



# **Artificial Neuronal Networks and Faults**

### Görschwin Fey

Institute of Embedded Systems
Electrical Engineering, Computer Science and Mathematics
Hamburg University of Technology

Credits to Fin Hendrik Bahnsen, Jan Kaiser

### **Neuronal Networks and Faults**

# Application

# Monitoring

Detecting anomalies in an application under observation

### **Artificial Neural Network**

Inaccuracies in classification

# **Processing Hardware**

Defects in hardware components

### **Neuronal Networks and Faults**

### Monitoring

Detecting anomalies in an application under observation



Fin Hendrik Bahnsen and Goerschwin Fey. Local monitoring of embedded applications and devices using artificial neural networks. In EUROMICRO Symposium on Digital System Design (DSD), pages 485–491, 2019.

Fin Hendrik Bahnsen, Jan Kaiser and Goerschwin Fey. Designing recurrent neural networks for monitoring embedded devices. In IEEE European Test Symposium (ETS), 2021.

# **Internet of Things**

- Devices in our lives are getting smart
- Everything is connected and has an IP address
- Inhomogeneous and unique systems, e.g. smart homes





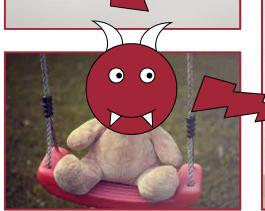




# **Internet of Things**

- Devices in our lives are getting smart
- Everything is connected and has an IP address
- Inhomogeneous and unique systems, e.g. smart homes
- New security breaches and system dependability must be considered

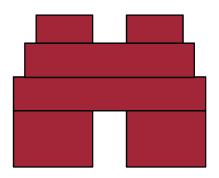






# **Monitoring**

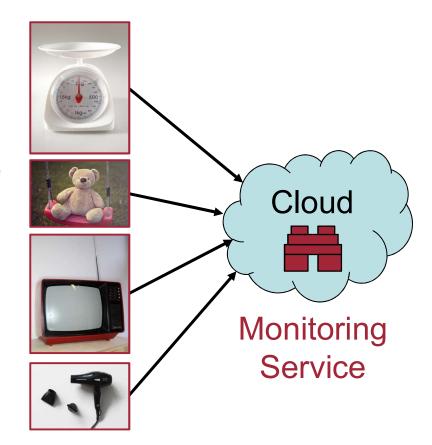
- 1. Detect a fault/attack
- 2. Handle the problem
- Monitoring to detect faults
- Single device or whole system





# **Cloud Based Monitoring**

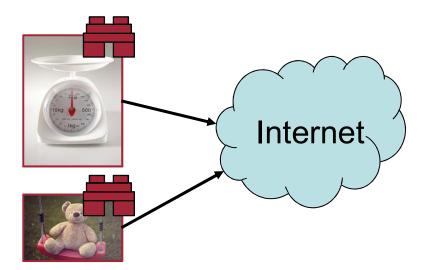
- + monitoring may benefit from other connected systems
- high performance computing on the cloud server
- limited connectivity and observability
- connection latency added on top
- design effort due to heterogeneous systems

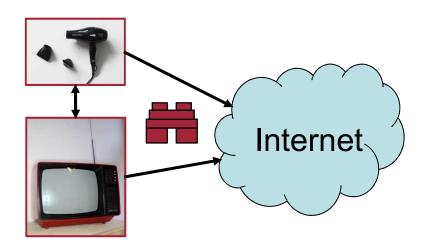


# **Localized Monitoring**

The monitor can be part of an embedded node or be allowed to sniff network traffic

- limited computational resources
- adaption to unknown environment required
- + low latency for fault detection
- + independent from connectivity or monitoring service availability





# "Traditional" Approaches





# Triple modular redundancy masks certain faults

- an attack may corrupt more than one device
- expensive to implement
- Byzantine faults

