3511 (2017) N. Mukharamova *et al.*, Small **15**, 1904954 (2019)

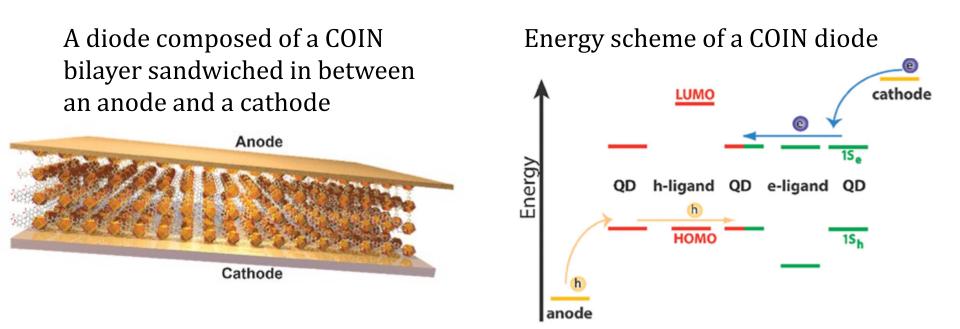
Coupled organic-inorganic nanostructures (COIN)

Hybrid nanostructures are coupled in two ways:

- electronically via potentially near-resonant alignment of suitable energy levels
- chemically through a strong binding interaction.



Nanoparticle Ligand I Nanoparticle

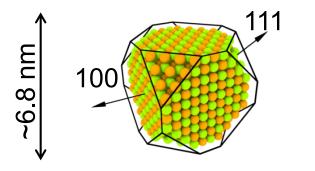


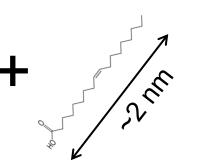
M. Scheele et al., Phys. Chem. Chem. Phys. **17**, 97 (2015)

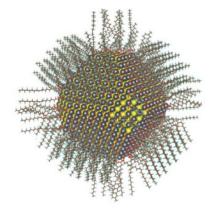
Mesocrystalline structures

The notation "mesocrystal" is an abbreviation for a mesoscopically structured crystal, which is an ordered superstructure of crystals with mesoscopic size (1–1000 nm).

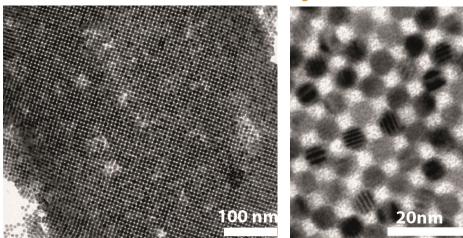
Coupled organic-inorganic nanostructures



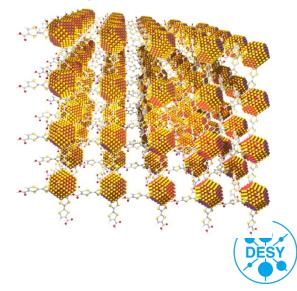




TEM of PbS nanocrystals



Previous study: Zaluzhnyy, Ivan A., et al. Nano letters 17.6 (2017): 3511-3517. Nanocrystal superlattice



Experimental setup

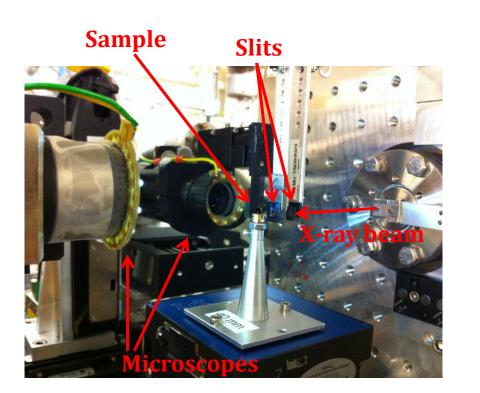
P10 beamline, PETRA III (GINIX setup)

