
Generative networks for particle physics
Lecture at QU Data Science Basics (Hamburg)

June 2021

Anja Butter

Paradigm shift

Given data → find label

Given data → generate new data

What do we generate in high energy physics?

2 / 52

First principle based event generation

L

Matrix element

Parton shower

Hadronization

Detector simulation

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��

��
��
��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

�����
�����
�����
�����

�����
�����
�����
�����

������
������
������

������
������
������

�����
�����
�����
�����

�����
�����
�����
�����

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

����
����
����
����
����
����

����
����
����
����
����
����

������
������
������
������

������
������
������
������

����
����
����
����
����

����
����
����
����
����

������
������
������

������
������
������������

������
������

������
������
������

�����
�����
�����

�����
�����
�����

������
������
������

������
������
������

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

������
������
������

������
������
������

������
������
������
������

���
���
���
���
���
���

���
���
���
���
���
���

��
��
��
��
��
��

��
��
��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
��� ���

���
���
���
���

���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

��
��
��
��
��
��

��
��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

�����
�����
�����
�����

�����
�����
�����
�����

��
��
��
��
��
��

��
��
��
��
��
��

������
������
������

������
������
������

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
������

��
��
��
��
��

��
��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

a sherpa artist

3 / 52

First principle based event generation

L

Matrix element

Parton shower

Hadronization

Detector simulation

0.6
0.7
0.8
0.9

1
1.1
1.2

0 0.5 1 1.5 2 2.5 3 3.5 4

HN3LO + NNLOJET �s� = 13 TeV

Ra
ti

o
to

NN
LO

yH

0

5

10

15

20

25
HN3LO + NNLOJET �s� = 13 TeV

� [�R;�F] = (¼,½,1) MH

d�
H /
dy

H
[p

b]

p p � H + X

LO
NLO
NNLO
N3LO

HN3LO + NNLOJET �s� = 13 TeV

� [�R;�F] = (¼,½,1) MH

LO
NLO
NNLO
N3LO

0

2

4

6

8

10

12

d
�

n
/d

Y
[T

#]

GP
LGP
LLGP

L3GP

�4 �3 �2 �1 0 1 2 3 4
0.8

0.9

1

Y

d
�

N
N

L
O

/d
Y
.

d
�

N
3
L

O
/d

Y

pp ! H + X

G>*!Rjh2o
JJ>h kyR9 LLGP
µF = µR = mh/2

Figure 2: Higgs boson rapidity distribution. Figures from Refs. [19, 20].

�(scale) �(PDF-TH) �(EW) �(t, b, c) �(1/mt) �(PDF) �(↵s)

+0.10 pb
�1.15 pb ±0.56 pb ±0.49 pb ±0.40 pb ±0.49 pb ± 0.89 pb +1.25 pb

�1.26 pb

+0.21%
�2.37% ±1.16% ±1% ±0.83% ±1% ±1.85% +2.59%

�2.62%

Table 1: Status of the theory uncertainties on Higgs boson production in gluon fusion at
p

s = 13 TeV. The table is taken from Ref. [83] and the LHC Higgs WG1 TWiki, with �(trunc)

removed after the work of Ref. [18]. The value for �(EW) was a rough estimate when Ref. [83]

was published. Meanwhile the order of magnitude has been confirmed by the calculations of

Refs. [84–88].

Two-loop electroweak corrections to Higgs production in gluon fusion were

calculated in Refs. [89, 90, 78]. The mixed QCD-EW corrections which ap-

pear at two loops for the first time were calculated directly in Ref. [91], where

however the unphysical limit mZ , mW � mH was employed. In Refs. [84–86],

this restriction was lifted and the mixed QCD-EW corrections at order ↵2↵2
s

were calculated, where the real radiation contributions were included in the soft

gluon approximation. It was found that the increase in the total cross section

between pure NLO QCD and NLO QCD+EW is about 5.3%. The calculation

of Ref. [86] has been confirmed by Ref. [87], where also the hard real radiation

was calculated, in the limit of small vector boson masses, corroborating the va-

10

[1807.11501] Cieri, Chen, Gehrmann, Glover, Huss

4 / 52

First principle based event generation

L

Matrix element

Parton shower

Hadronization

Detector simulation

Data Proc

12%

MC-Full(Sim)

10%

MC-Full(Rec)

2%

MC-Fast(Sim)

