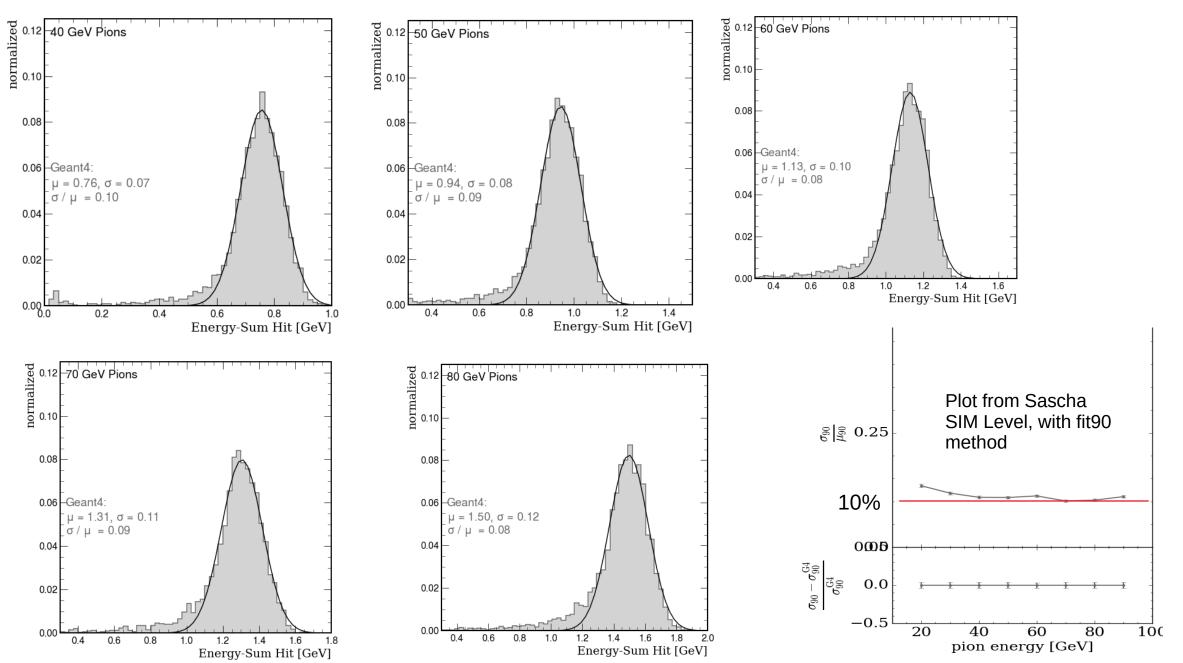
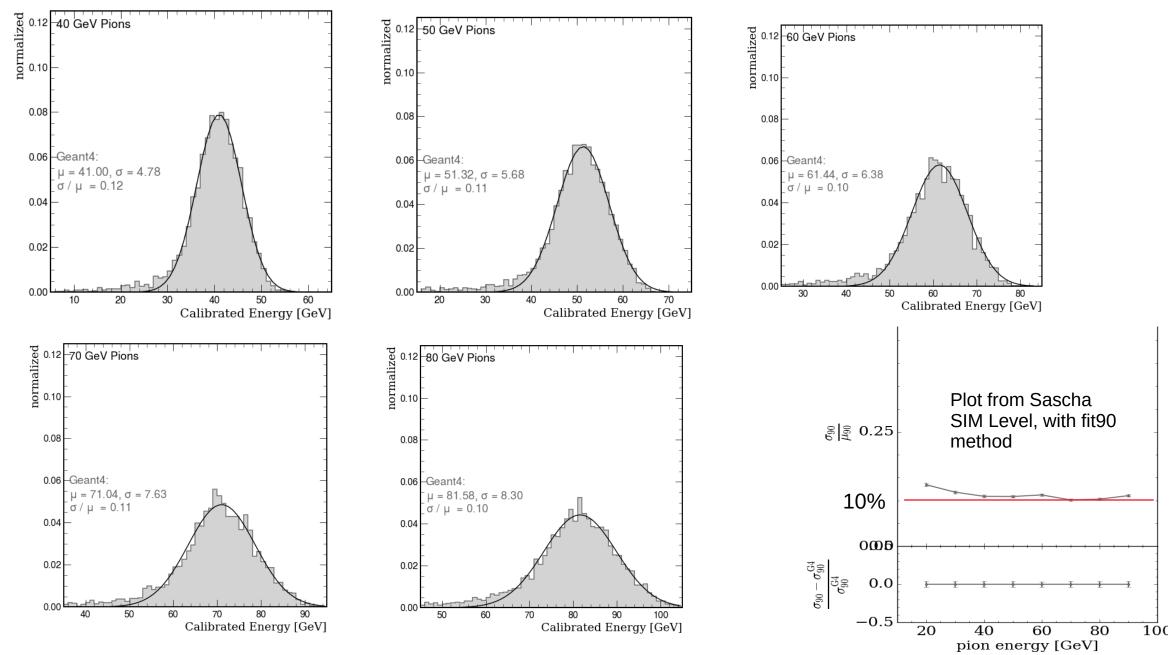
Energy Resolution (Pions, SIM Level)

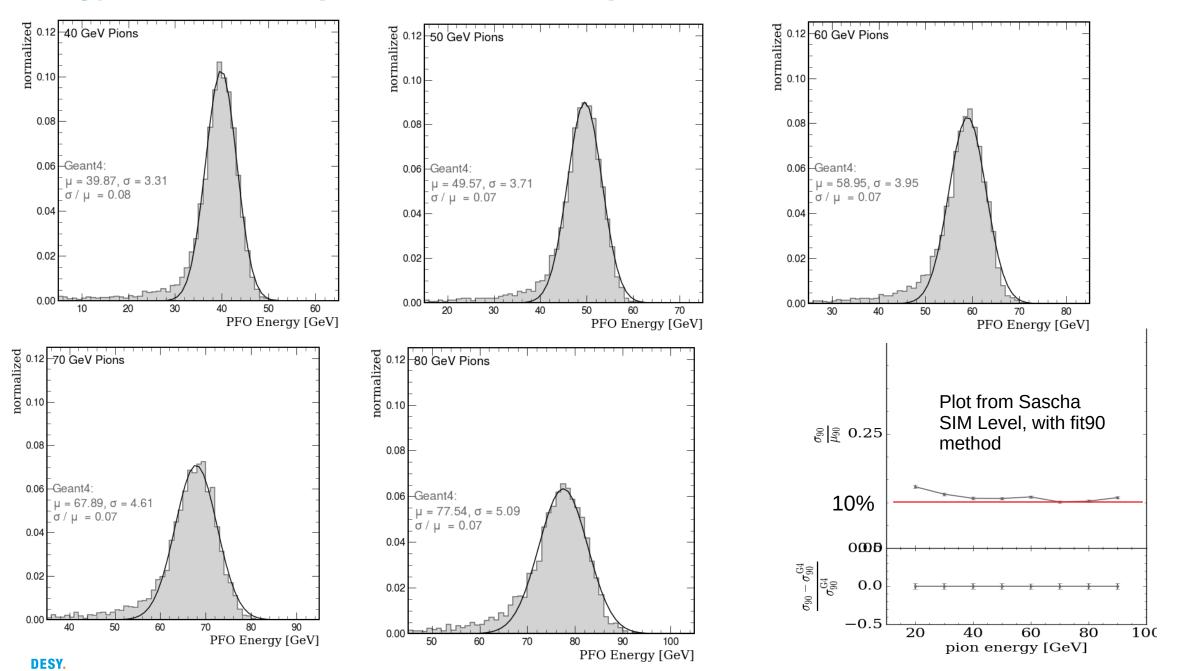


Page 1

Energy Resolution (Pions, Digi+Calibration Level)



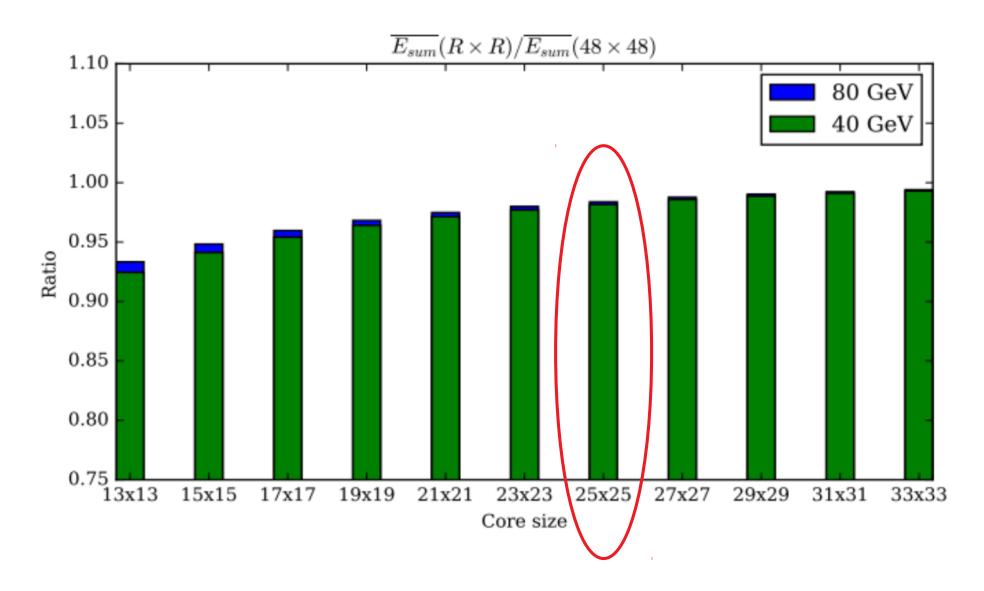
Energy Resolution (Pions, PFO Level)