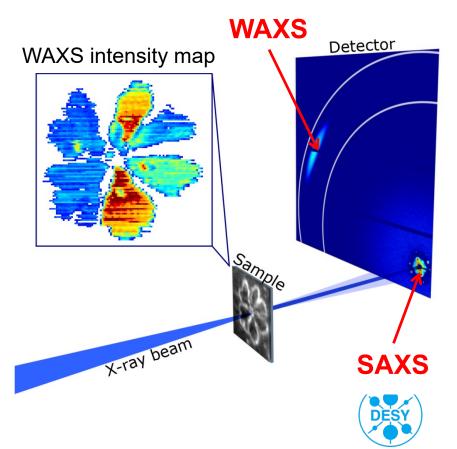
X-ray beam: E = 13.8 keV Size = $400x400 \text{ nm}^2$ Flux = 10^{10} - 10^{11} ph/sec **Detector** Eiger 4M Size = 2070x2167 pixels Pixel size = 75x75 µm SDD= 41 cm

Spatial scanning:

121x121 points with 250 nm step size. **Substrate:**

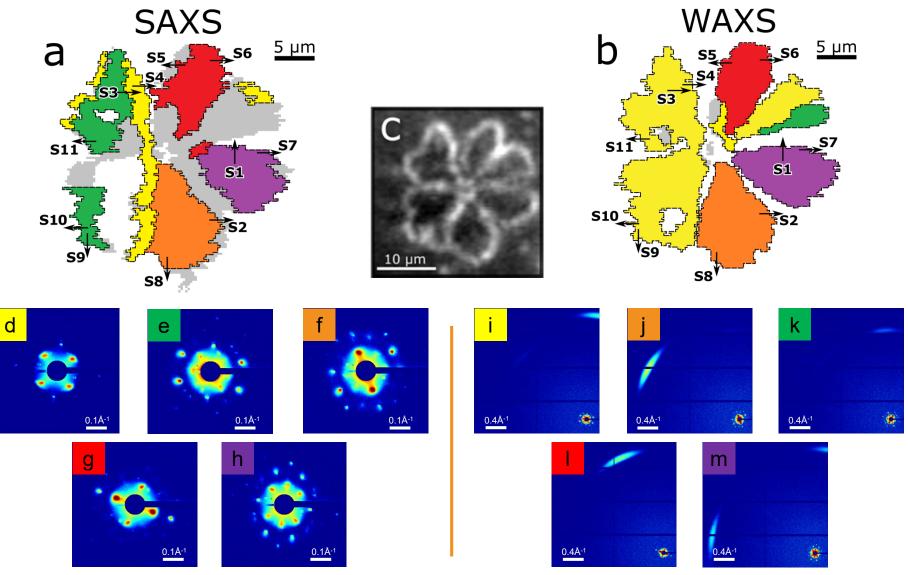
 Si_3N_4 -membrane, 0.5x0.5 mm², 50 nm thick





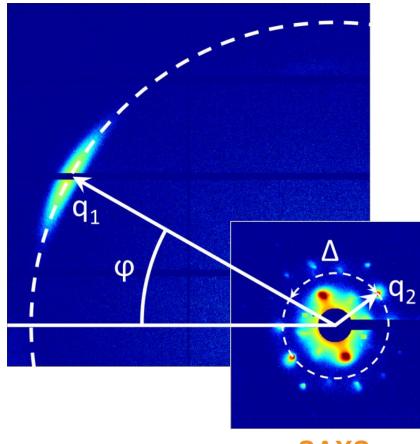
Spatial diffraction maps

Domain structure with different orientations of SL and AL



Cross-Correlation Analysis

WAXS



SAXS

CCF calculation

$$C(q_1, q_2, \Delta) = \frac{1}{2\pi} \int_{-\pi}^{\pi} I(q_1, \varphi) I(q_2, \varphi + \Delta) d\varphi$$

$$= \int_{-\pi}^{\pi} I(q_1, \varphi) W(q_1, \varphi) I(q_2, \varphi + \Delta) W(q_2, \varphi + \Delta) d\varphi$$

Mask

 $W(q, \varphi) = \begin{cases} 0, & \text{gaps, beamstop, detector edges} \\ 1, & \text{otherwise} \end{cases}$

> Averaging
$$\langle C(q_1, q_2, \Delta) \rangle_M = \frac{1}{M} \sum_{i=1}^M C^i(q_1, q_2, \Delta)$$