8%

MC-Fast(Rec)

13%

EvGen

18%

Heavy Ions

8%

Data Deriv

5%

MC Deriv

16%

Analysis

7%

ATLAS Preliminary
2020 Computing Model -CPU: 2030: Aggressive R&D

Data Proc
MC-Full(Sim)
MC-Full(Rec)
MC-Fast(Sim)
MC-Fast(Rec)
EvGen
Heavy Ions
Data Deriv
MC Deriv
Analysis

5 / 52

Fast detector simulations

• Important R&D potential
NN evaluation ×100-1000
faster than GEANT4

Year

2020 2022 2024 2026 2028 2030 2032 2034

ye
ar

s]
⋅

A
nn

ua
l C

P
U

 C
on

su
m

pt
io

n
 [M

H
S

06

0

10

20

30

40

50

60

70

80
=55)µRun 3 (=88-140)µRun 4 (=165-200)µRun 5 (

2020 Computing Model - CPU

Baseline
Conservative R&D
Aggressive R&D
Sustained budget model
(+10% +20% capacity/year)

LHCC common scenario
=200)µ(Conservative R&D,

ATLAS Preliminary

• Challenge:
High-dimensional output
← 30× 30× 30

6 / 52

Why do we need machine learning for data simulation?

precision
event generation

detailed
detector simulation

limited computing ressources

Speed

more events

=

higher order

Precision

Use NN to speed up simulations!

7 / 52

Neural network based generative networks

VAE

all kinds of hybridsVAE-GAN

GAN

NF

8 / 52

Neural network based generative networks

VAE

all kinds of hybrids

VAE-GAN

GAN

NF

9 / 52

Neural network based generative networks

VAE

all kinds of hybrids

VAE-GAN

GAN

NF

10 / 52

From autoencoders to variational autoencoders

AE: x
encoder

−−−−−−−−−−−−−−−−−−−→ z
decoder
−−−−−→ x ′ LAE = (x − x ′)2

Loss enforces Gaussian latent space

LVAE = LAE + β · KL(N (µ, σ)|N (0, 1)) ← similarity measure

11 / 52

From autoencoders to variational autoencoders

AE: x
encoder

−−−−−−−−−−−−−−−−−−−→ z
decoder
−−−−−→ x ′ LAE = (x − x ′)2

VAE: x
encoder
−−−−−→

(
µ
σ

)
sample

−−−−−−−−→
z∼N (µ,σ)

z
decoder
−−−−−→ x ′ LVAE = LAE + Llat

Loss enforces Gaussian latent space

LVAE = LAE + β · KL(N (µ, σ)|N (0, 1)) ← similarity measure

12 / 52

From autoencoders to variational autoencoders

AE: x
encoder

−−−−−−−−−−−−−−−−−−−→ z
decoder
−−−−−→ x ′ LAE = (x − x ′)2

VAE: x
encoder
−−−−−→

(
µ
σ

)
sample

−−−−−−−−→
z∼N (µ,σ)

z
decoder
−−−−−→ x ′ LVAE = LAE + Llat

Loss enforces Gaussian latent space

LVAE = LAE + β · KL(N (µ, σ)|N (0, 1)) ← similarity measure

13 / 52

Interlude: KL Divergence

• Distance measure for probability distributions P and Q

• DKL(P ‖ Q) =
∫∞
−∞ p(x) log

(
p(x)
q(x)

)
dx

By Mundhenk at English Wikipedia, CC BY-SA 3.0

DKL(N (µ, σ) ‖ N (0, 1)) =
1

2
(1 + log(σ2)− µ2 − σ2)

14 / 52

From autoencoders to variational autoencoders

AE: x
encoder

−−−−−−−−−−−−−−−−−−−→ z
decoder
−−−−−→ x ′ LAE = (x − x ′)2

VAE: x
encoder
−−−−−→

(
µ
σ

)
sample

−−−−−−−−→
z∼N (µ,σ)

z
decoder
−−−−−→ x ′ LVAE = LAE + Llat

Loss enforces Gaussian latent space

LVAE = LAE + β · KL(N (µ, σ)|N (0, 1)) ← similarity measure

= LAE +
β

2

∑

j

1 + log(σ2
j)− µ2

j − σ2
j

15 / 52

From autoencoders to variational autoencoders

AE: x
encoder

−−−−−−−−−−−−−−−−−−−→ z
decoder
−−−−−→ x ′ LAE = (x − x ′)2

VAE: x
encoder
−−−−−→

(
µ
σ

)
sample

−−−−−−−−→
z∼N (µ,σ)