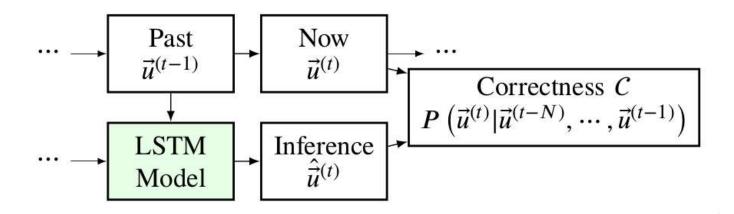


### Assertion based monitoring

- checking at runtime can be expensive
- assertions have to be designed
- in-depth knowledge of system and application is required

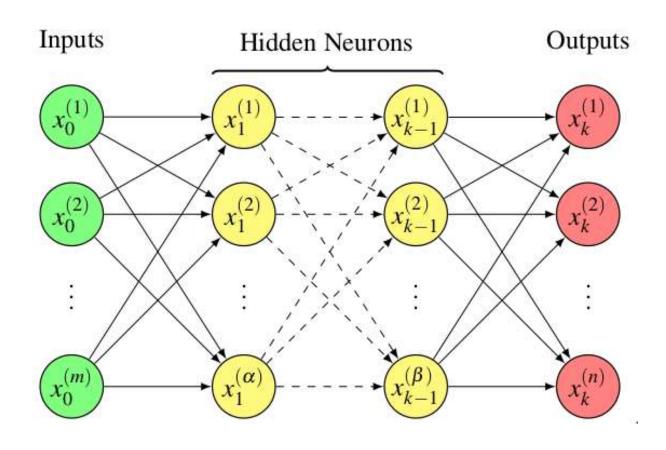
# **Approach Considered Here**

 Specification of acceptable behaviour learned automatically by a neural network



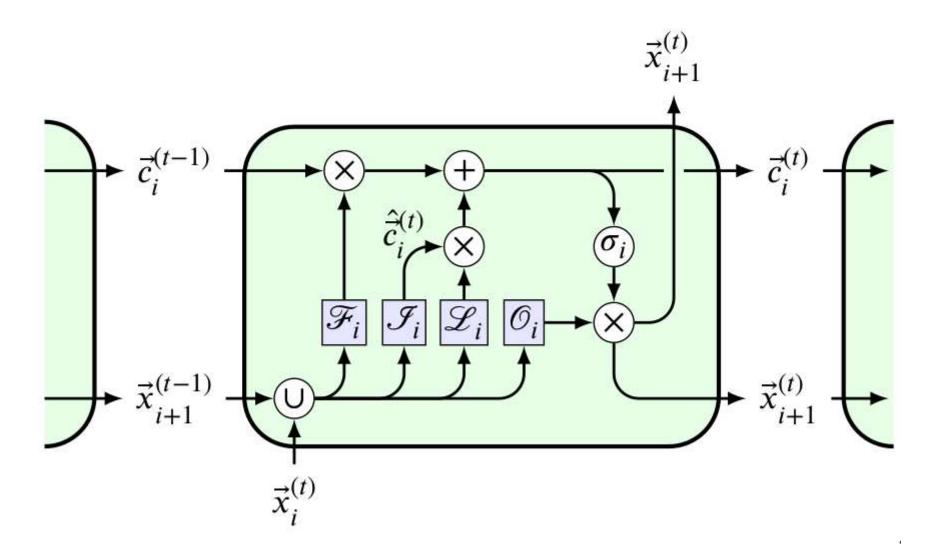
- Training on unstructured high-dimensional data
- No fault model required
- Correctness measure provides a metric for the system health including confidence metric

# **Multi Layer Perceptron – MLP**



$$\vec{x}_{i+1} = \sigma(\boldsymbol{W}_i \cdot \vec{x}_i + \vec{b}_i)$$

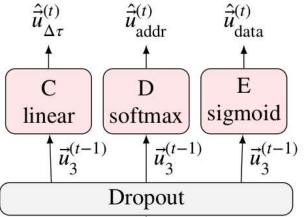
# **Long Short-Term Memory (LSTM)**



# Approach – Observing the "System Bus"

Device under Observation

continuous time  $\tau$   $\vec{d}^{(0)} \qquad \vec{d}^{(1)} \qquad \vec{d}^{(2)} \qquad \cdots$   $\vec{u}^{(0)} \qquad \vec{u}^{(1)} \qquad \vec{u}^{(2)} \qquad \vec{u}^{(3)} \qquad \vec{u}^{(4)} \qquad \vec{u}^{(5)}$   $\vec{e}^{(0)} \qquad \vec{e}^{(1)} \qquad \vec{e}^{(2)} \qquad \vec{e}^{(3)}$ 