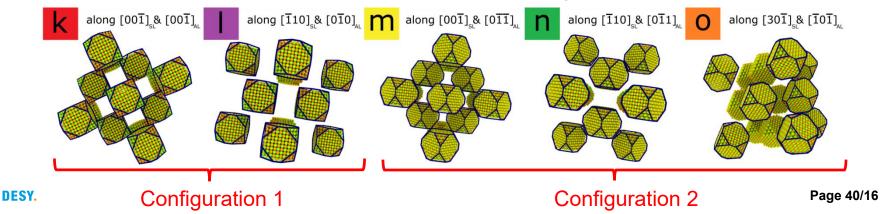
SAXS Angular positions of NCs in SL **Resolved by XCCA** Experimental (red) and simulated (blue) CCFs Correlated q-rings are shown by white dashed lines 45.5° 0.0 CCF(arb. u.) 0.0 CCF(arb. u.) -69.5° 110.8° 149.5° 64.7° -135.1° -115° -132.7° -115.8° 47.3° 115° -119.9 60.1° 32.6 ∆(°) 90 180 -180 -90 180 -180 180 -180 -90 ∆(°) 90 180 -180 ∆(°) ∆(°) -180 -90 90 ∆(°) -90 90 -90 90 180 200A g 200A 002_A 111AL 111_{AL} $\overline{11}1_{AL}$ 020AL <311>s 311><200>st <200> 200_{AL}