z
decoder
−−−−−→ x ′ LVAE = LAE + Llat

Loss enforces Gaussian latent space

LVAE = LAE + β · KL(N (µ, σ)|N (0, 1)) ← similarity measure

= LAE +
β

2

∑

j

1 + log(σ2
j)− µ2

j − σ2
j

16 / 52

e+e− → Z → l+l− with VAE
[1901.00875] S. Otten et al.

naive VAE fails to reproduce distributions

Why? → latent space not perfectly Gaussian
Fix: insert information buffer to sample from real latent distribution

→ B-VAE shows excellent performance

17 / 52

Detector simulation with BIB-AE PP
Bounded-Information-Bottleneck autoencoder with post processing

18 / 52

Detector simulation with BIB-AE PP
Bounded-Information-Bottleneck autoencoder with post processing

GEANT4 Simulation

19 / 52

Generative Adversarial Networks

Discriminator

LD =
〈
− logD(x)

〉
x∼PTruth

+
〈
− log(1− D(x))

〉
x∼PGen

Generator

LG =
〈
− logD(x)

〉
x∼PGen

20 / 52

Training the Discriminator

Discriminator loss

0 = gen 0.2 0.4 0.6 0.8 1 = true
D(x)

0

1

2

3

4

5

L
D

true DS generated DS

Minimize LD =
〈
− logD(x)

〉
x∼PT

+
〈
− log(1− D(x))

〉
x∼PG

21 / 52

Training the Generator

Generator loss

0 = gen 0.2 0.4 0.6 0.8 1 = true
D(x)

0

1

2

3

4

5

L
G

improved standard

Maximize LG =
〈
− log(1− D(x))

〉
x∼PG

22 / 52

Training the Generator

Generator loss

0 = gen 0.2 0.4 0.6 0.8 1 = true
D(x)

0

1

2

3

4

5

L
G

improved standard

Minimize LG =
〈
− logD(x)

〉
x∼PG

23 / 52

Regularization

Which Training Methods for GANs do actually Converge?

pD = �0 p✓ = �✓

D (x)

x

y

(a) t = t0

pD = �0 p✓ = �✓

D (x)

x

y

(b) t = t1

Figure 1. Visualization of the counterexample showing that gra-
dient descent based GAN optimization is not always convergent:
(a) In the beginning, the discriminator pushes the generator towards
the true data distribution and the discriminator’s slope increases.
(b) When the generator reaches the target distribution, the slope of
the discriminator is largest, pushing the generator away from the
target distribution. This results in oscillatory training dynamics
that never converge.

than 1, the training algorithm will converge to (✓⇤, ⇤) with
linear rate O(|�max|k) where �max is the eigenvalue of
F 0(✓⇤, ⇤) with the biggest absolute value. If all eigenval-
ues of F 0(✓⇤, ⇤) are on the unit circle, the algorithm can
be convergent, divergent or neither, but if it is convergent
it will generally converge with a sublinear rate. A similar
result (Khalil, 1996; Nagarajan & Kolter, 2017) also holds
for the (idealized) continuous system

✓
✓̇(t)

 ̇(t)

◆
=

✓
�r L(✓,)
r✓L(✓,)

◆
(3)

which corresponds to training the GAN with infinitely small
learning rate: if all eigenvalues of the Jacobian v0(✓⇤, ⇤)
at a stationary point (✓⇤, ⇤) have negative real-part, the
continuous system converges locally to (✓⇤, ⇤) with lin-
ear convergence rate. On the other hand, if v0(✓⇤, ⇤) has
eigenvalues with positive real-part, the continuous system
is not locally convergent. If all eigenvalues have zero real-
part, it can be convergent, divergent or neither, but if it is
convergent, it will generally converge with a sublinear rate.

For simultaneous gradient descent linear convergence can
be achieved if and only if all eigenvalues of the Jacobian
of the gradient vector field v(✓,) have negative real part
(Mescheder et al., 2017). This situation was also considered
by Nagarajan & Kolter (2017) who examined the asymptotic
case of step sizes h that go to 0 and proved local convergence
for absolutely continuous generator and data distributions
under certain regularity assumptions.