Page 3

Core size scan (Energy Sum)

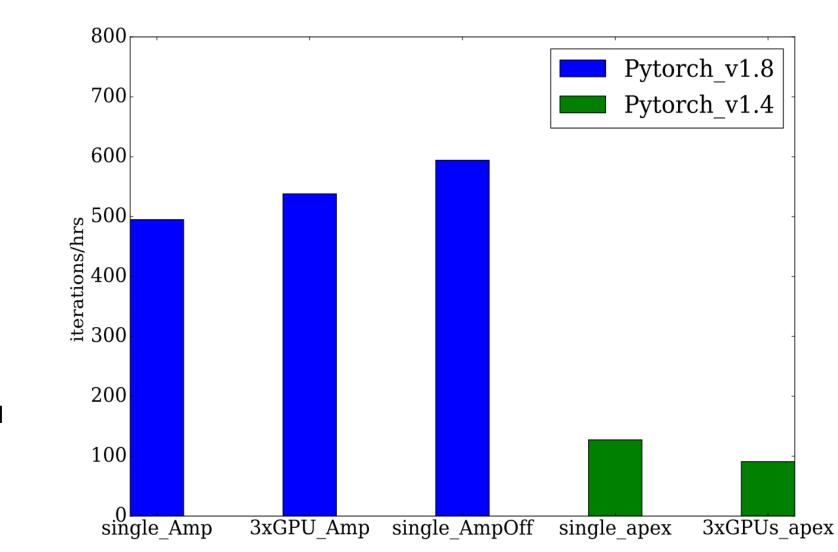
• Reminder: We have used 13x13 core size for pion showers up to now.



Thank you

Pytorch 1.8 training time comparisons

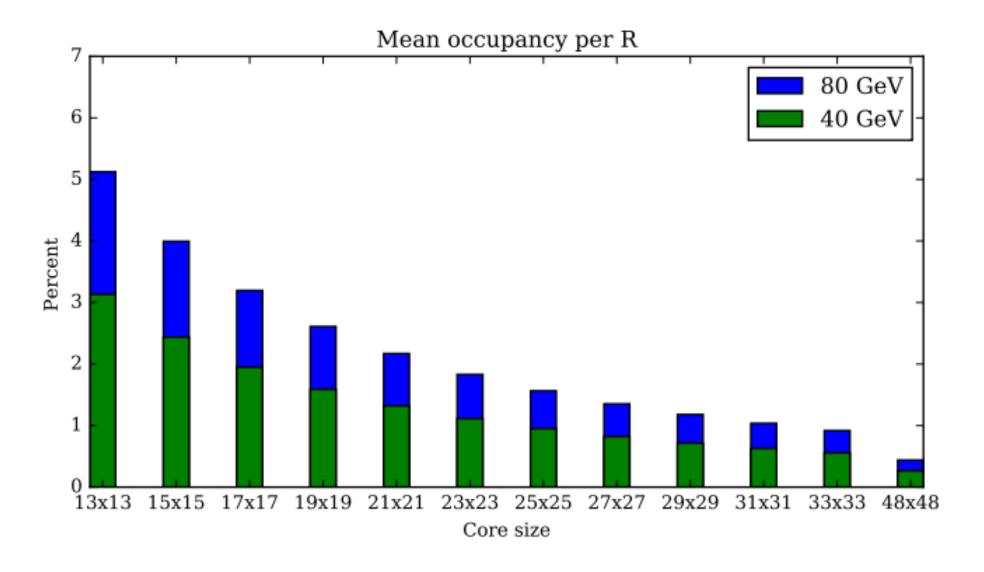
- Exactly same network architecture (WGAN-LO) and data (pions 13x13)
- Amp: Automatic-mixed-precision (native in Pytorch since v1.6)
- Amp in Apex: NVIDIA-maintained utility for mixed precision training



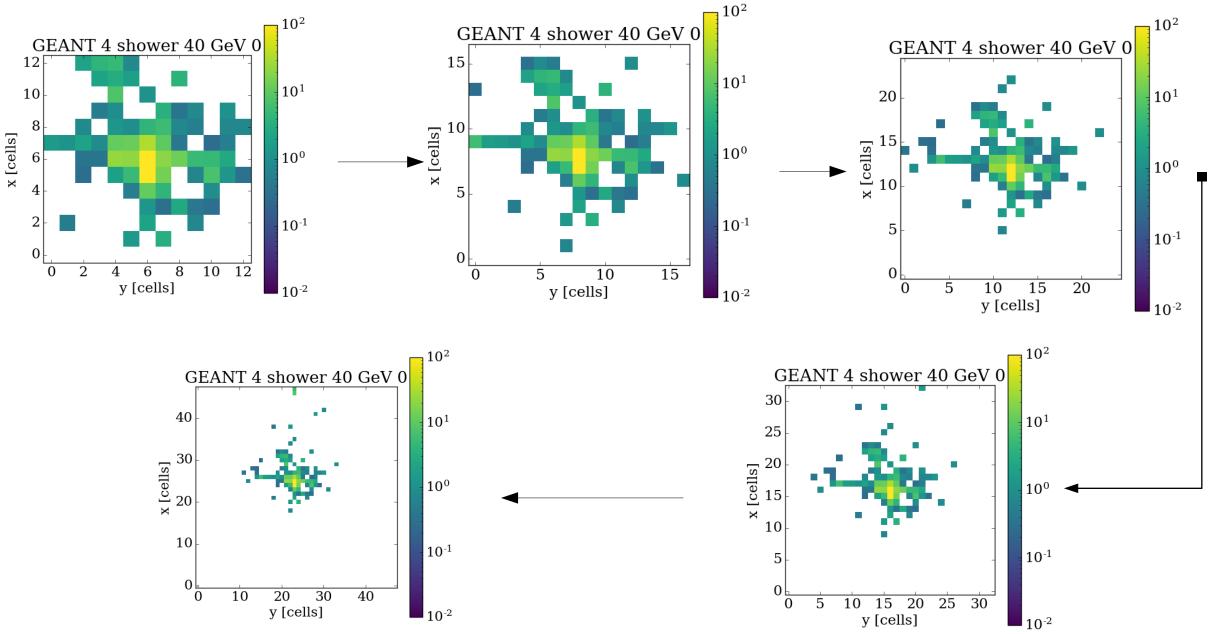
3xGPU means: Distributed-Data-Parallel across 3 GPU nodes!!

Core size scan (Mean occupancy)

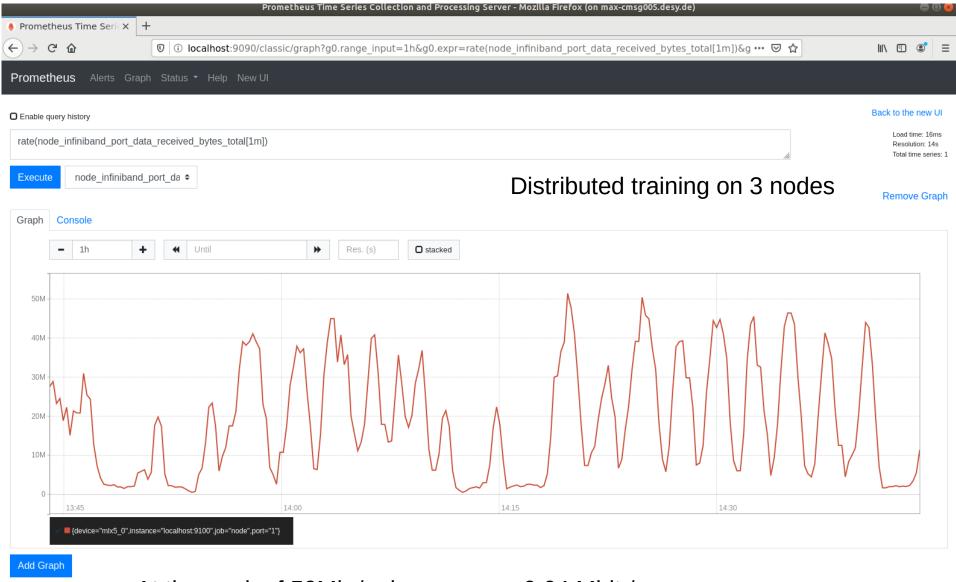
How about active cells ? (after MIP cut)



Some examples



Bonus: Infiniband (IB) throughput in maxwell during training



At the peak of 50Mb / min ← 6.64 Mbit / sec

[source]

Fidelity scan based on 6 distributions with JSD

scipy.spatial.distance.jensenshannon¶

scipy.spatial.distance.jensenshannon(p, q, base=None)

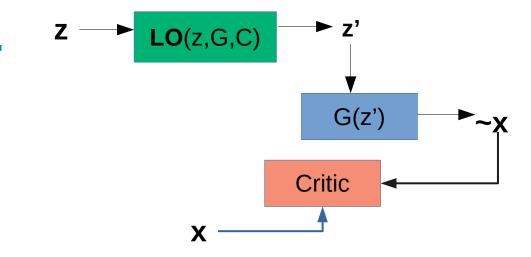
Compute the Jensen-Shannon distance (metric) between two 1-D probability arrays. This is the square root of the Jensen-Shannon divergence.