• Real space models of the superlattice and its constituting NCs

0.5 Å

 $0.1\,\lambda$

0.5 Å-1



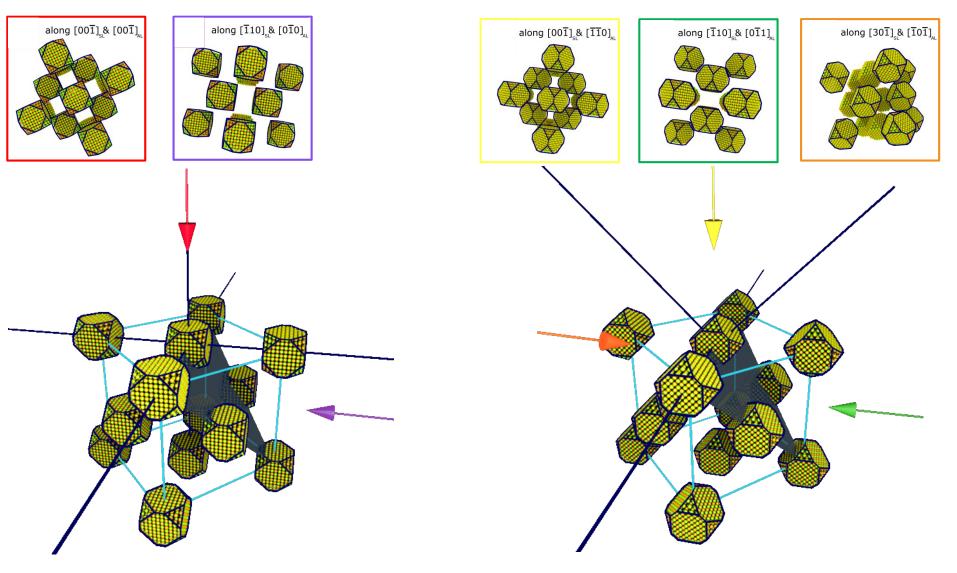
0.5 Å

0.5 Å

0.5 Å

0.1 Å

Two structural configurations

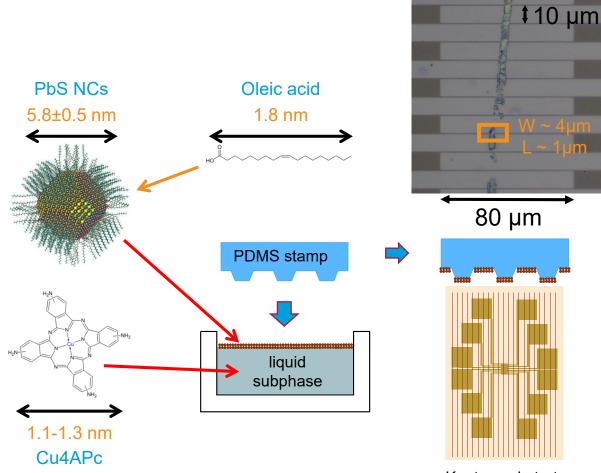


Anisotropic Charge Transport Revealed by Structure–Transport Correlations

A. Maier et al., Adv. Mater. 32, 2002254 (2020)

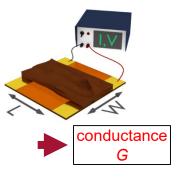
PbS-Cu4APc mesocrystals

Ligand exchanged from PbS-OA

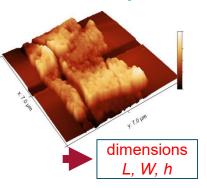


Kapton substrate

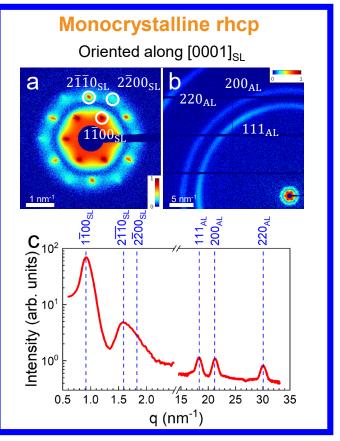
Conductivity measurements

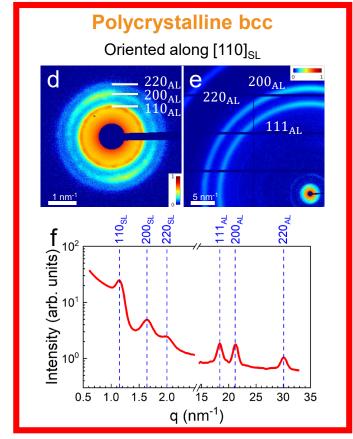


AFM map



Two types of superlattice

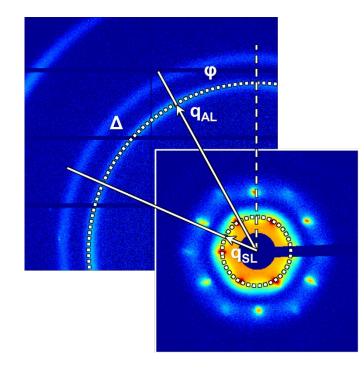




SAXS peak positions \rightarrow SL unit cell parameter and nearest-neighbor distance

Angular X-ray Cross-Correlation Analysis

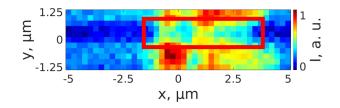
Basics



Cross-correlation function:

$$C(q_{AL}, q_{SL}, \Delta) = \frac{1}{2\pi} \int_{-\pi}^{\pi} I(q_{AL}, \varphi) I(q_{SL}, \varphi + \Delta) d\varphi$$

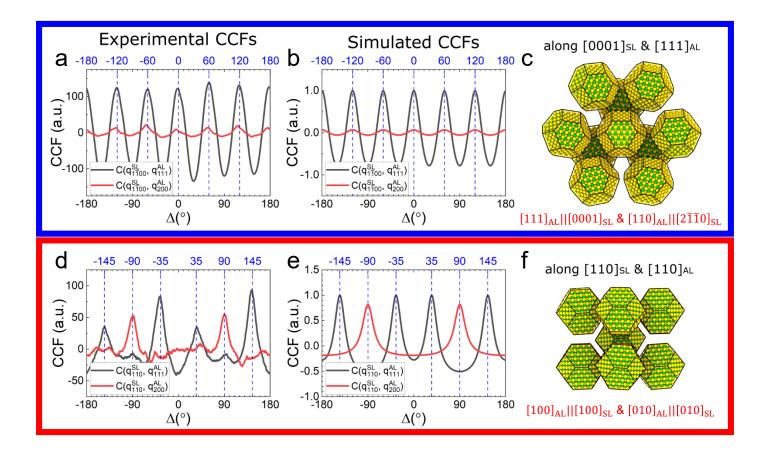
The cross-correlation functions are calculated for each diffraction pattern and then averaged over all patterns for each channel.



I.A. Zaluzhnyy et al. "Angular x-ray cross-correlation analysis (AXCCA): Basic concepts and recent applications to soft matter and nanomaterials." *Materials* 12.21 (2019): 3464.0