2.2. The Dirac-GAN

Simple experiments, simple theorems are the building
blocks that help us understand more complicated systems.

Ali Rahimi - Test of Time Award speech, NIPS 2017

In this section, we describe a simple yet prototypical coun-
terexample which shows that in the general case unregular-
ized GAN training is neither locally nor globally convergent.

Definition 2.1. The Dirac-GAN consists of a (univariate)
generator distribution p✓ = �✓ and a linear discriminator
D (x) = · x. The true data distribution pD is given by a
Dirac-distribution concentrated at 0.

Note that for the Dirac-GAN, both the generator and the
discriminator have exactly one parameter. This situation
is visualized in Figure 1. In this setup, the GAN training
objective (1) is given by

L(✓,) = f(✓) + f(0) (4)

While using linear discriminators might appear restrictive,
the class of linear discriminators is in fact as powerful as
the class of all real-valued functions for this example: when
we use f(t) = � log(1 + exp(�t)) and we take the supre-
mum over in (4), we obtain (up to scalar and additive
constants) the Jensen-Shannon divergence between p✓ and
pD. The same holds true for the Wasserstein-divergence,
when we use f(t) = t and put a Lipschitz constraint on the
discriminator (see Section 3.1).

We show that the training dynamics of GANs do not con-
verge in this simple setup.

Lemma 2.2. The unique equilibrium point of the training
objective in (4) is given by ✓ = = 0. Moreover, the
Jacobian of the gradient vector field at the equilibrium point
has the two eigenvalues ±f 0(0) i which are both on the
imaginary axis.

We now take a closer look at the training dynamics produced
by various algorithms for training the Dirac-GAN. First, we
consider the (idealized) continuous system in (3): while
Lemma 2.2 shows that the continuous system is generally
not linearly convergent to the equilibrium point, it could
in principle converge with a sublinear convergence rate.
However, this is not the case as the next lemma shows:

Lemma 2.3. The integral curves of the gradient vector field
v(✓,) do not converge to the Nash-equilibrium. More
specifically, every integral curve (✓(t), (t)) of the gradient
vector field v(✓,) satisfies ✓(t)2 + (t)2 = const for all
t 2 [0,1).

Note that our results do not contradict the results of Nagara-
jan & Kolter (2017) and Heusel et al. (2017): our example
violates Assumption IV in Nagarajan & Kolter (2017) that
the support of the generator distribution is equal to the sup-
port of the true data distribution near the equilibrium. It
also violates the assumption2 in Heusel et al. (2017) that
the optimal discriminator parameter vector is a continuous
function of the current generator parameters. In fact, unless

2This assumption is usually even violated by Wasserstein-
GANs, as the optimal discriminator parameter vector as a function
of the current generator parameters can have discontinuities near
the Nash-equilibrium. See Section 3.1 for details.

[1801.04406]

Adding gradient penalty

φ(x) = log
D(x)

1− D(x)
⇒ ∂φ

∂x
=

1

D(x)

1

1− D(x)

∂D

∂x

LD → LD + λD
〈

(1− D(x))2 |∇φ|2
〉
x∼PT

+ λD
〈
D(x)2 |∇φ|2

〉
x∼PG

24 / 52

What is the statistical value of GANned events?[2008.06545]

• Camel function

• Sample vs. GAN vs. 5 param.-fit

Evaluation on quantiles:

MSE∗ =

Nquant∑

j=1

(
pj −

1

Nquant

)2

25 / 52

What is the statistical value of GANned events?[2008.06545]

• Camel function

• Sample vs. GAN vs. 5 param.-fit

Evaluation on quantiles:

MSE∗ =

Nquant∑

j=1

(
pj −

1

Nquant

)2

→ Amplification factor 2.5

Sparser data → bigger amplification

26 / 52

How to GAN LHC events
[1907.03764]

• tt̄ → 6 quarks

• 18 dim output
• external masses fixed
• no momentum conservation

+ Flat observables X

– Systematic undershoot in tails

→ improve network (symmetries, preprocessing, . . .) X

0.0

2.0

4.0

6.0

1 �
d
�

d
p T

,t
[G

eV
�

1
]

⇥10�3

True

GAN

pT,t [GeV]
0.8
1.0
1.2

G
A

N
T
ru

e

0 50 100 150 200 250 300 350 400
pT,t [GeV]