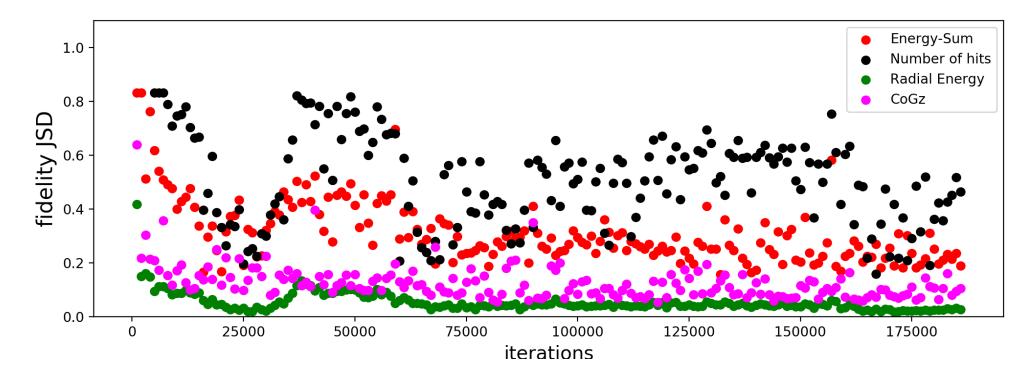
The Jensen-Shannon distance between two probability vectors p and q is defined as,

$$\sqrt{\frac{D(p\parallel m)+D(q\parallel m)}{2}}$$

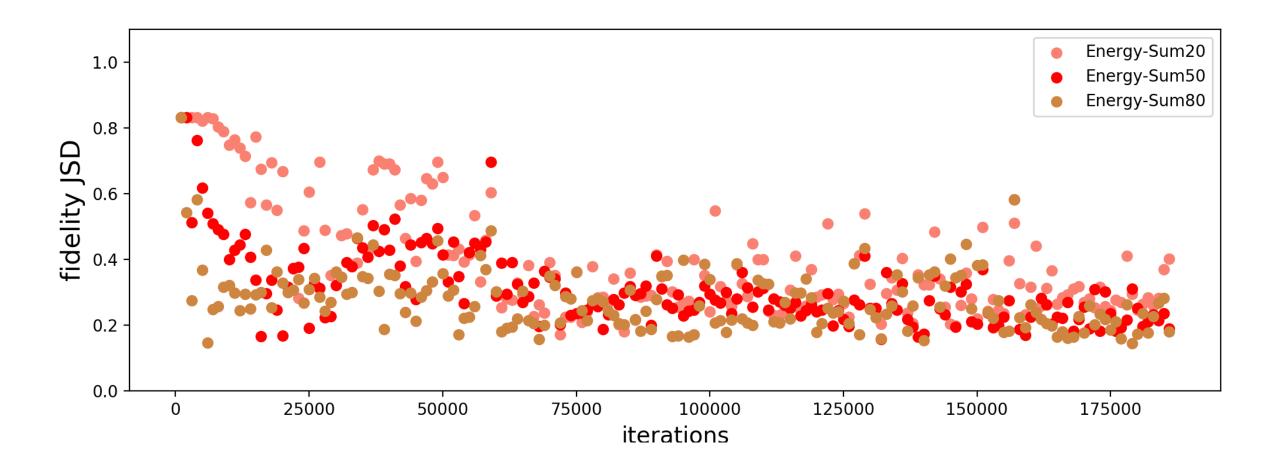
where m is the pointwise mean of p and q and p is the Kullback-Leibler divergence.

This routine will normalize p and q if they don't sum to 1.0.

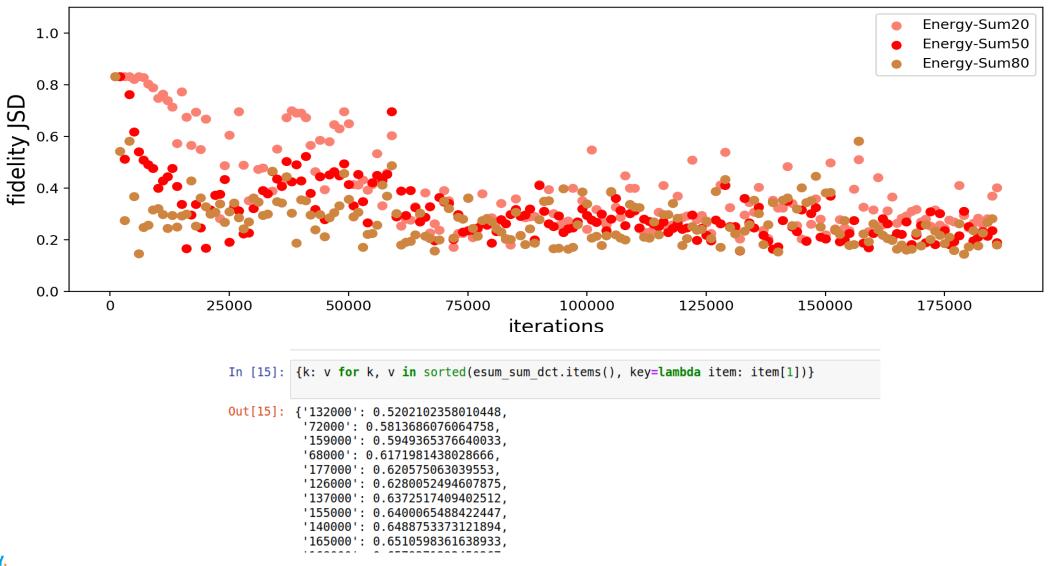




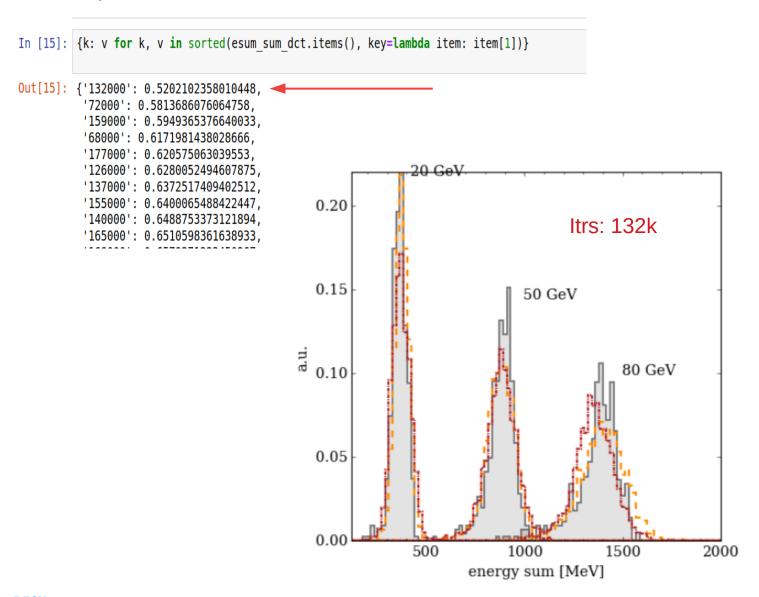
Fidelity scan for Esum → 20, 50 and 80 GeV