Environment

### Regression

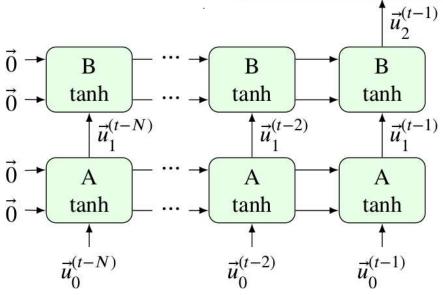
to predict the time delta between two messages

### Single-label classification

to predict a message destination

### **Multi-label classification**

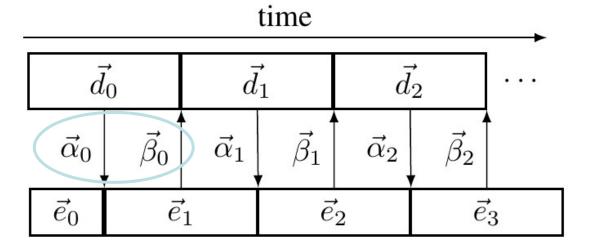
to predict the data per message

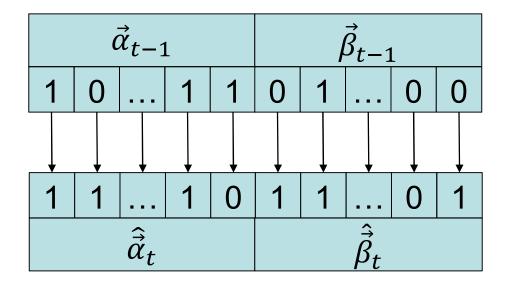


### **Prediction Model – Data Bits**

Device under Observation

Environment

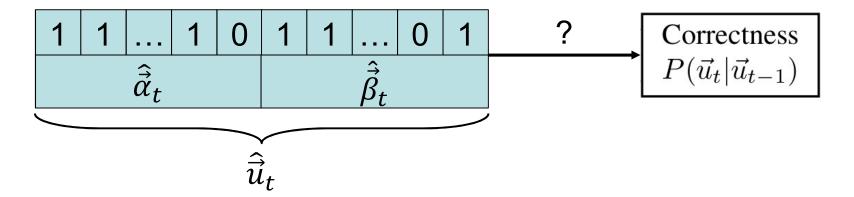




Single-label classification is infeasible for  $2^n$  classes needed for n-bit communication vectors.

Independent prediction per bit

### **Correctness – Data Bits**



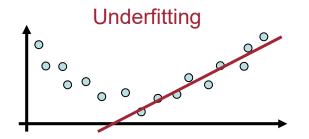
Weighting each bit by the prediction significance (using training data):

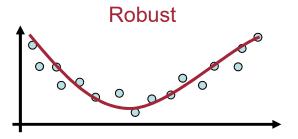
$$\vec{s}^{(k)} = 1 - \frac{\sum_{t} |\hat{\vec{u}}_{t}^{(k)} - \vec{u}_{t}^{(k)}|}{T} \qquad \vec{w}^{(k)} = \frac{\exp \vec{s}^{(k)}}{\sum_{k} \exp \vec{s}^{(k)}}$$

Approximating correctness as weighted sum over absolute similarity:

$$P(\vec{u}_t | \vec{u}_{t-1}) \approx 1 - \sum_k \vec{w}^{(k)} \cdot |\hat{\vec{u}}_t^{(k)} - \vec{u}_t^{(k)}|$$