0.1

1.0

1
p

N
cu

m

27 / 52

t

t

W

W

How to GAN LHC events
[1907.03764]

• tt̄ → 6 quarks

• 18 dim output
• external masses fixed
• no momentum conservation

+ Flat observables X

– Systematic undershoot in tails
→ improve network (symmetries, preprocessing, . . .) X

unpublished 28 / 52

t

t

W

W

Generating the high-dim. difference of distributions
[1912.08824]

• Necessary to include negative events

• Beat bin-induced uncertainty

∆B−S > max(∆B ,∆S)

• Applications:

- Background subtraction, soft-collinear subtraction, ...

G{r}

c ∈ CB−S ∪ CS

{xG , c}

c ∈ CS

DB

DS

{xB}

{xS}

Data B

Data S

LDB

LDS

LG

29 / 52

Generative background subtraction

• Training data:
• pp → e+e−

• pp → γ → e+e−

• Generated events: Z-Pole + interference

30 / 52

Generative background subtraction

• Training data:
• pp → e+e−

• pp → γ → e+e−

• Generated events: Z-Pole + interference

31 / 52

Information in distributions

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

y

Information in space distribution
(what we want)

=

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

y

Information in weight
(what we have)

32 / 52

Training on weighted events
Information contained in distribution or event weights

−2 −1 0 1 2 3 4
x

10−4

10−3

10−2

10−1

100

p(
x

)

weights

data

−2 −1 0 1 2 3 4
x

10−4

10−3

10−2

10−1

100

p(
x

)

weights

data

−2 −1 0 1 2 3 4
x

10−4

10−3

10−2

10−1

100

p(
x

)

weights

data

combined

Train on
weighted events

10−4

10−3

10−2

10−1

p(
x

)

Truth

uwGAN

−2 −1 0 1 2 3 4
x

0.8
1.0
1.2

uw
G

A
N

T
ru

th

Generate
unweighted events

LD =
〈
− w logD(x)

〉
x∼PTruth

+
〈
− log(1− D(x))

〉
x∼PGen

33 / 52

Training on weighted events
Information contained in distribution or event weights

−2 −1 0 1 2 3 4
x

10−4

10−3

10−2

10−1

100

p(
x

)

weights

data

−2 −1 0 1 2 3 4
x

10−4

10−3

10−2

10−1

100

p(
x

)

weights

data

−2 −1 0 1 2 3 4
x

10−4

10−3

10−2

10−1

100

p(
x

)

weights

data

combined

Train on
weighted events

10−4

10−3

10−2

10−1

p(
x

)

Truth

uwGAN

−2 −1 0 1 2 3 4
x

0.8
1.0
1.2

uw
G

A
N

T
ru

th

10−4

10−3

10−2

10−1

p(
x

)

Truth

uwGAN

−2 −1 0 1 2 3 4
x

0.8
1.0
1.2

uw
G

A
N

T
ru

th

Generate
unweighted events

LD =
〈
− w logD(x)

〉
x∼PTruth

+
〈
− log(1− D(x))

〉
x∼PGen

34 / 52

Training on weighted events
Information contained in distribution or event weights

−2 −1 0 1 2 3 4
x

10−4

10−3

10−2

10−1

100

p(
x

)

weights

data

−2 −1 0 1 2 3 4
x

10−4

10−3

10−2

10−1

100

p(
x

)

weights

data

−2 −1 0 1 2 3 4
x

10−4

10−3

10−2

10−1

100

p(
x

)

weights

data

combined

Train on
weighted events

10−4

10−3

10−2

10−1

p(
x

)

Truth

uwGAN

−2 −1 0 1 2 3 4
x

0.8
1.0
1.2

uw
G

A
N

T
ru

th

10−4

10−3

10−2

10−1

p(
x

)

Truth

uwGAN

−2 −1 0 1 2 3 4
x

0.8
1.0
1.2

uw
G

A
N

T
ru

th

Generate
unweighted events

LD =
〈
− w logD(x)

〉
x∼PTruth

+
〈
− log(1− D(x))

〉
x∼PGen

35 / 52

The unweighting bottleneck

• High-multiplicity / higher-order → large variation of weights
→ unweighting efficiencies < 1%

→ Simulate conditions with naive Monte Carlo generator
ME by Sherpa, parton densities from LHAPDF, Rambo-on-diet

pp → µ+µ− with mµµ > 50 GeV

10−33 10−28 10−23 10−18 10−13 10−8 10−3

weight

100

101

102

103

104

#
ev

en
ts

→ unweighting efficieny 0.2%

36 / 52

uwGAN results

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1 σ
d
σ

d
p
T
,µ
−

×10−1

Train

Unweighted

uwGAN

0 20 40 60 80 100

pT,µ− [GeV]

0.5

1.0

1.5

2.0

X
T

ru
th

10−4

10−3

10−2

10−1

1 σ
d
σ

d
m
µ
−
µ

+

Train

Unweighted

uwGAN

50 75 100 125 150 175 200 225 250

mµ−µ+ [GeV]

0.5

1.0

1.5

2.0

X
T

ru
th

Populates high energy tails

Large amplification wrt. unweighted data!

37 / 52

Normalizing flow

Transform input distribution into target distribution via invertible layers

https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html

• planar flow: g(x) = x + uh(wTx + b) [2015 Rezende, Mohamed]Variational Inference with Normalizing Flows

and involve matrix inverses that can be numerically unsta-
ble. We therefore require normalizing flows that allow for
low-cost computation of the determinant, or where the Ja-
cobian is not needed at all.

4.1. Invertible Linear-time Transformations

We consider a family of transformations of the form:

f(z) = z + uh(w>z + b), (10)

where � = {w 2 IRD,u 2 IRD, b 2 IR} are free pa-
rameters and h(·) is a smooth element-wise non-linearity,
with derivative h0(·). For this mapping we can compute
the logdet-Jacobian term in O(D) time (using the matrix
determinant lemma):

 (z) = h0(w>z + b)w (11)���det @f
@z

��� = | det(I + u (z)>)| = |1 + u> (z)|. (12)

From (7) we conclude that the density qK(z) obtained by
transforming an arbitrary initial density q0(z) through the
sequence of maps fk of the form (10) is implicitly given
by:

zK = fK � fK�1 � . . . � f1(z)

ln qK(zK) = ln q0(z)�
KX

k=1

ln |1 + u>k k(zk�1)|. (13)

The flow defined by the transformation (13) modifies the
initial density q0 by applying a series of contractions and
expansions in the direction perpendicular to the hyperplane
w>z+b = 0, hence we refer to these maps as planar flows.

As an alternative, we can consider a family of transforma-
tions that modify an initial density q0 around a reference
point z0. The transformation family is:

f(z) = z + �h(↵, r)(z� z0), (14)����det
@f

@z

���� = [1 + �h(↵, r)]
d�1

[1 + �h(↵, r) + �h0(↵, r)r)] ,

where r = |z � z0|, h(↵, r) = 1/(↵ + r), and the param-
eters of the map are � = {z0 2 IRD, ↵ 2 IR+, � 2 IR}.
This family also allows for linear-time computation of the
determinant. It applies radial contractions and expansions
around the reference point and are thus referred to as radial
flows. We show the effect of expansions and contractions
on a uniform and Gaussian initial density using the flows
(10) and (14) in figure 1. This visualization shows that we
can transform a spherical Gaussian distribution into a bi-
modal distribution by applying two successive transforma-
tions.

Not all functions of the form (10) or (14) will be invert-
ible. We discuss the conditions for invertibility and how to
satisfy them in a numerically stable way in the appendix.

K=1 K=2
Planar Radial

q0 K=1 K=2K=10 K=10

U
ni

t G
au

ss
ia

n
U

ni
fo

rm

Figure 1. Effect of normalizing flow on two distributions.

Inference network Generative model

Figure 2. Inference and generative models. Left: Inference net-
work maps the observations to the parameters of the flow; Right:
generative model which receives the posterior samples from the
inference network during training time. Round containers repre-
sent layers of stochastic variables whereas square containers rep-
resent deterministic layers.