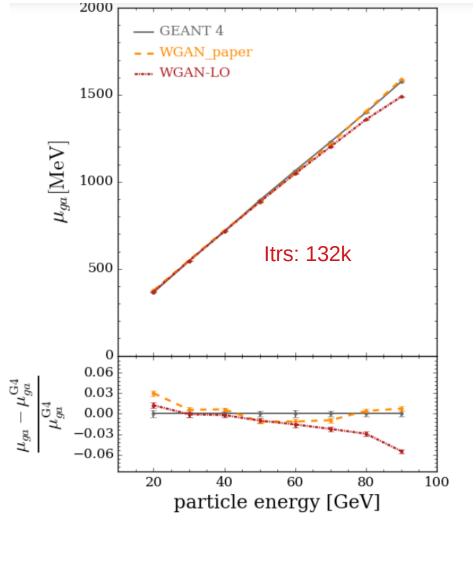


Fidelity scan for Esum → 20, 50 and 80 GeV

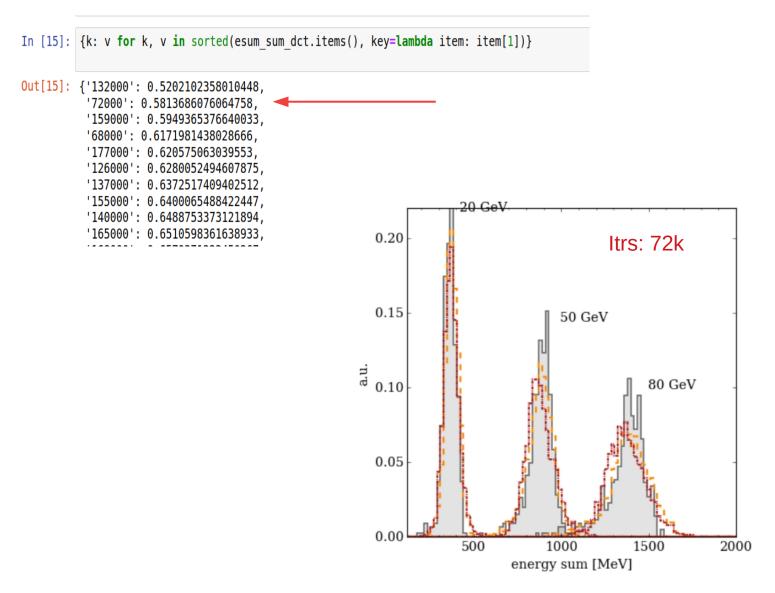


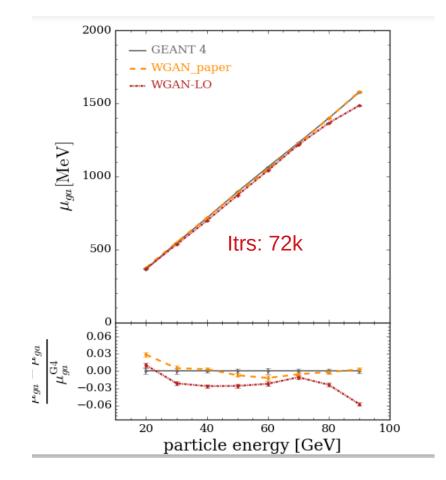
Fidelity scan for Esum → 20, 50 and 80 GeV



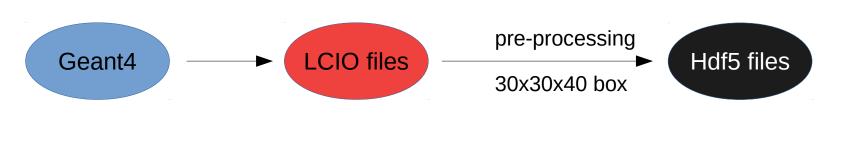


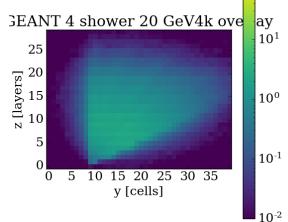
Fidelity scan for Esum → 20, 50 and 80 GeV



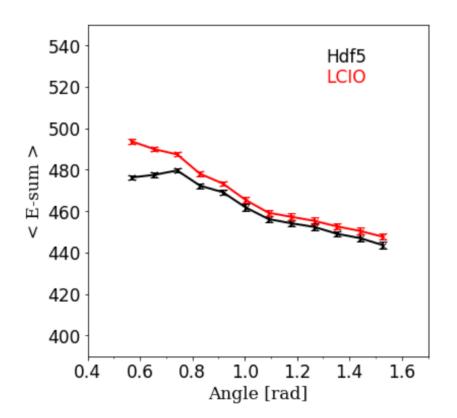


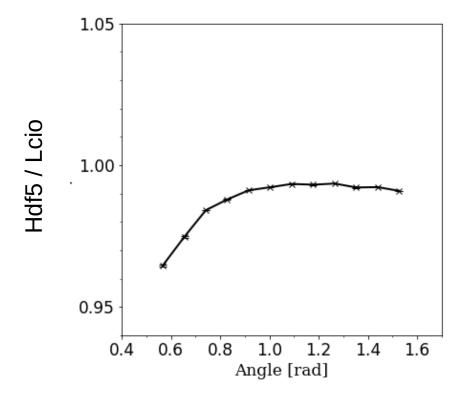
Photon Showers with Angle [solved]



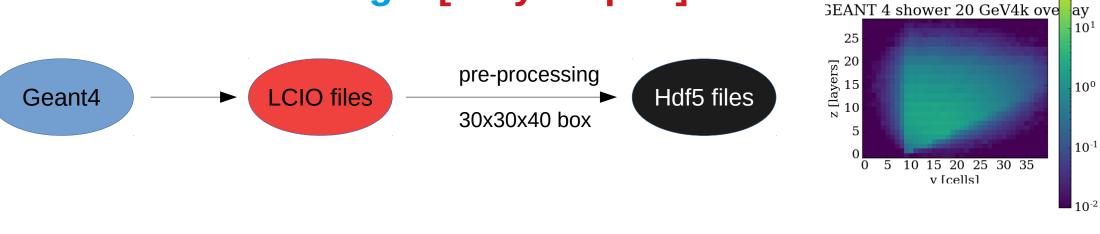


 10^{2}

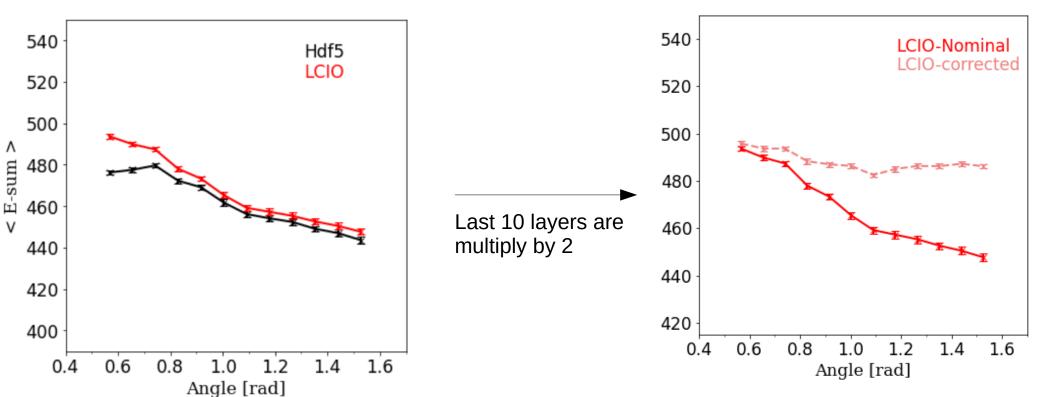




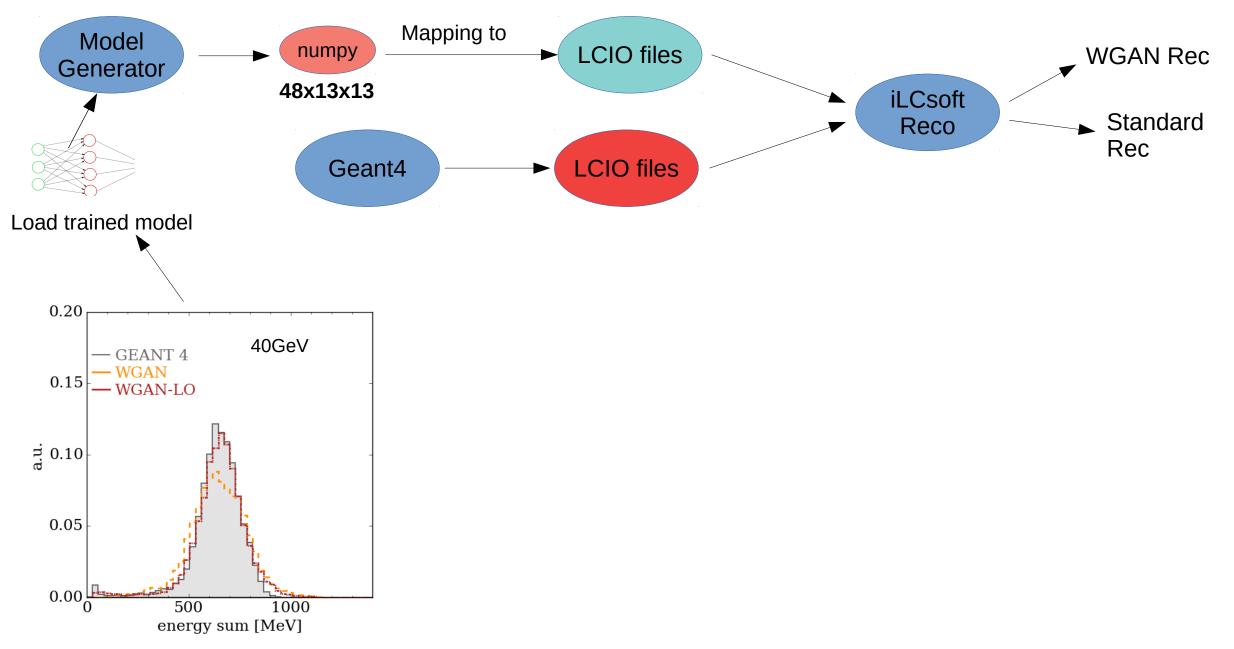
Photon Showers with Angle [Why slope?]