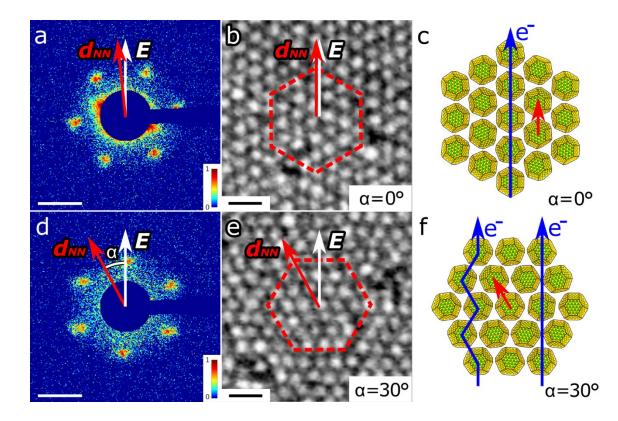
Angular X-ray Cross-Correlation Analysis

Reveals angular position of NCs in superlattice



Anistropy in conductivity

Observed for monocrystalline channels



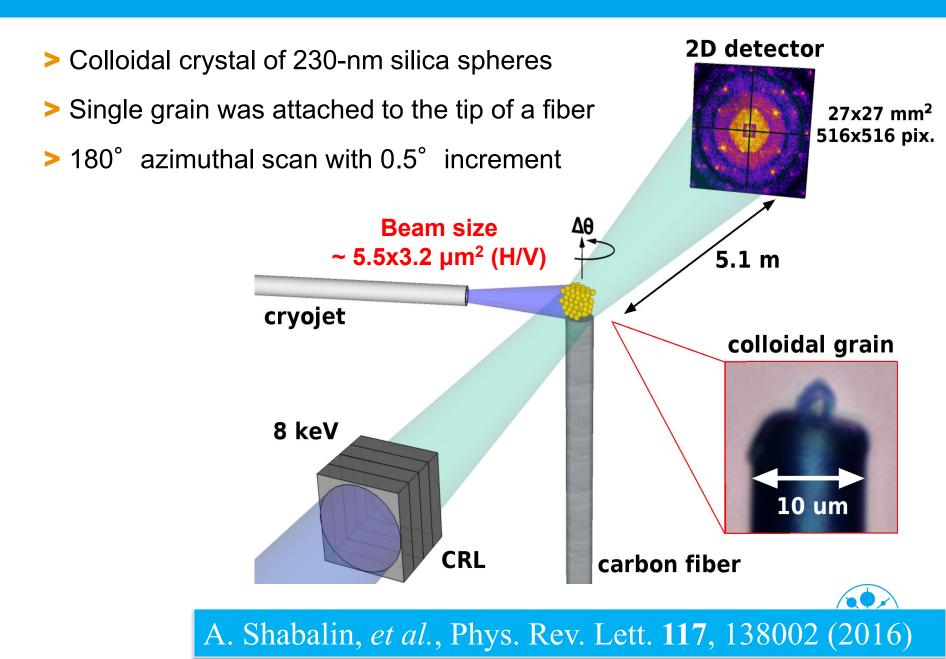
When NCs are aligned along the field, the conductivity is higher by 40-50 %

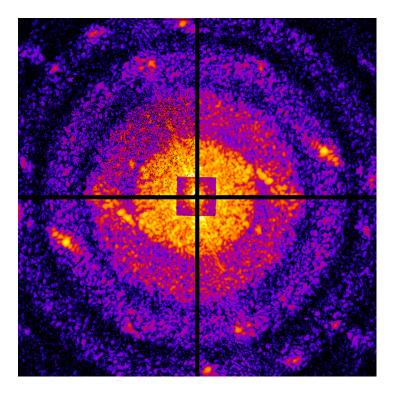
The larger hopping distance or the zig-zag path are detrimental to charge transport

Determination of structural parameters of single crystalline grains with defects

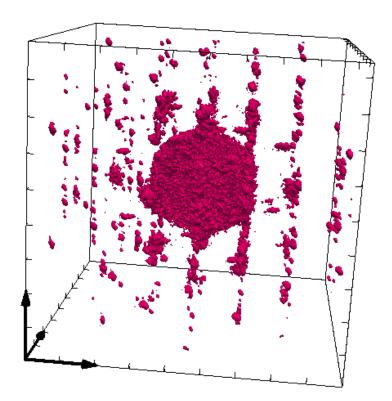
D. Lapkin, et al., (2021) (in preparation)

Experiment at P10 Beamline (PETRA III, DESY)