4.2. Flow-Based Free Energy Bound

If we parameterize the approximate posterior distribution
with a flow of length K, q�(z|x) := qK(zK), the free en-
ergy (3) can be written as an expectation over the initial
distribution q0(z):

F(x) = Eq�(z|x)[log q�(z|x)� log p(x, z)]

= Eq0(z0) [ln qK(zK)� log p(x, zK)]

= Eq0(z0) [ln q0(z0)]� Eq0(z0) [log p(x, zK)]

� Eq0(z0)

"
KX

k=1

ln |1 + u>k k(zk�1)|
#

. (15)

Normalizing flows and this free energy bound can be used
with any variational optimization scheme, including gener-
alized variational EM. For amortized variational inference,
we construct an inference model using a deep neural net-
work to build a mapping from the observations x to the
parameters of the initial density q0 = N (µ, �) (µ 2 IRD

and � 2 IRD) as well as the parameters of the flow �.

4.3. Algorithm Summary and Complexity

The resulting algorithm is a simple modification of the
amortized inference algorithm for DLGMs described by
(Kingma & Welling, 2014; Rezende et al., 2014), which
we summarize in algorithm 1. By using an inference net-

38 / 52

Advanced coupling blocs

Features:
+ invertible

+ efficient evaluation in both directions
+ tractable Jacobian (J(L2(L1)) = J(L2) · J(L1))

+ trainable on samples OR probability

39 / 52

Standard event generation in a nutshell

1. Generate phase space points

2. Calculate event weight

wevent = f (x1,Q
2)f (x2,Q

2) × M(x1, x2, p1, . . . pn) × J(pi (r))−1

3. Unweighting
→ keep events if wevent/wmax > r ∈ [0, 1]

→ optimal for w ≈ 1

40 / 52

Standard event generation in a nutshell

Matrix element

wevent = f (x1,Q
2)f (x2,Q

2) × M(x1, x2, p1, . . . pn) × J(pi (r))−1

PDF Phase space mapping

Find phase space mapping pi such that w ≈ 1

41 / 52

Training on samples

events x
training f (x)→

←−−−−−−−−−−−−−−−−→
← generating f −1(z)

z ∼ N

How to formulate the loss?
→ Maximize posterior over network parameters

L = −〈log p(θ|x)〉x∼Px

= −〈log p(x |θ)〉x∼Px
− log p(θ) + const. (Bayes’ theorem)

= −
〈

log p(f (x)) + log

∣∣∣∣
∂f (x)

∂x

∣∣∣∣
〉

x∼Px

− log p(θ) + const.

= −
〈
−f (x)2 + log |J|

〉
x∼Px

− log p(θ) + const. .

42 / 52

Can we invert the simulation chain?

What we
want to know

What we
measure or simulate

wish list: � multi-dimensional

� bin independent

� statistically well defined

43 / 52

Invertible networks

(
xpart

) Pythia,Delphes:g→
←−−−−−−−−−−−−−−−−→

← unfolding:ḡ

(
xdet
)

[1808.04730] L. Ardizzone, J. Kruse, S. Wirkert, D. Rahner,

E. W. Pellegrini, R. S. Klessen, L. Maier-Hein, C. Rother, U. Köthe

+ Bijective mapping

+ Tractable Jacobian

+ Fast evaluation in both directions

+ Arbitrary networks s and t

44 / 52

Inverting detector effects

0.0

1.0

2.0

3.0

4.0

5.0

6.0

1 σ
d
σ

d
p
T
,q

2
[G

eV
−

1
]

×10−2

2 jet no ISR

Parton Truth

Parton INN

Detector Truth

Detector INN

0 20 40 60 80 100 120
pT,q2

[GeV]

0.8
1.0
1.2

IN
N

T
ru

th

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 σ
d
σ

d
M
W
,r
ec
o

[G
eV
−

1
]

×10−1

2 jet no ISR

Parton Truth

Parton INN

Detector Truth

Detector INN

70 75 80 85 90 95
MW,reco [GeV]

0.8
1.0
1.2

IN
N

T
ru

th

multi-dimensional X bin independent X statistically well defined ?

45 / 52

• pp → ZW → (ll)(jj)

• Train: parton → detector

• Evaluate: parton ← detector
W

Z

j

j

ℓ+

ℓ−

Including stochastical effects

(
xp
rp

)
Pythia,Delphes:g→

←−−−−−−−−−−−−−−−−→
← unfolding:ḡ

(
xd
rd

)

Sample rd for fixed detector event
How often is Truth included in distribution quantile?