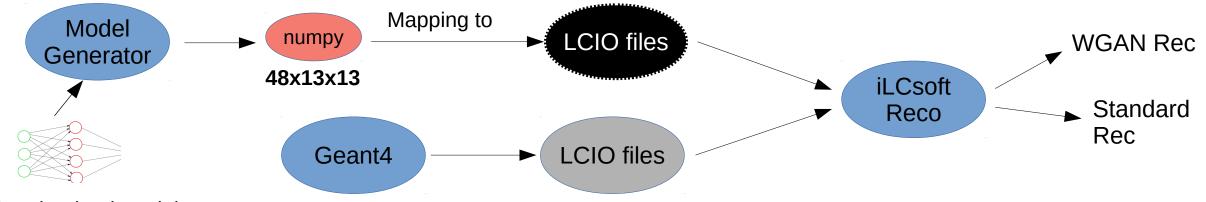
 10^{2}



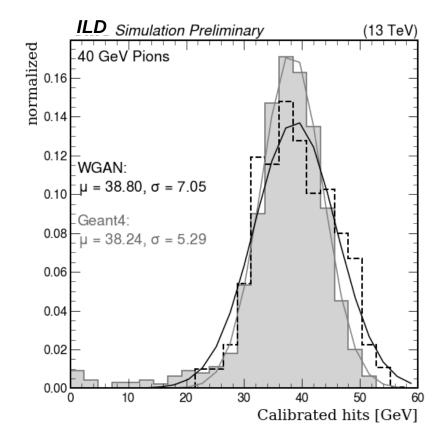
Pion Showers [Reconstruction, in progress]



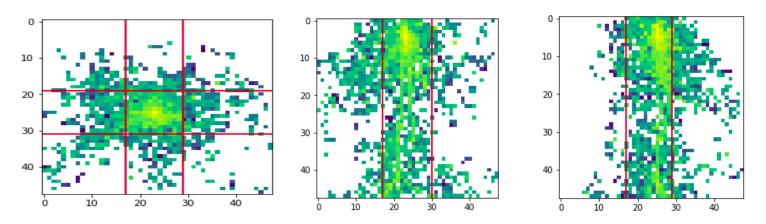
Pion Showers [Reconstruction, in progress]



Load trained model

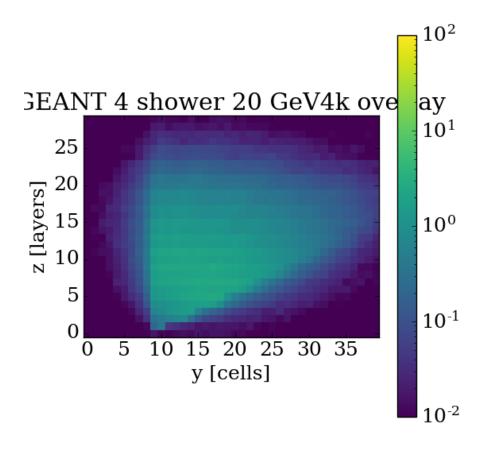


Reminder: These are core showers. Need to cut full LCIO for a fair comparison

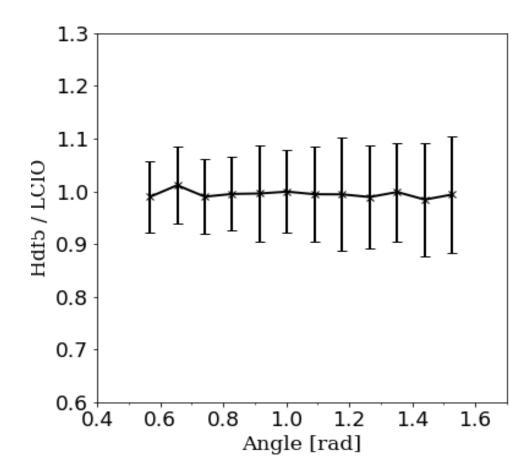


Can we contain full shower?

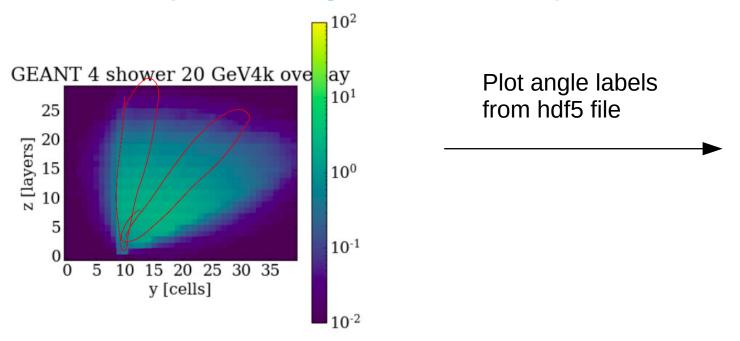
- 30x30x40 showers (layers, x, y) with extended y-coordinate
- Gun position is very close to ECAL: 1mm!
- Angle is from 90deg to 30deg

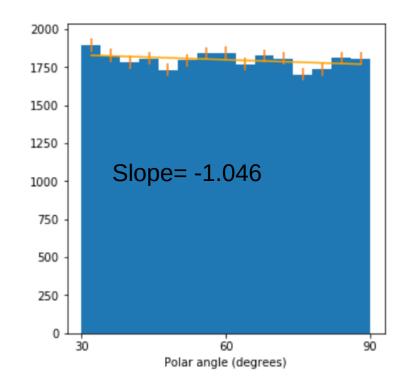


Sanity check



Issue: Why the angle is not fully uniform?





```
##
SIM.gun.distribution = 'uniform'
SIM.gun.energy = 20*GeV

## isotropic distribution for the particle gun
##
## use the options phiMin, phiMax, thetaMin, and thetaMax to limit the range of randomly distributed directions
## if one of these options is not None the random distribution will be set to True and cannot be turned off!
##
SIM.gun.isotrop = False
SIM.gun.multiplicity = 1
SIM.gun.particle = "gamma"
SIM.gun.phiMax = 1.57079

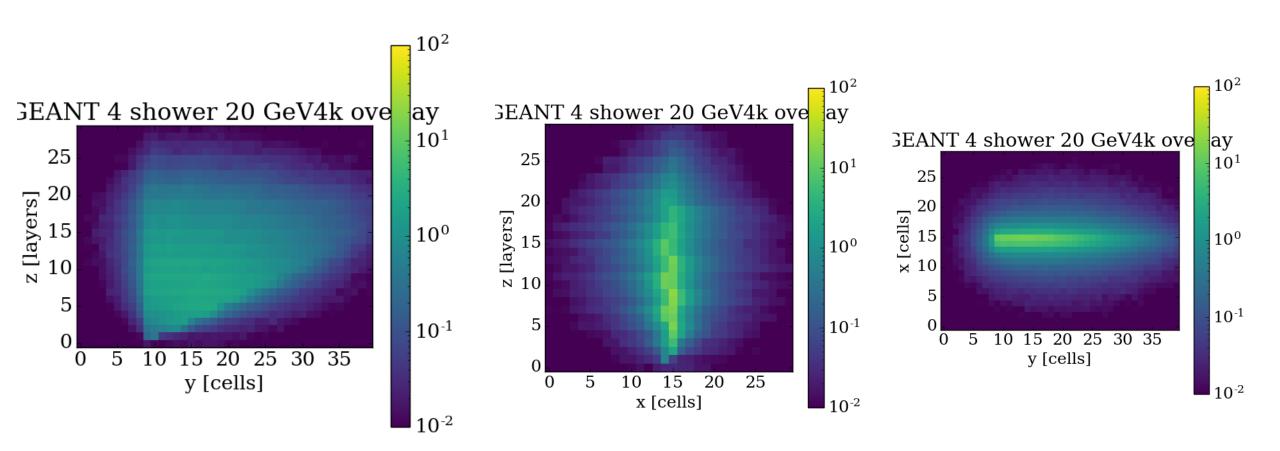
## Minimal azimuthal angle for random distribution
SIM.gun.phiMin = 1.57079

## position of the particle gun, 3 vector
SIM.gun.position = (0.0, 1810*mm, -5.0*cm)
SIM.gun.thetaMax = 1.57079
SIM.gun.thetaMax = 1.57079
```

ddsim config file in ILDConfig

Photon Showers with angle

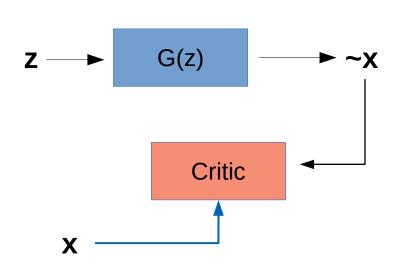
- 30x30x40 showers (layers, x, y) with extended y-coordinate
- Gun position is very close to ECAL: 1mm!
- Implemented corrections both x and y positions due to artifacts (due to irregularities)
- Angle is from 90deg to 30deg

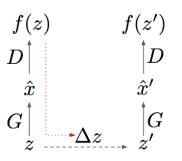


A new WGAN

- Trained on pion showers. Approx half a million
- Shower is 48x13x13
- Architectures
 - very similar to WGAN in our "getting high paper"
 - Latent Optimized WGAN, inspired by DeepMind