### **Generalisation**



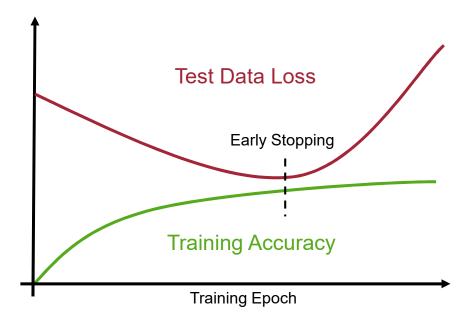




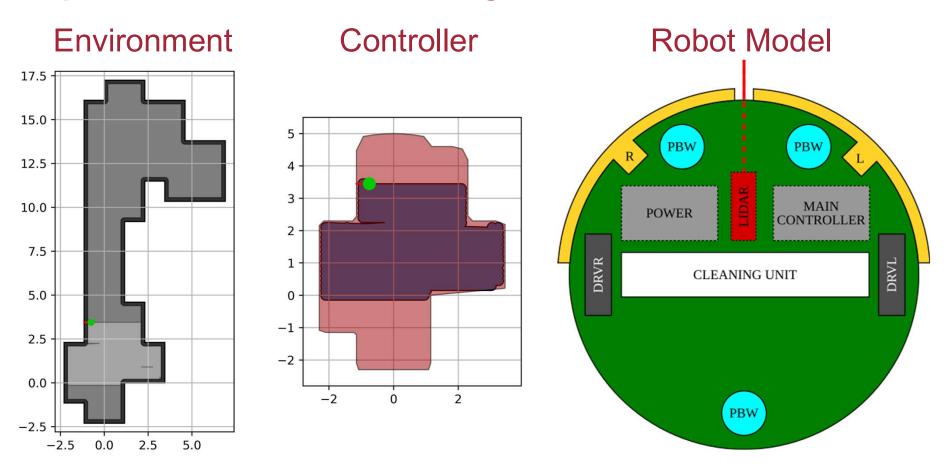
Two different data sets are used to train a neural network:

the training set is used to fit the model to the data

the test set is used to evaluate the model during training



# **Experiment – Vacuum Cleaning Robot**



- continuously scans its surroundings
- minimizes driving distance for cleaning the whole area

# **Experiments – Injected Faults in the Robot**

### **Functional Faults**

**F1:** The wires of the left and right motors are swapped.

F2: The LIDAR sensor does not detect the reflected light and always returns the maximum distance of 5 m.

**F3:** The left touch sensor is broken and is not triggering on hits anymore.

### **Application Faults**

**F4:** The charging station of the robot is removed from the environment.

**F5:** The robot is put to a different position in the environment.

### **Security Faults**

**F6:** A DDoS attack hits the robot controller.

F7: The control algorithm of the robot is replaced by another algorithm.

# **Results – Vacuum Cleaning Robot**

### Our approach detected all faults:

- detection abilities depend on the fault
  - e.g. erroneous sensor data does not change address of a message
  - F5 (position change) and F6 (DDoS attack) were hard to detect
- low latencies less than the window length

### Final Network and Training

- 2 LSTM layers
- 150 neurons
- 1.35\*10^6 data points
- 0.1 drop out rate
- sequence length 50
- Hamming window for correctness 12
- Threshold 97.87%

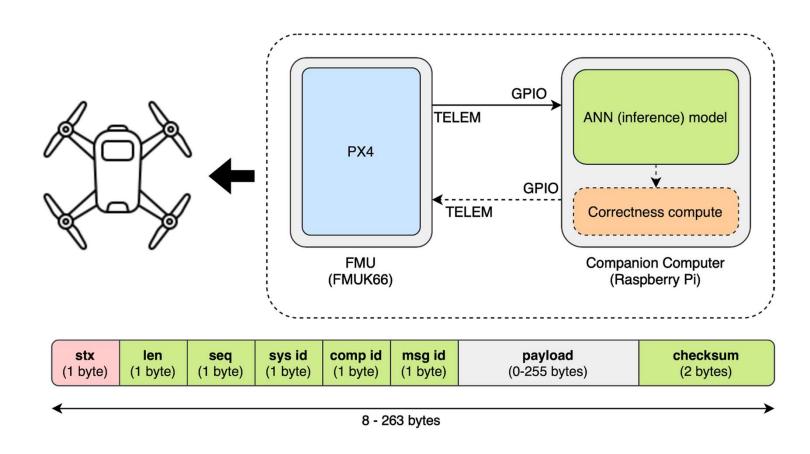
Training takes about 3 hours per model using a machine with:

- Intel Core i7@2.9GHz
- Nvidia GeForce 930 MX
- 16 GB RAM

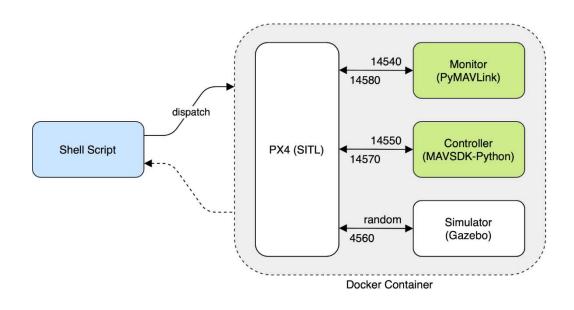
### Performance of sub models:

- Address 99.87 %
- Data 91.35 %
- Time 90.75 %

# **Monitoring a PX4 UAV**

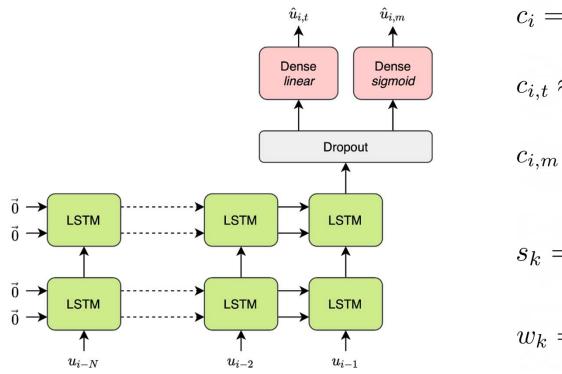


### **Simulation Environment**



- Random flight paths on earth as missions
  - 75 nominal flights
  - 25 (faulty) flights
- Extract sequences (length=50) and targets from overall sequence
- Pad messages to 263 bytes
- Keras Generators implemented to preprocess and feed data on-thefly
- Hyperparameter tuning using Hyperband algorithm in Keras Tuner

# **Statistical Approach – Correctness**



$$c_{i} = P(u_{i}|u_{i-N}, \dots, u_{i-1})$$

$$c_{i,t} \approx \frac{\mathcal{N}(\hat{u}_{i,t}, \hat{\sigma}_{t}^{2})(u_{i,t})}{\mathcal{N}(0, \hat{\sigma}_{t}^{2})(0)}$$

$$c_{i,m} \approx 1 - \sum_{k} w_{k}|u_{i,m}^{k} - \hat{u}_{i,m}^{k}|$$

$$s_{k} = 1 - \frac{\sum_{k} |u_{i,m}^{k} - \hat{u}_{i,m}^{k}|}{|U_{\text{test}}|}$$

$$w_{k} = \frac{\exp(s_{k})}{\sum_{k} \exp(s_{k})}$$

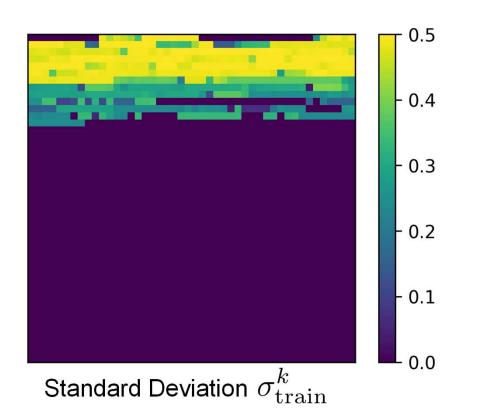
# **Tweaking the Approach**

How to handle the challenges of a real Device under Test?

