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Let's not talk about problems to 
connect those observables to galaxy 
surveys
e.g., galaxy bias, completeness, purity, 
baryonic feedback
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Structure formation (LCDM)
Continuity

Euler

Poisson

(review 0112551)

*** During radiation domination we need to 
include photons

Initial conditions 
(inflation + adiabatic)

Transfer function: 
Behaviour of the 
mode by entering the 
horizon

Growth rate: 
late time linear 
growth

Please, remind those guys
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The Halo profile

(from v. d. Bosch 
slides, 2003.06411)

      is defined with respect to 
concentration and some specific 
mass scale

Problem: 
observations favor 
core over cusp 
profiles (0910.3538 
for a review). More 
later



I will address in this talk
How those observables change for ULA ... 

… within the misalignment mechanism? 

… within the LARGE misalignment mechanism? 

+ Mini-halos 

… within monodromies? 
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Misalignment
Initial condition for close to the minimum of its potential

Two regimes:
1) Overdamped

2) Underdamped

~ DE ~ DM

(1510.07633)

Easy to calculate ULA abundance

Abundance determined by 
the initial displacement
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Misalignment

Initial conditions 
(inflation)

Transfer function: 
Behaviour of the 
mode by entering the 
horizon

Growth rate: 
late time linear 
growth

Now we are done with bkg, 
let's analyse fluctuations

I hope you remind those guys 
from 15 min ago
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Misalignment - Initial conditions
Remember what adiabatic means: one dof from inflation -> single clock for all 
components (gauge freedom, shift in the scale factor) -> relate all density perturbations  

Feel free to play with isocurvature modes (PQ breaking during inflation generates those)   

Pretty 
different from 
CDM   

(1510.07633)
** They will be relevant for miniclusters, as we will see   
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Misalignment - Growth function

Scale dependent growth  

(1510.07633)

New 
pressure 
term   

After equating both terms    

and for the growth function    
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Misalignment - Halo Profile
From numerical simulations
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As pointed out by Hogan&Rees88, Kolb&Tkachev, there is a mechanism to generate minihalos for QCD axion. 

Misalignment: MiniHalos, Miniclusters for QCD axion

(1708.04466)

PQ broken after inflation (f < H_I):

Different Hubble patches with 
different 

Topological defects that decay 
generating axions (complicated 
stuff) K the typical comoving Hubble at ~  

We can write down the energy density as   

After some developments (Wick's theo, etc.)   
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Large misalignment
Attractive 
self-interaction

Pheno consequences:
- delay of oscillations;
- amplification of fluctuations;
- ...

Start to be relevant if 

(mostly from 1909.11665)

Bkg + fluctuations 

Dimensionless time (~mt)

Lets analyse the fluctuations 
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Sourced by curvature perturbations (even under null IC 
and isocurvature modes)

Here things get 
interesting (+ oscillons)

(1909.11665)

For the energy density

Which we can solve together 
to other Boltzmann eq.
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IC fine tuning 
To have a large 
effect we need 
theta~pi

People have cook up 
inflation-based/anthropic-based 
mechanisms to get theta~pi 
(1812.11192, 0810.0703)

(1909.11665)

*** For more about astrophysical effects (star formation, lensing), see 1909.11665 
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Monodromies Aleksandr Chatrchyan +, 1903.03116

Fluctuations ~1

Using Press-Schechter formalism (linear evolution in time), they show it didn't form 
miniclusters yet
Too small, pressure is too high
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Final remarks
Depending on axion potential and initial conditions, we have a whole zoo of 
structures that can form in a broad range of masses

Rich pheno and observational prospects (GW, lensing, star formation, tidal 
disruption, ... )

Non-linear evolution?

How baryons affect this picture?

Such a broad area with many directions to follow. 
I would be glad to chat more ;)

SP solver