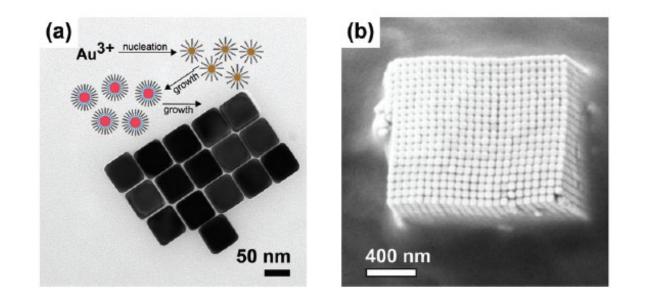
Diffraction patterns at different angles (360 images)



Stack of all images in 3D

Determination of structural parameters of single crystalline grains

Synthesis of gold nanoparticles and mesocrystals

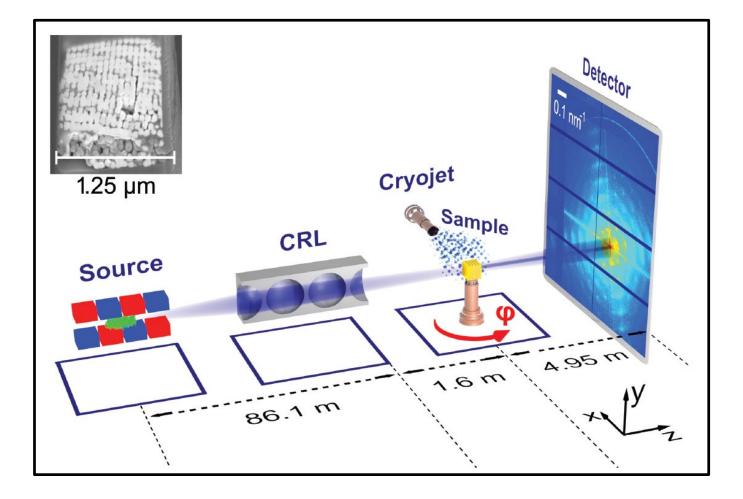


TEM image of gold nanocubes synthesized using a seed mediated approach

SEM image of the self assembled gold mesocrystal

Synthesis: group of E. Sturm (University of Konstanz)

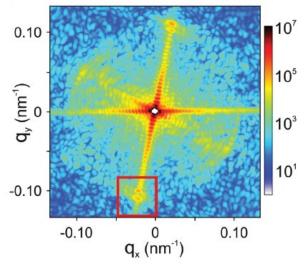
Experiment at PETRA III



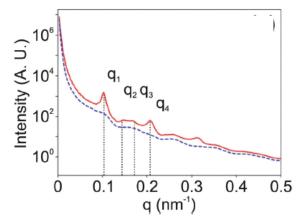
Schematic layout of the experiment performed at P10 beamline

J. Carnis et al., Nanoscale (2021) DOI: 10.1039/d1nr01806j

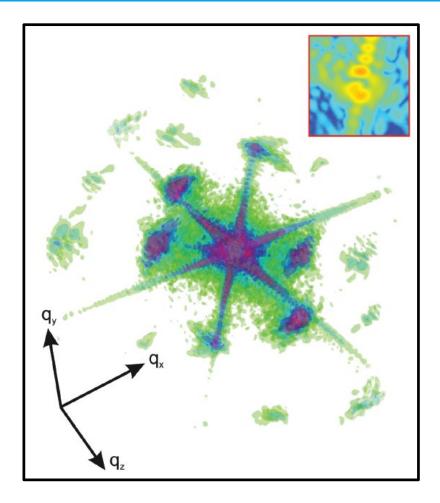
Experiment performed at PETRA III



Slice at the center of the diffraction pattern



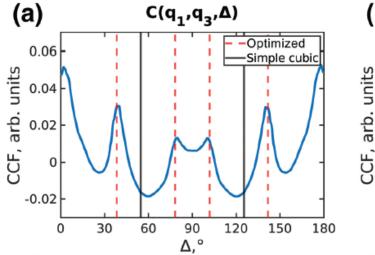
Intensity distribution as a function of qobtained by angular averaging of the 3D diffraction pattern

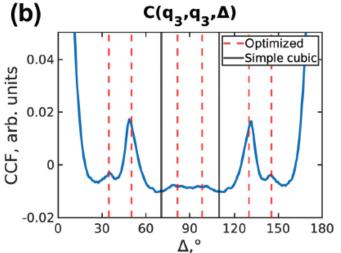


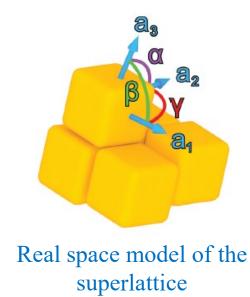
Isosurface view of the 3D diffraction pattern from the mesocrystalline grain

