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Introduction

Regularization of SUSY

Motivation: some important observables/calculations. . .

(g − 2)µ

H
t̃ , b̃

→ no problem with regularization

1-Loop processes → DRED preserves SUSY!!

Mh

t̃

→ DRED SUSY-preserving??

LHC
g̃

q̃

g

q
→ DRED violates factorization!?
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Introduction

Systematic analysis: algebraic renormalization

In principle, we don’t have to bother whether a
regularization preserves symmetries
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Introduction

Systematic analysis: algebraic renormalization

In practice, life is easier with a symmetry-preserving
regularization!
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Introduction

Systematic analysis: algebraic renormalization

In practice, life is easier with a symmetry-preserving
regularization!

counterterms Γct also preserve symmetries:

g → g + δg, m → m + δm — “multiplicative
renormalization”

most common situation, often assumed without proof
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DREG and DRED: Properties

Common Regularization Schemes for SM/MSSM

Let’s consider now the common regularization schemes for SM/MSSM:

Dimensional Regularization (DREG) [’t Hooft, Veltman ’72]

Dimensional Reduction (DRED) [Siegel ’79]

Dominik Stöckinger Regularization of SUSY



DREG and DRED: Properties

Properties of DREG/DRED (status Jan. 2005)

DREG:

Dim. Regularization (DREG)
D dimensions
D Gluon/photon-components
4 Gluino/photino-components

DRED:

Dim. Reduction (DRED)
D dimensions
4 Gluon/photon-components
4 Gluino/photino-components
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DREG and DRED: Properties

Summary: Properties of DREG and DRED

DREG: consistent SUSY-violation factorization
+ − +

DRED: inconsistent SUSY (?) no factorization (?)
− +(?) −(?)
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DREG and DRED: Properties

Summary: Properties of DREG and DRED

DREG: consistent SUSY-violation factorization
+ − +

DRED: inconsistent SUSY (?) no factorization (?)
− +(?) −(?)

SUSY:

DREG breaks SUSY already e.g. for me(1L) 6= mẽ(1L)
DRED preserves SUSY in simple cases, but e.g. Mh: unclear
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DREG and DRED: Properties

Summary: Properties of DREG and DRED

DREG: consistent SUSY-violation factorization
+ − +

DRED: inconsistent SUSY (?) no factorization (?)
− +(?) −(?)

DRED seems to violate factorization for LHC-processes
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DREG and DRED: Properties

Summary: Properties of DREG and DRED

DREG: consistent SUSY-violation factorization
+ − +

−→ no fundamental problem but practical difficulties

DRED: inconsistent SUSY (?) no factorization (?)
− +(?) −(?)
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DREG and DRED: Properties

Summary: Properties of DREG and DRED

DREG: consistent SUSY-violation factorization
+ − +

−→ no fundamental problem but practical difficulties

DRED: inconsistent SUSY (?) no factorization (?)
− +(?) −(?)

−→ fundamental problems but practical advantages
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DREG and DRED: Properties

Aims and Preview:

Aims: Solve problems of DRED

Preview:

not possible to find an ideal regularization

but fundamental problems of DRED can be solved

result: DREG and DRED can both be used, and often DRED is
easier to apply

Order: 1. Factorization, 2. Consistency, 3. SUSY
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Factorization in DRED

Outline

1 Introduction

2 DREG and DRED: Properties

3 Factorization in DRED

4 Consistency of DRED

5 Supersymmetry and Mh-calculations

6 Conclusions

Dominik Stöckinger Regularization of SUSY



Factorization in DRED

Factorization-problem

Problem: DRED, m 6= 0

σDRED(GG → t t̄G)
2‖3
−→ ∼

1
k2k3

Pg→gg σDRED(GG → t t̄)

+
1

k2k3
Kg σpuzzle

[Beenakker, Kuijf, van Neerven, Smith ’88] [van Neerven, Smith ’04] [Beenakker, Höpker, Spira, Zerwas ’96]

One “solution” in practice (unsatisfactory complication):
resort to DREG ⇒ SUSY-restoring cts necessary

Fundamental question: where does the seemingly non-factorizing
term σpuzzle come from?

Dominik Stöckinger Regularization of SUSY



Factorization in DRED

Factorization — Conclusions

Main result: σDRED(GG → t t̄G) → PG→gG σGg + PG→φG σGφ

reconciled DRED and factorization [Signer, DS ’05]

Practical consequences

hadron processes can be computed using DRED
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Consistency of DRED

Outline

1 Introduction

2 DREG and DRED: Properties

3 Factorization in DRED

4 Consistency of DRED

5 Supersymmetry and Mh-calculations

6 Conclusions

Dominik Stöckinger Regularization of SUSY



Consistency of DRED

Where does the inconsistency come from?

DREG: “D-dimensional space” can be consistently defined as a
truly ∞-dimensional space with some D-dim characteristics:

[Wilson’73],[Collins]

µ = 0, 1, 2, . . .∞, g(D)µ
µ = D

DRED: “D-dimensional space” should be a subspace of 4-dim space

g(4)
µνg(D)

ρ
ν = g(D)

µ
ρ (∗)

“D-dimensional space” or 4-dimensional space alone: no problem

requirement (∗) cannot be satisfied

⇓
origin of inconsistency
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Consistency of DRED

Way out

“D-dim space” should be ∞-dimensional but subspace of 4-dim space

⇒ Replace ordinary 4-dim space by yet another ∞-dimensional space
with some 4-dim characteristics → “quasi-4-dim space”

D-dim space ⊂ quasi-4-dim space

g(D)µ
µ = D, g(4)µ

µ = 4, µ = 0, 1, 2, . . .∞

quasi-4-dim space
can be explicitly constructed ⇒ no mathematical problems, no
inconsistency, unique results for calculations
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Consistency of DRED

Practical consequences

In practice one can forget that the “D-dim” and quasi-4-dim
spaces are in reality ∞-dimensional

Only exception: one cannot rely on index counting or Fierz
identities

For many SUSY loop calculations, this doesn’t make a difference

These rules will never lead to inconsistent results
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Consistency of DRED

Quantum Action Principle in DRED

Using the consistent formulation of DRED, one can prove the quantum
action principle in DRED

i δSUSY〈Tφ1 . . . φn〉 = 〈Tφ1 . . . φn∆〉

Useful to study symmetry-properties of regularizations

Proof has to be carried out for each regularization,

BPHZ [Lowenstein et al ’71]

DREG [Breitenlohner, Maison ’77]

DRED [DS 2005]
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Supersymmetry and Mh-calculations
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Supersymmetry and Mh-calculations

Problem: SUSY of DRED

We have seen that DRED preserves SUSY e.g. in the case
me = mẽ at the one-loop level

Does DRED preserve SUSY in general?

Or at least in cases that are relevant in practice?
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Supersymmetry and Mh-calculations

DRED preserves SUSY — What does it mean?

SUSY ