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Jet tagging with a simple 
neural network

Opera4ons on a 
graph

Graph Convolu4onal 
Networks

Graph A:en4on 
Networks

Message Passing 
Networks

Graph Structure 
Learning

Dynamic Graphs: 
Par4cleNet

Sparse graph models: GravNet and 
detector clustering

Scalable graph models: 
par4cle flow

very large graphs 
(>100000 nodes)

graph sampling

transduc4ve learning

produc4on use

genera4ve models

normaliza4on, 
regulariza4on

Interac4on 
Networks

heterogeneous graphs



Jet tagging

Moreno, E.A., Cerri, O., Duarte, J.M. et al. JEDI-net: a jet identification algorithm based on interaction networks. Eur. 
Phys. J. C 80, 58 (2020). https://doi.org/10.1140/epjc/s10052-020-7608-4

jet constituents: set of particles  
{..., (pT, η, ɸ, particle ID), ...}

target:  
jet originator particle ID
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Image credit: CMS

"signal""background"

https://cms.cern/news/jets-cms-and-determination-their-energy-scale
https://cms.cern/news/jets-cms-and-determination-their-energy-scale


Data representa8on
set of inputs with N cons4tuents, M features 

{..., (pT, η, ɸ, par8cle ID), ...}
feature matrix (N, M) 

pT (GeV) η ɸ par8cle ID
12.3 1.2 0.5 pi+
11.8 1.24 0.45 K0
10.4 1.18 0.43 pi-
9.8 1.39 ... e-
6.4 ... ... ...
5.3 ... ...

Set of feature vectors + ordering → feature matrix

jet cons8tuents
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Simple neural network
feature matrix (N, M)

pT (GeV) η ɸ par4cle ID

12.3 1.2 0.5 pi+

11.8 1.24 0.45 K0

10.4 1.18 0.43 pi-

9.8 1.39 ... e-

6.4 ... ... ...

5.3 ... ...

flat NxM feature vector
par8cle 1, pT

par8cle 2, pT

par8cle 3, pT

par8cle 1, η

par8cle 2, η

...

...

map feature vector to 
an output

h`ps://github.com/ledell/sldm4-h2o 

Order: The ordering is important! A feedforward network trained with e.g. pT-descending 
ordering would not work with pT-ascending. Which ordering is op8mal? 

Representa4on: What if for each jet you want to classify, the number of cons8tuents N varies? 
Need to make all feature matrices the same size (e.g. with 0 padding). 

Structure: All-to-all connec8vity. Every cons8tuent in the input layer can affect every other 
cons8tuent in the next layer.

5

p ∈ [0,1]

https://github.com/ledell/sldm4-h2o
https://github.com/ledell/sldm4-h2o


Graph structure

1

2
3

4

5

6

graph = set of nodes/ver4ces/elements + 
edges between them

Or as an NxN adjacency matrix 
(possibly sparse)

Where do we get this graph structure? 
1. All-to-all connec8ons, in case of small input sets. 

2. From physics priors: connect "nearby" elements in advance 
3. Op8mize as a part of the learning process (Graph Structure Learning)

Edges represented as a index pairs 
edges = [(1,4), (1,3), (2,5), (6,5)]
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Example graph structures
Par4cle tracking (neighborhood)

Mul4layer calorimeter hits (neighborhood)

Jet cons4tuents (all-to-all)

event cons4tuents (all-to-all)

Graph Neural Networks in Par8cle Physics, Jonathan Shlomi, Peter Ba`aglia, Jean-Roch Vlimant, 2007.13681, 10.1088/2632-2153/abbf9a
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π±



Opera8ons on a graph

node features updated nodes nodes aggregated 
node

elementwise update permuta4on-invariant 
aggrega4on

1

2
3

4

5

6

node features

node features

Graph Neural Networks in Par8cle Physics, Jonathan Shlomi, Peter Ba`aglia, 
Jean-Roch Vlimant, 2007.13681, 10.1088/2632-2153/abbf9a

node features
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Graph problems
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J. Leskovec et al [2021] 

Par8cle Flow reconstruc8on, 
detector hit segmenta8on

Track reconstruc8on

Jet tagging, 
event tagging

detector hit clustering

http://web.stanford.edu/class/cs224w/slides/01-intro.pdf
http://web.stanford.edu/class/cs224w/slides/01-intro.pdf


X'5: 1 x dout

Graph Convolu8onal 
Network (GCN)

1

2
3

4

5

6

1

2
3

4

5

6

X5: 1 x din

trainable weight matrix W: din x dout 

update rule: X'i→ReLU[Aji · (Xj · W)] 

e.g. X'5 = ReLU[A65 (X6 · ϴ) + A25 (X2 · ϴ)]

input nodes output nodes

X6: 1 x din

X2: 1 x din

10

A25

A65



GCN proper8es

• A trainable weight matrix Wi (din x dout) in layer i shared across all nodes 

• The input and output is a graph. The node features are transformed, the graph structure does not change.  

• The GCN is permuta8on-invariant: it does not ma`er in which order the set of nodes is forma`ed as a matrix for 
computa8ons, due to the permuta8on-invariant aggrega8on funcion 

• A very nice overview can be found from Kipf & Welling: h`ps://tkipf.github.io/graph-convolu8onal-networks/  
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N x din N x dout

W1 W2

1 x dout

∑

graph 
classification

https://tkipf.github.io/graph-convolutional-networks/
https://tkipf.github.io/graph-convolutional-networks/


Node smoothing

12

Deep GCN without skip connections → oversmoothing, performance drops

Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." arXiv preprint arXiv:1609.02907 (2016).



Message passing
• Different types of graph-related algorithms can be formulated in the message 

passing language 

• Nodes pass messages to their neighbors 

• Aggregate the messages and update the node state

message

learnable 
message 
func8on

learnable update 
func8on

edge features

node features

Gilmer, Jus8n, et al. "Neural message passing for quantum chemistry." InternaRonal Conference on Machine Learning. PMLR, 2017.

hvt

hwt hw't

hw''t

evw evw'

evw''
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GCN as message passing

Incoming message on a node

Message func4on

Node update rule

Node update func4on

Gilmer, Justin, et al. "Neural message passing for quantum chemistry." International Conference on Machine Learning. PMLR, 2017.
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Graph A`en8on (GAT)
Compute an a`en8on coefficient 𝛼ij between two pairs 

of connected nodes. 
Trainable a`en8on vector a, feature weight vector W.

Update the node feature vector based on 
nearby a`en8on coefficients.

h1

h2 h3

h4

𝛼12 𝛼13

𝛼14

Inputs are graphs: N x din 
Outputs are graphs: N x dout 

A`en8on vector a can be interpreted as feature-to-feature associa8on.
Veličković, Petar, et al. "Graph a`en8on networks." arXiv preprint arXiv:1710.10903 (2017).
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Mul8-head GAT

concatenate: K ⨉ out_features

Instead of a single a`en8on coefficient 𝛼ij per a node pair, compute K independent values 𝛼ijk. 

average: out_features

here: each colored line is one of 
K=3 a`en8on heads.

Veličković, Petar, et al. "Graph a`en8on networks." arXiv preprint arXiv:1710.10903 (2017).

16



Interac8on network (IN)

Ba`aglia, Peter W., et al. "Interac8on networks for learning about objects, rela8ons and physics." arXiv preprint arXiv:1612.00222 (2016).

In the Interac8on Network (2016), the message func8on Mt and the node update func8on Ut are given 
as generic neural networks opera8ng on concatenated node and edge inputs.

interac8on 
terms effects

externals xi

objects oi, 
rela8ons ri

object model fO
aggrega8on

updated 
objects pi 
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IN for jet tagging

Moreno, E.A., Cerri, O., Duarte, J.M. et al. JEDI-net: a jet iden8fica8on algorithm based on interac8on 
networks. Eur. Phys. J. C 80, 58 (2020). h`ps://doi.org/10.1140/epjc/s10052-020-7608-4

jet cons4tuent 
input

per-jet output

[src, dst] features (edges)

processed 
edges

summed edges 
to ver4ces

cons4tuents
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IN for par8cle tracking

Figure from Shlomi et al

DeZoort, Gage, et al. "Charged particle tracking via edge-classifying interaction networks." arXiv preprint arXiv:2103.16701 (2021).

DeZoort et al

Fully connected: 1000 nodes -> 
500k edges, not feasible!  

Set up an ini8al sparse hit graph 
based on node proximity.

Classify possible edges as true/false 
based on actual track informa8on, 
predict edge weight 

X: node features (nodes ⨉ 3) 
Ra: edge features  (edges ⨉ 4) 
Ri, Ro: incoming/outgoing edge matrix 
Ri,oX: incoming/outgoing nodes (edges x 3) 
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Dynamic graph with kNN
• In the previous examples with GCN, GAT and IN, the graph was sta8c and defined/known in 

advance 

• The structure may not be known in advance, or may be inaccurate 

• Construct dynamically: point cloud {xi} → for each point xi, find k closest neighbors {xj}, edges 
{eij}

S. Sieranoja

xi xj eij

query point
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http://cs.uef.fi/pages/franti/cluster/knng_lecture_6G.pdf
http://cs.uef.fi/pages/franti/cluster/knng_lecture_6G.pdf


Detector reconstruc8on

Qasim, Shah Rukh, et al. "Learning representa8ons of irregular par8cle-detector geometry with 
distance-weighted graph networks." The European Physical Journal C 79.7 (2019): 1-11.

π±

• kNN + sparse graph adjacency matrix: 
GravNet 

• Cluster energy deposits from 
overlapping showers in a highly 
granular, layered tungsten detector 
simula8on 

• Predict the energy frac8on of each 
sensor (I) belonging to each shower 
(K): pik vs tik

Two overlapping showers generated

reconstructed
21



Par8cle Flow reconstruc8on
hard interac8on visible final state par8cles visible detector hits

The Par8cle Flow algorithm combines elements across different detectors to a global 
par8cle-level representa8on of the collision.
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Par8cle flow inputs and outputs in a single event

23

Pata, J., Duarte, J., Vlimant, JR. et al. MLPF: efficient machine-learned particle-flow reconstruction 
using graph neural networks. Eur. Phys. J. C 81, 381 (2021)



GNNs for Par8cle Flow

24



Performance in simula8on

25



Computa8onal modes

Disjoint 
features: (N1 + N2 + ...) x D 
adjacency: (N1 + N2 + ...)2

Suppose we have a dataset of jets we want to classify, each jet having Ni cons8tuents. 
NN training o�en requires batching the data to average gradient updates.

jet 1, N1

jet 2, N2

jet 3, N3

Batched 
features: B x N x D 

adjacencies: B x N x N

Adjacency is typically sparse. 
Suitable for large inputs (N > 1000). 

Typically requires on-the-fly computa8on (e.g. pytorch).

Adjacency is typically dense. 
Graphs may be zero-padded / masked to size N. 

Suitable for small inputs (<1000) and sta8c 
computa8onal graphs (e.g. tensorflow).

jet 1, N1jet 2, N2
jet 3, N3

h`ps://graphneural.network/data-modes/ 
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https://graphneural.network/data-modes/
https://graphneural.network/data-modes/


Recap
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Graph problems

28

J. Leskovec et al [2021] 

Par8cle Flow reconstruc8on, 
detector hit segmenta8on

Track reconstruc8on

Jet tagging, 
event tagging

detector hit clustering

http://web.stanford.edu/class/cs224w/slides/01-intro.pdf
http://web.stanford.edu/class/cs224w/slides/01-intro.pdf


Graph opera8ons
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elementwise update aggrega4on

Invariance with respect to permuta8ons!



Graph structure

30

Defined by the process 
(but not necessarily observable) Assumed (sta8c) Learned (dynamic)



Advantages of GNNs

• Encode physics priors in the graph structure 

• Invariance to permuta8ons / ordering 

• Sparse and irregular problem geometries 

• Efficient computa8on and memory representa8on
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Useful references

• HEPML Living Review: h`ps://iml-wg.github.io/HEPML-
LivingReview/ 

• ML on Graphs @ Stanford: h`p://web.stanford.edu/class/
cs224w/  

• Graph Representa8on Learning book (WIP): h`ps://
www.cs.mcgill.ca/~wlh/grl_book/ 
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https://iml-wg.github.io/HEPML-LivingReview/
https://iml-wg.github.io/HEPML-LivingReview/
http://web.stanford.edu/class/cs224w/
http://web.stanford.edu/class/cs224w/
https://www.cs.mcgill.ca/~wlh/grl_book/
https://www.cs.mcgill.ca/~wlh/grl_book/
https://iml-wg.github.io/HEPML-LivingReview/
https://iml-wg.github.io/HEPML-LivingReview/
http://web.stanford.edu/class/cs224w/
http://web.stanford.edu/class/cs224w/
https://www.cs.mcgill.ca/~wlh/grl_book/
https://www.cs.mcgill.ca/~wlh/grl_book/


Prac8cal exercise

33

Jupyter notebook: link

https://nbviewer.jupyter.org/github/jpata/gnn-hep-lecture/blob/main/intro-to-gnns.ipynb
https://nbviewer.jupyter.org/github/jpata/gnn-hep-lecture/blob/main/intro-to-gnns.ipynb
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Backup
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Dynamic graph CNN 
(DGCNN)

construct an edge feature 
using a learnable func8on

Compute the new point features xi' using 
an aggrega8on over the edges

Wang, Yue, et al. "Dynamic graph CNN for learning on point clouds." Acm TransacRons On Graphics (tog) 38.5 (2019): 1-12.

Construct neighbor graph: for each point xi, find k 
closest neighbors {xj}, edges {eij}
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Par8cleNet: DGCNN in HEP

number of 
linear units C1

C2

C3

Qu, Huilin, and Loukas Gouskos. "Jet tagging via particle clouds." Physical Review D 101.5 (2020): 056019.

input coordinates (B, N, C) input features: (B, N, F)

distance matrix: (B, N, N)

edge features: (B, N, K, 2*F)

edge convolu8ons

output features: (B, N, O)
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Par8cleNet full model

Qu, Huilin, and Loukas Gouskos. "Jet tagging via particle clouds." Physical Review D 101.5 (2020): 056019.

• Up to 100 highest-pT cons8tuents of each 
jet 

• rela8ve η, ϕ coordinates wrt. the jet axis 
as coordinates 

• Features are derived from 4-momentum 
(log transforms, ra8os) 

• Coordinates in subsequent layers are 
derived from previous layer outputs
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GravNet/GarNet
• Full, dense NxN distance matrix can be too large to store for N>few hundred, kNN can be expensive in a high-

dimensional input space 

• In case low latency, low memory consump8on is desirable, op8mize by using a sparse adjacency matrix, separa8ng 
spa8al components and feature components

GravNet: full kNN graph on 
all nodes GarNet: choose a fixed number 

of aggregators

aggregate

transform nodes with edge 
info +  poten4al

compute node output

Qasim, Shah Rukh, et al. "Learning representa8ons of irregular par8cle-detector geometry with distance-weighted graph networks." The European 
Physical Journal C 79.7 (2019): 1-11.
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GNNs and Transformers

h:ps://ai.googleblog.com/2020/10/rethinking-a:en4on-with-performers.html

Most state-of-the-art language processing models use an a`en8on-based "transformer" 
architecture: a dense a`en8on matrix with elements Aij is computed between input elements xi. 

The a`en8on matrix A is used to successively transform the input elements.

In GNNs, the learned graph adjacency is usually sparse, but is similarly used to propagate 
informa8on between associated input elements to transform them.
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https://ai.googleblog.com/2020/10/rethinking-attention-with-performers.html
https://ai.googleblog.com/2020/10/rethinking-attention-with-performers.html


Scalable pairwise opera8ons
• Naive kNN graph construc8on (e.g. e.nn.top_k) scales as O(N2) with the number of input nodes N 

• For N>few hundred, this can be prohibi8ve (in memory and computa8on) and thus require spli�ng up the data 

• To process long sequences or full events, there has been recent interest in models that scale be`er than 
quadra8cally, e.g. using an approximate bucke8ng based on Locality Sensi8ve Hashing

Kitaev, Nikita, Łukasz Kaiser, and Anselm Levskaya. "Reformer: The efficient transformer." arXiv preprint arXiv:2001.04451 (2020).
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