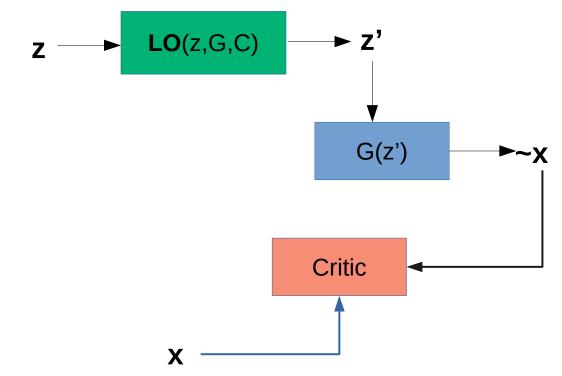
Our classical WGAN





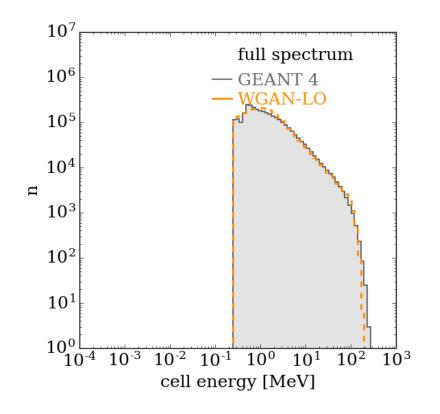
arXiv: 1912.00953

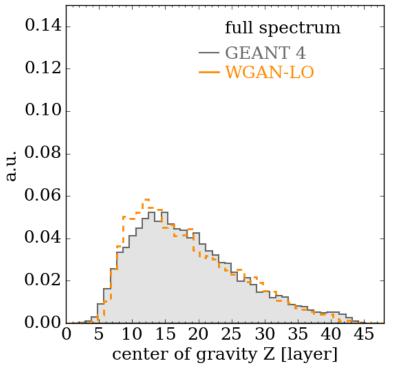
Figure 3: (a) Schematic of LOGAN. We first compute a forward pass through G and D with a sampled latent z. Then, we use gradients from the generator loss (dashed red arrow) to compute an improved latent, z'. After we use this optimised latent code in a second forward pass, we compute gradients of the discriminator back through the latent optimisation into the model parameters θ_D , θ_G . We use these gradients to update the model. (b) Truncation curves illustrate the FID/IS trade-off

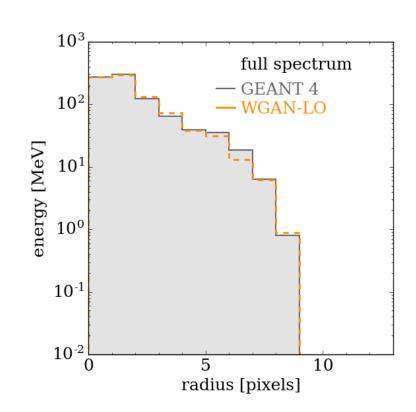


WGAN Latent Opt.

- Trained on **uniform energy showers 10-100 GeV**. Approx half a million
- Shower is 48x13x13

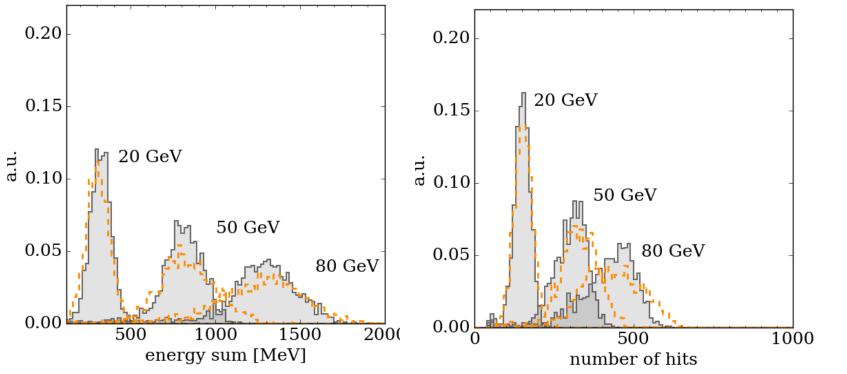


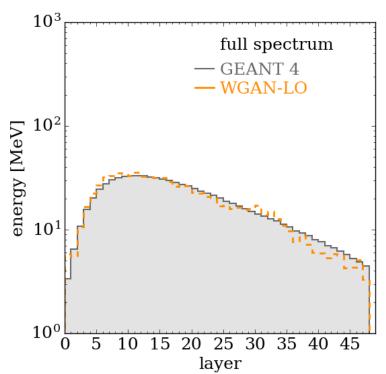




WGAN Latent Opt.

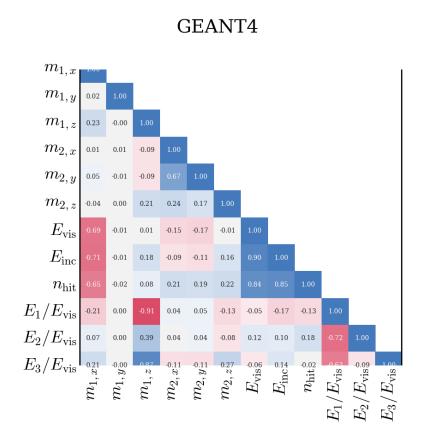
- Trained on **uniform energy showers 10-100 GeV**. Approx half a million
- Shower is 48x13x13



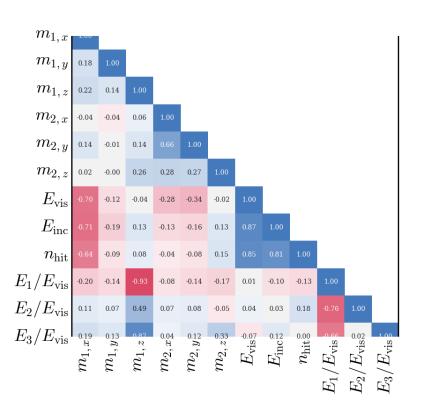


Fit to Gaussian for linearity and width!!