10 15 20 25 30 35 40 45 50
pT,q1

[GeV]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ev
en

ts
n

or
m

al
iz

ed

eINN

FCGAN

single detector event
3200 unfoldings

P
arton

T
ru

th

0.0 0.2 0.4 0.6 0.8 1.0
quantile pT,q1

0.0

0.2

0.4

0.6

0.8

1.0

fr
ac

ti
on

of
ev

en
ts

eIN
N FCGAN

• Problem: arbitrary balance of many loss functions

46 / 52

Taking a different angle

Given an event xd , what is the probability distribution at parton level?
→ sample over r , condition on xd

xp
g(xp,f (xd))→

←−−−−−−−−−−−−−−−−→
← unfolding: ḡ(r ,f (xd))

r

→ Training: Maximize posterior over model parameters

L = −〈log p(θ|xp, xd)〉xp∼Pp,xd∼Pd

= −〈log p(xp|θ, xd)〉xp∼Pp,xd∼Pd
− log p(θ) + const. ← Bayes

= −
〈

log p(ḡ(xp, xd)) + log

∣∣∣∣
∂ḡ(xp, xd)

∂xp

∣∣∣∣
〉
− log p(θ)← change of var

=
〈
0.5||ḡ(xp, f (xd))||22 − log |J|

〉
xp∼Pp,xd∼Pd

− log p(θ)

→ Jacobian of bijective mapping

47 / 52

Taking a different angle

Given an event xd , what is the probability distribution at parton level?
→ sample over r , condition on xd

xp
g(xp,f (xd))→

←−−−−−−−−−−−−−−−−→
← unfolding: ḡ(r ,f (xd))

r

→ Training: Maximize posterior over model parameters

L = −〈log p(θ|xp, xd)〉xp∼Pp,xd∼Pd

= −〈log p(xp|θ, xd)〉xp∼Pp,xd∼Pd
− log p(θ) + const. ← Bayes

= −
〈

log p(ḡ(xp, xd)) + log

∣∣∣∣
∂ḡ(xp, xd)

∂xp

∣∣∣∣
〉
− log p(θ)← change of var

=
〈
0.5||ḡ(xp, f (xd))||22 − log |J|

〉
xp∼Pp,xd∼Pd

− log p(θ)

→ Jacobian of bijective mapping

48 / 52

Cross check distributions

0.0

0.5

1.0

1.5

2.0

2.5

1 σ
d
σ

d
p
T
,q

1
[G

eV
−

1
]

×10−2

2 jet no ISR

Parton Truth

Parton cINN

Detector Truth

0 25 50 75 100 125 150 175 200
pT,q1

[GeV]

0.8
1.0
1.2

cI
N

N
T

ru
th

0.0

1.0

2.0

3.0

4.0

5.0

6.0

1 σ
d
σ

d
p
T
,q

2
[G

eV
−

1
]

×10−2

2 jet no ISR

Parton Truth

Parton cINN

Detector Truth

0 20 40 60 80 100 120 140
pT,q2

[GeV]

0.8
1.0
1.2

cI
N

N
T

ru
th

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 σ
d
σ

d
M
W
,r
ec
o

[G
eV
−

1
]

×10−1

2 jet no ISR

Parton Truth

Parton cINN

Detector Truth

65 70 75 80 85 90 95 100
MW,reco [GeV]

0.8
1.0
1.2

cI
N

N
T

ru
th

49 / 52

Condition INN on detector data [2006.06685]

xp
g(xp,f (xd))→

←−−−−−−−−−−−−−−−−→
← unfolding: ḡ(r ,f (xd))

r

Minimizing L =
〈
0.5||ḡ(xp , f (xd)))||22 − log |J|

〉
xp∼Pp ,xd∼Pd

− log p(θ)

10 15 20 25 30 35 40 45 50
pT,q1

[GeV]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ev
en

ts
n

or
m

al
iz

ed

cINN eINN

FCGAN

single detector event
3200 unfoldings

P
arton

T
ru

th

0.0 0.2 0.4 0.6 0.8 1.0
quantile pT,q1

0.0

0.2

0.4

0.6

0.8

1.0

fr
ac

ti
on

of
ev

en
ts

cI
N
N

eINN FCGAN

multi-dimensional X bin independent X statistically well defined X

50 / 52

Summary

• Three types of generative models VAE, GAN, NF

• VAE: latent space encoding, KL loss can limit performance

• GAN: based on simple classifier, efficient training if stabilized

• NF: invertible, useable to train directly on probability

51 / 52

Now it’s your turn

52 / 52