Angular X-ray Cross-Correlation Analysis

Angular X-ray cross-correlation functions (CCFs) $C(q_1,q_2,\Delta)$







Optimized unit cell:

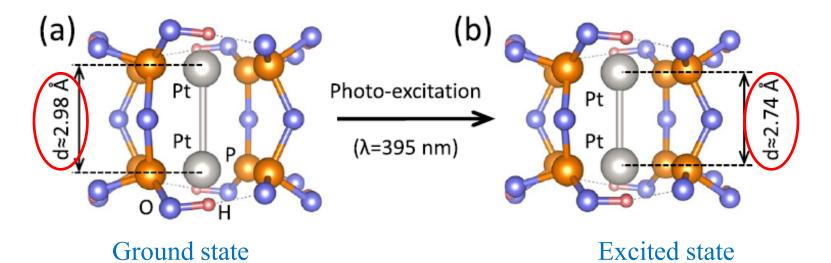
 $\label{eq:abs} \begin{array}{l} a = b = 63.2 \text{ nm}, \\ c = 62.2 \pm 0.1 \text{ nm}, \\ \alpha = \beta = 75^{\circ}, \\ \gamma = 90^{\circ}. \end{array}$

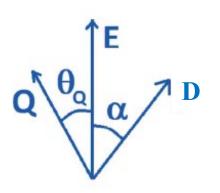
Ultrafast structural dynamics of photoreactions

P. Vester, et al., Struct. Dyn. 6, 024301 (2019)

Experiment performed at LCLS

System: PtPOP molecule





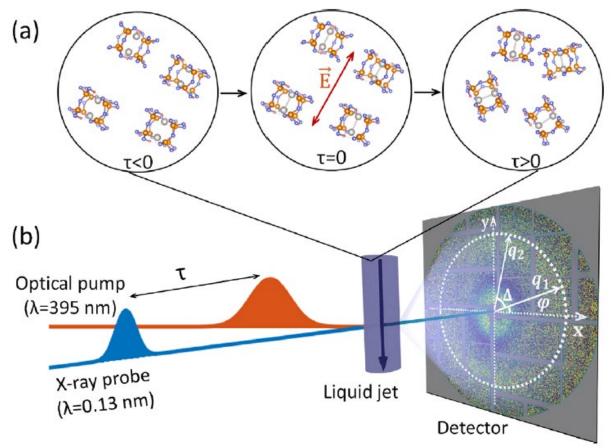
For one-photon absorption difference scattering signal:

 $\frac{d\sigma}{d\Omega} \sim S_0(Q,t) + P_2(\cos\theta_Q)S_2(Q,t)$

U. Lorenz, *et al.*, New J. Phys. **12**, 113022 (2010) E. Biasin, et al., J. Synchrtron Rad. 25, 306 (2018)

Experiment performed at LCLS

Temporal evolution of an ensemble of randomly oriented PtPOP molecules before and after excitation



Scheme of the pump-probe experiment at LCLS

Angular X-ray Cross-Correlation Analysis

Cross-correlation functions:

$$C(q,\Delta) = \left\langle I^{dif}(q,\varphi)I^{dif}(q,\varphi+\Delta)\right\rangle_{\varphi}$$

where:

$$I^{dif}(q,\varphi) = I^{on}(q,\varphi) - I^{off}(q,\varphi)$$

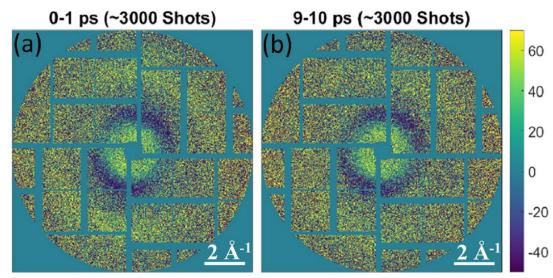
Angular Fourier series:

$$C(q,\Delta) = \sum_{n=-\infty}^{\infty} C_n(q) e^{in\Delta}$$
$$C_n(q) = \frac{1}{2\pi} \int_0^{2\pi} C(q,\Delta) e^{-in\Delta} d\Delta$$