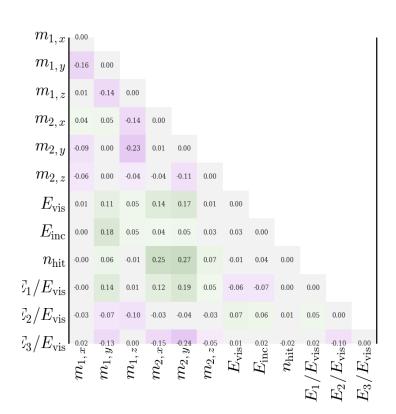
Linear Correlations



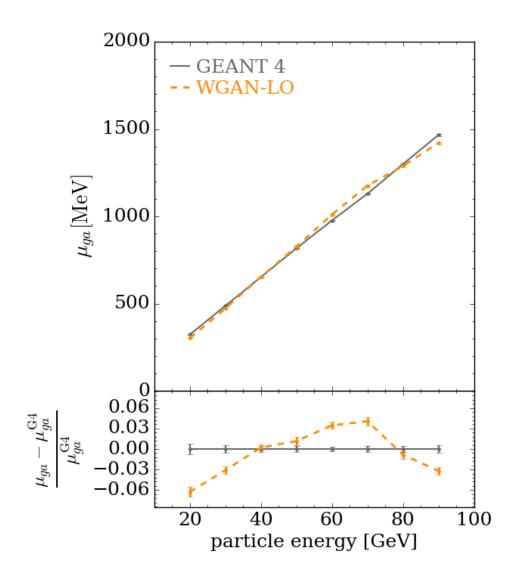
WGAN-LO

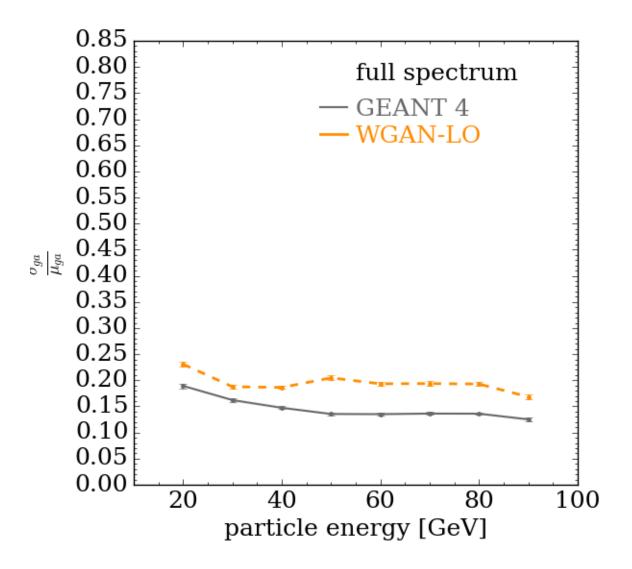


GEANT4 - WGAN-LO

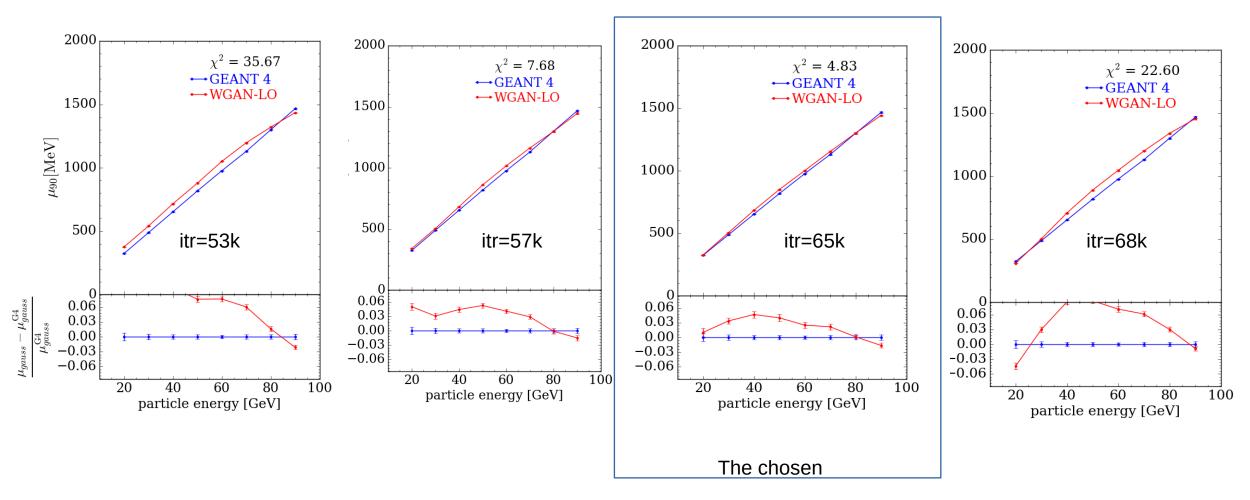


Linearity and Width





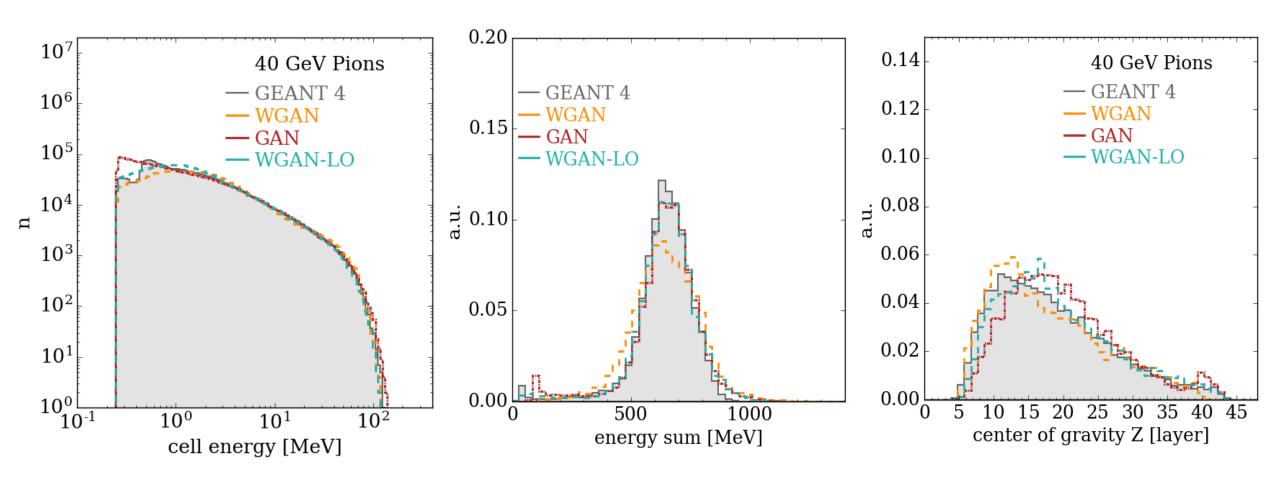
How to choose best iterations (i.e epoch)



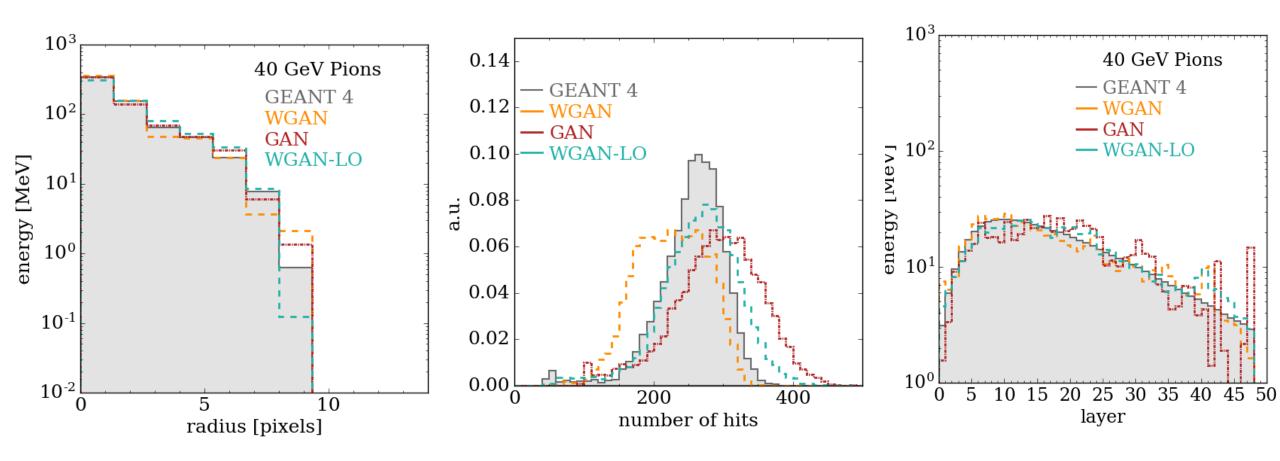
Example:

Training

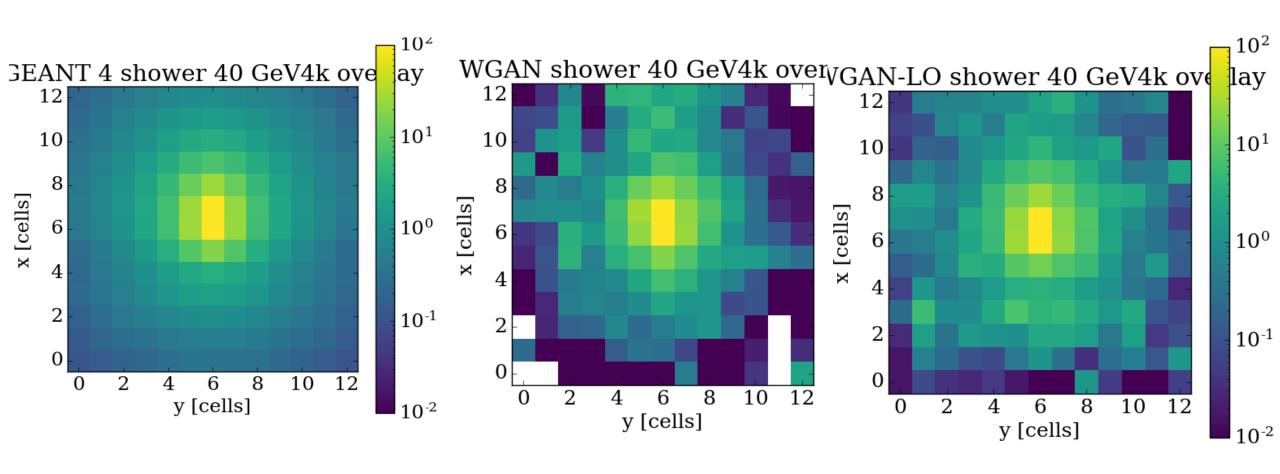
- Trained on 40 GeV showers. Approx half a million
- Shower is 48x13x13



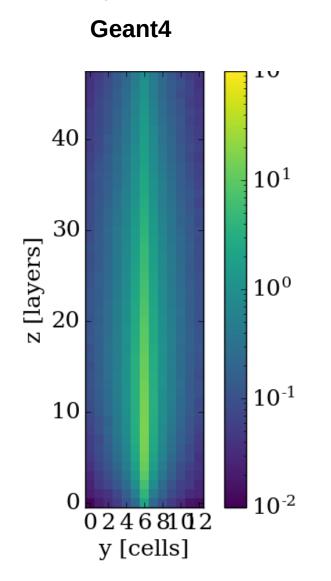
- Trained on 40 GeV showers. Approx half a million
- Shower is 48x13x13

