Straw Cerenkovs: Dynamic range & TB plans

Louis and Ruth

12th May 2021

Cerenkov detectors: Straw tube design

ATLAS inner detector + TRT

ATLAS TRT Endcap module

LUXE Cerenkovs: tilted straw channel design

- small Cerenkov channel segmentation with metal channels is challenging (engineering, stability etc.)
- ATLAS transition radiation tracker (TRT) consists of thousands of straw (drift-) tubes
- straw tube: gas-filled aluminium-coated kapton foil tube (diameter d_{straw}=4mm) with anode wire inside
 → straw tube shells are reflective!
- idea for LUXE Cerenkovs: use straw tube shells instead of metal channels
- 3D-printed support structures and end connectors
- ATLAS TRT group provided us with straws for a prototype, more are available
 → prototype work starting soon (Covid-permitting)

staggering of multiple channel layers for additional spatial resolution

Cerenkov detectors: ADC

- CAEN DT 5702 contains WeeRoc Citiroc readout-chip
- Citiroc has provides two readout modes:
 - photon counting (low light environment)
- Citiroc uses built-in ADC to digitize the measured charge
- dynamic range of the ADC : 160 fC 400 pC (2 preamplifiers with different gain)
- output: multiplexed signal (high-gain and low-gain) for each of 32 input channels

https://www.onsemi.com/pdf/datasheet/microj-series-d.pdf

Cerenkov detectors: SiPM

J-Series SiPM Sensors

Silicon Photomultipliers (SiPM), High PDE and Timing Resolution Sensors in a TSV Package

<u>mm.onscin.com</u>

Parameter (Note 1)	Minimum	Typical	Maximum	Unit
Breakdown Voltage (Vbr) (Note 2)	24.2		24.7	V
Overvoltage (OV)	1		6	V
Operating Voltage (Vop = Vbr + OV))	25.2		30.7	V
Spectral Range (Note 3)	200		900	nm
Peak PDE Wavelength (λp)		420		nm
Temperature dependence of Vbr		21.5		mV/°C

	300	035	400)35	600)35	Unit
	Overvoltage						
Parameter (Note 4)	+2.5 V	+6 V	+2.5 V	+6 V	+2.5 V	+6 V	Unit
Gain (anode-cathode)	$2.9 imes10^{6}$	$6.3 imes10^{6}$	$2.9 imes10^{6}$	$6.3 imes10^{6}$	2.9 × 10 ⁶	6.3 × 10 ⁶	

Cerenkov detectors: SiPM

8E+6 45 7E+6 40 Overvoltage = 6.0V ... 4..... Overvoltage = 2.5V 6E+6 35 5E+6 30 PDE (%) 4E+6 25 20 3E+6 15 2E+6 10 1E+6 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 0 1.5 2 2.5 3 3.5 4.5 5 5.5 1 Wavelength (nm) **Overvoltage (V)**

https://www.onsemi.com/pdf/datasheet/microj-series-d.pdf

- gain reduction by lowering operating voltage is smaller than for gaseous PM
- photon detection efficiency, defined as:

$$PDE = \eta \cdot \epsilon_{Avalanche} \cdot F$$

where η : quantum efficiency, $\varepsilon_{Avalanche}$: probability to start avalanche, F: fill factor (ratio of SiPM active/inactive area

High Particle Rate Mitigation: Cerenkov Gas

• Frank-Tamm formula: - Number of Cerenkov Photos per charged primary

• Integrating over x (our z!) and λ and assuming $\beta \approx 1$:

$$N_{\gamma} = 2\pi\alpha l_z \left(1 - \frac{1}{n^2}\right) \left(\frac{1}{\lambda_{\min}} - \frac{1}{\lambda_{\max}}\right)$$

 $\lambda_{min/max}$: lower/upper wavelength sensitivity limit for PMT

Iz: length traversed in Cerenkov medium

High Particle Rate Mitigation $N_{\gamma} = 2\pi q l_z$

Medium	Refractive Index n	N _y per primary 300-650nm	N _y per primary 185-650nm
C4F10	1.0014	230	495
Air (15°, 1atm)	1.00028	46	100
Helium (0°, 1atm)	1.000036	6	13

Gas refractive index

Optical filters

$$OD = \log_{10}\left(\frac{1}{T}\right)$$
, or $T = 10^{-OD}$

OD 1.3

OD 2.0

500

- filters help in two ways
- globally reducing light level
- cutting off the $(1/\lambda$ falling) Cerenkov spectrum at low energies
- must make sure not to over-kill

600

700

800

900

1000 1100

Channel reflectivity

LED through the straw

- channel reflectivity determines how much light reaches SiPM
- this depends on the angle of incidence (number of reflections)
- need to measure!
- \rightarrow This would be best to do in a high-rate TB!

Would be sufficient to just hold Straw with air in it into the beam!

LED through 2 straws with 1 reflection on aluminium foil

LED through the 3 straws with 2 reflection on aluminium foil

DESY.

Putting it all together

in straw tube:

 $\Delta z_{electron} = \cdot$

calibration LED

d_{straw}

 $\sin \alpha$

optical filters \rightarrow transmissivity available down to 10⁻⁶

Putting it all together

$$Q_{ADC} = 2\pi N_e e \alpha_{QED} \frac{d_{straw}}{\sin \alpha} \left(1 - \frac{1}{n^2} \right) r_{chan} T_{filter} G_{SiPM} \int_{\lambda_{min}}^{\lambda_{max}} \frac{1}{\lambda^2} PDE(\lambda) \, d\lambda$$

We have more than enough light! Need to find a configuration that works!

Test beam proposal

Test beam at DESY (single electrons):

- possibly in earlier TB: gain experience with metal channel prototype, readout, synch with Telescope etc.?
- operation of new straw-channel prototype
- trigger strategies stand-alone and with telescope
- · alignment of the straws
- · alignment of straws/bowing of channels
- gas to use: C4F10 for higher light yields, possibly Ar/Air?
- · for alignment measurements need to synchronize with the Telescope
- Needs: Ar, C4F10 gas bottle near TB area, or permit to transport filled prototype
 - safe way to fill gases (especially C4F10) (ventilated area for flushing small prototype slowly for ~2h, Protective equipment for filling (gloves, goggles +?))
 - safe way to operate C4F10-filled prototype in TB hall (tray+ventilation, sniffer needed?)
 - telescope for alignment measurement
 - metal channel prototype: High voltage (~1kV), 1 crate, 1 computer
 - straw prototype: 1 computer, DT 5702 board

High-Rate test beam (R-Weg?):

- · channel reflectivity measurement (requires just a single straw with a SiPM on it!)
- · different gas mixtures, gas pressures, temperature variations
- channel tilt angle
- different ND filters
- staggered layer readout
- · high-rate linearity tests of SiPM and readout

DESY.