Salienceweighted loss Message type balancing

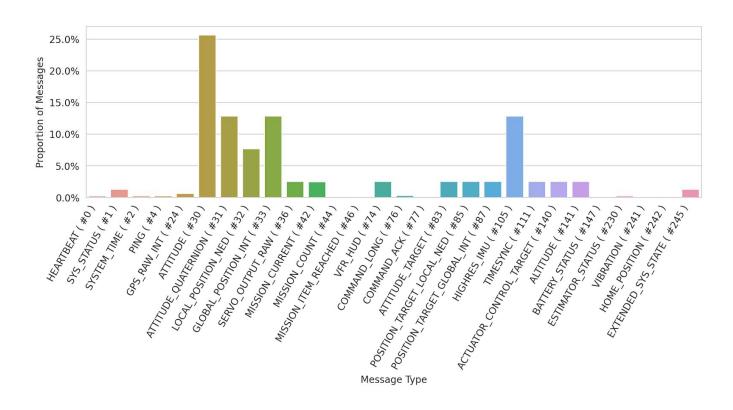
(Gated) Message type bypass

# **Salience-Weighted Loss**

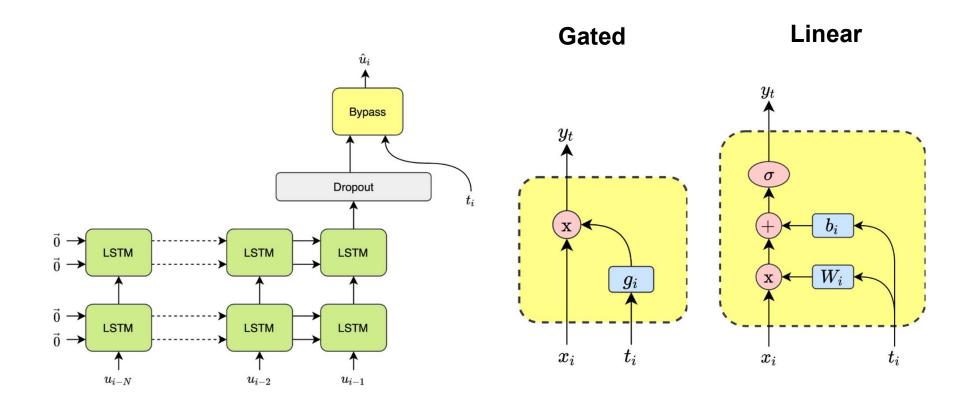


$$\mathcal{L}_{\text{SBCE}}(u_i, \hat{u}_i) = \frac{\sum_k \sigma_{\text{train}}^k \text{BCE}(u_i^k, \hat{u}_i^k)}{\sum_k \sigma_{\text{train}}^k}$$