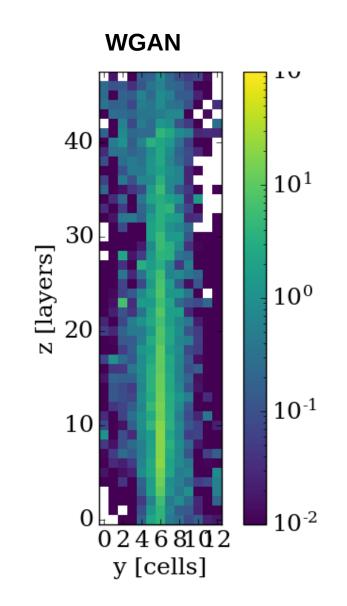


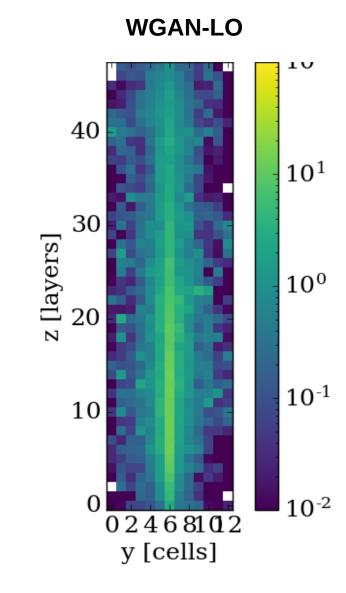
Overlay in X-Y



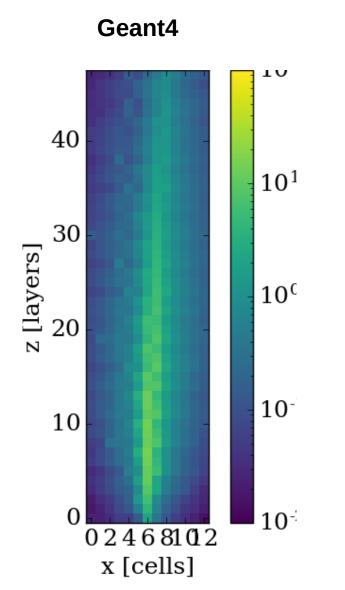
Overlay in Y-Z

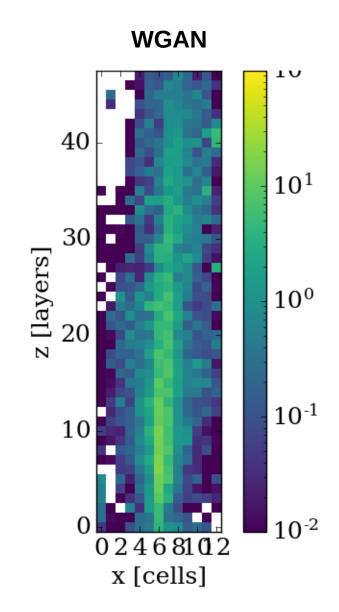


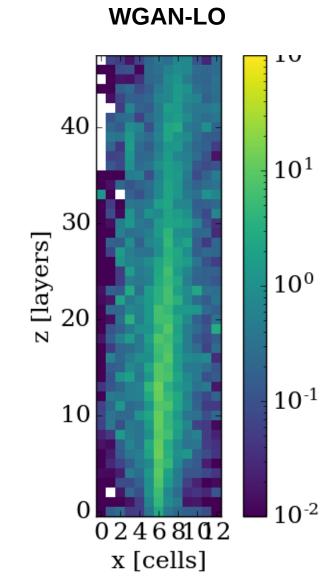




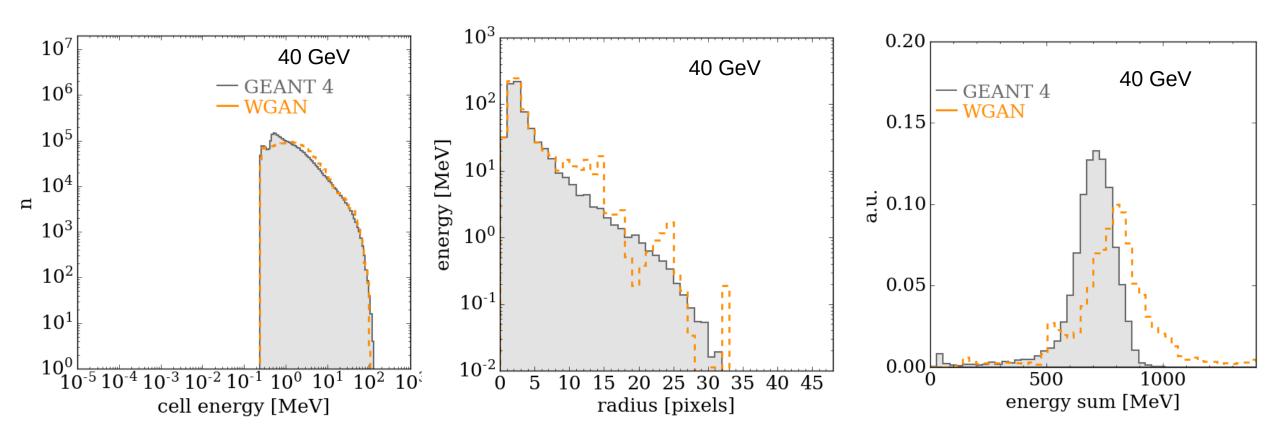
Overlay in Z-X



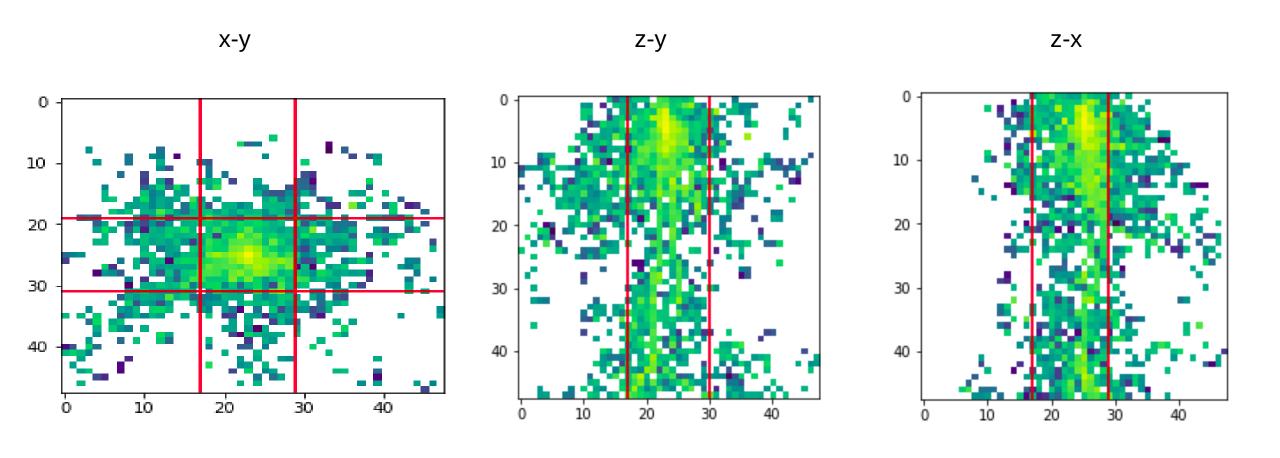




- Trained on 40 GeV showers. Approx half a million
- Shower is 48x48x48
- Architecture is very similar to WGAN in our "getting high paper"



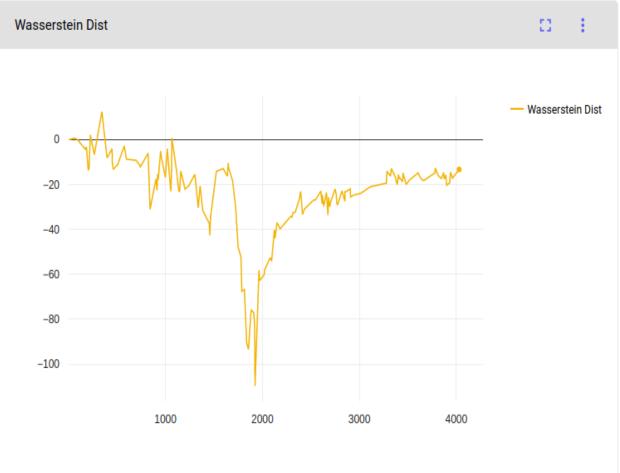
WGAN update: core



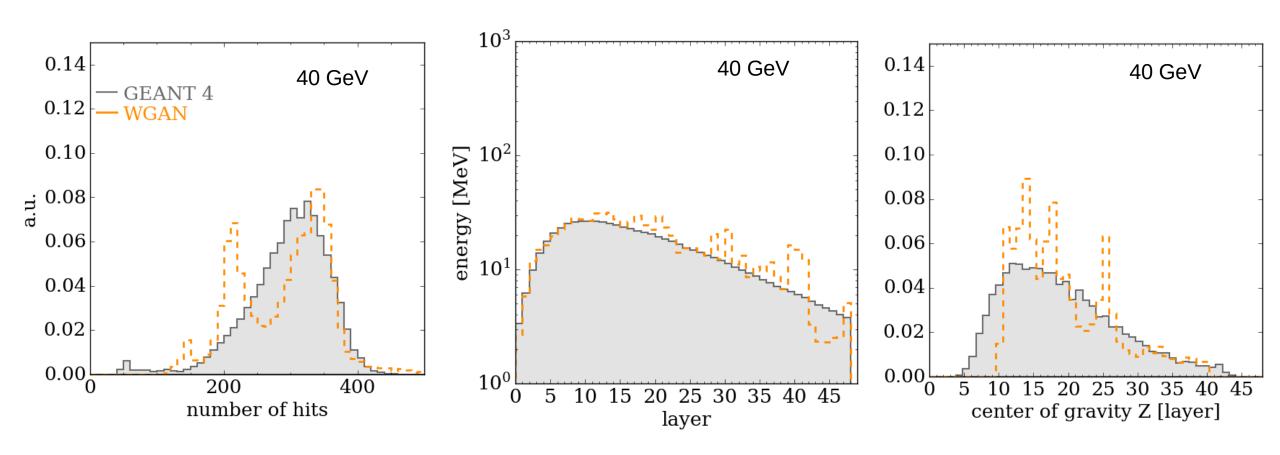
WGAN update: core

• Training started yesterday on 3 P100s





- Trained on 40 GeV showers. Approx half a million
- Shower is 48x48x48
- Architecture is very similar to WGAN in our "getting high paper"



Some examples