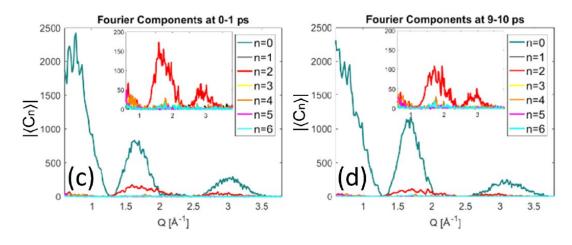
$$C_n(q) = \left| I_n^{dif}(q) \right|^2$$

Angular X-ray Cross-Correlation Analysis

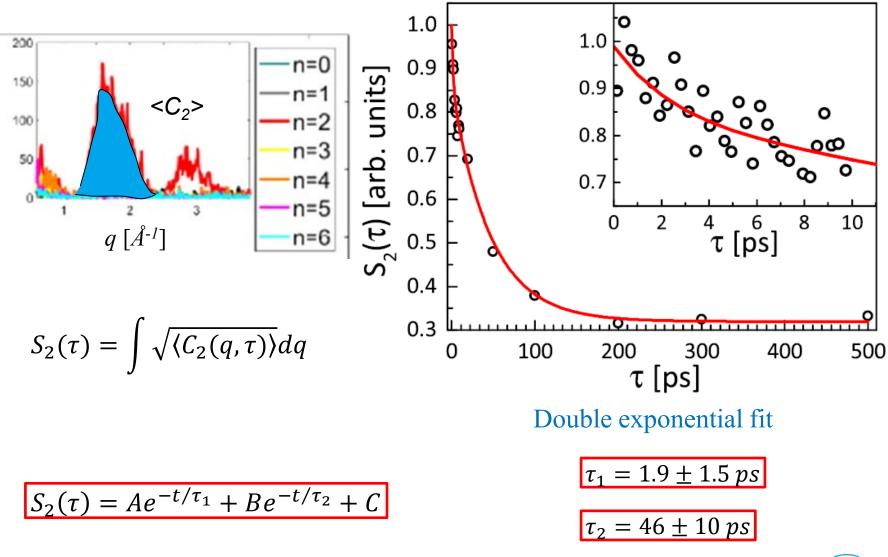
Difference scattering detector images $I^{dif}(q)$ for two different time delay intervals



Calculated averaged FC's of the CCFs

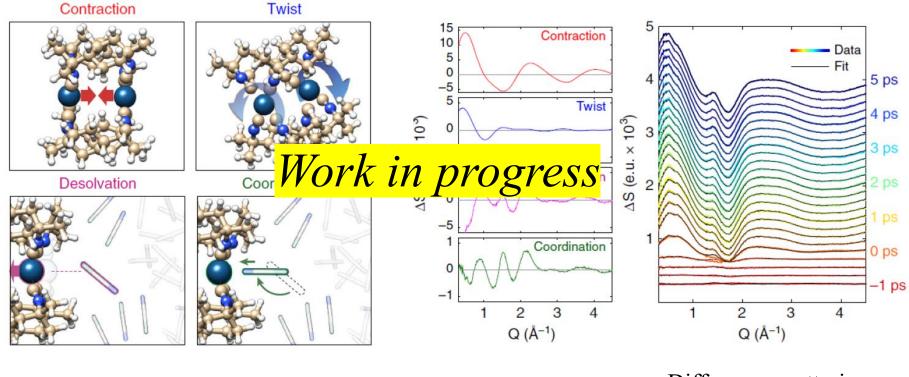


Characteristic times



LCLS experiment (2018)

Ir₂(Dim)4 complexes



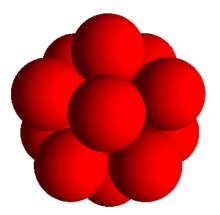
Possible dynamics in Ir₂(Dim)4

Difference scattering contribution Difference scattering signal LCLS Experiment (2012)

Summary

- AXCCA is a powerful tool to study ordered and partially ordered systems
- Can be applied to study details of correlations between long range bond-orientational order and short range positional order in liquid crystals
- Can be applied to study details of organization in mesocrystals formed by nanocrystals
- Can be applied to determine structure of molecular systems excited by laser pulses
- and much more...

Thank you for your attention



Ivan Vartaniants | FXS Workshop EuXFEL, June 2-3, 2021 | Page 64