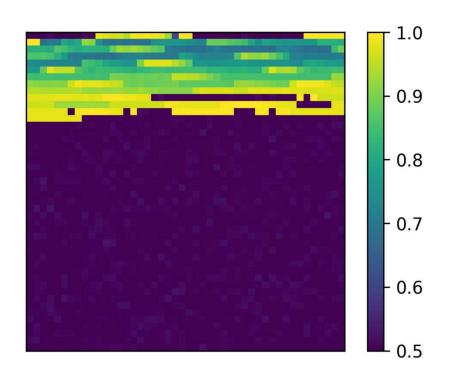
# **Message Type Balancing**

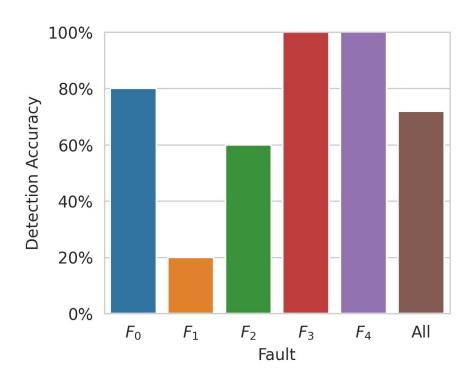


# **Message Type Bypass Cell**

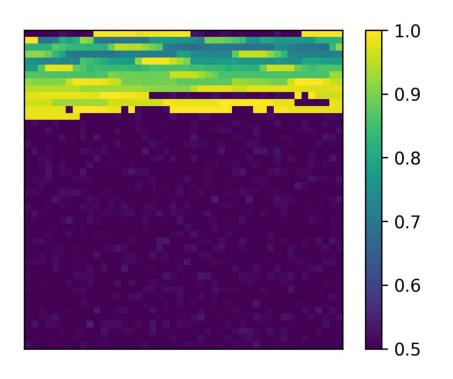


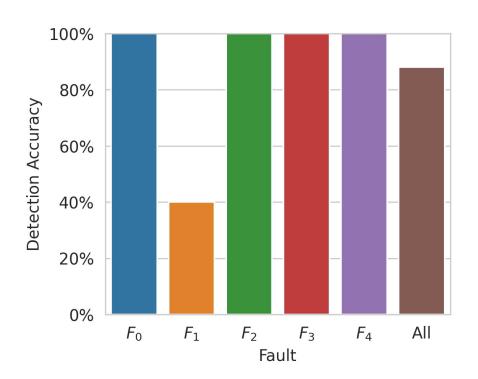
# **Linear Bypass**





# **Gated Bypass**





# **Results Summary**

|                | $M_0$ | $M_{nt}$ | $\mathbf{M_{sal}}$ | $\mathbf{M_{bal}}$ | ${ m M_{gby}}$ | $\mathbf{M_{lby}}$ |
|----------------|-------|----------|--------------------|--------------------|----------------|--------------------|
| L              | 64    | 32       | 32                 | 64                 | 512            | 512                |
| r              | 0.1   | 0.1      | 0.1                | 0.1                | 0.3            | 0.5                |
| $\mathcal{L}$  | 0.505 | 0.086    | 0.433              | 0.348              | 0.208          | 0.249              |
| h              | 512   | 128      | 256                | 512                | 64             | 512                |
| $\mathcal{T}$  | 93.5% | 94.9%    | 83.3%              | 77.1%              | 83.0%          | 82.7%              |
| $\mathbf{F_0}$ | 92.4% | 95.0%    | 83.3%              | 76.9%              | 83.2%          | 82.5%              |
| $\mathbf{F_1}$ | 94.0% | 95.3%    | 86.5%              | 78.9%              | 83.2%          | 83.6%              |
| $\mathbf{F_2}$ | 93.9% | 95.4%    | 85.7%              | 79.1%              | 82.2%          | 83.0%              |
| $\mathbf{F_3}$ | 94.0% | 94.6%    | 82.3%              | 78.1%              | 82.4%          | 82.2%              |
| $\mathbf{F_4}$ | 92.9% | 94.7%    | 81.6%              | 76.8%              | 80.7%          | 80.9%              |
| $\mathcal{A}$  | 64.0% | 68.0%    | 64.0%              | 56.0%              | 88.0%          | 72.0%              |

M<sub>0</sub>: initial model

M<sub>nt</sub>: no time

M<sub>sal</sub>: salience-weight-loss

M<sub>bal</sub>: message type balanced

M<sub>gby</sub>: gated bypass cell

M<sub>lbv</sub>: linear bypass cell

**Green**: fault was always detected

**Red**: fault was sometimes detected

2 LSTM layers, L neurons/layer, r drop out rate, h Hamming window, T threshold  $F_i$  lowest/highest correctness for  $F_0/F_{1-4}$ , A accuracy L,r optimized by hyperparameter tuning

# **Localized Monitoring**

### Summary

- No fault model, no predefined specification needed
- Empirical results for complex state-based system
- Original system unchanged

### Conclusion

- Being completely agnostic of the monitored system does not work ((yet))
- Minor changes in the NN architecture have a significant impact on accuracy and fault detection

# **Summary**

Localized Monitoring Detecting anomalie acation "In Progress" observation Application **Artificial Neural** Emulated HW under fault injection Inaccuracies in classifi Processing Hardway Defects in hardware co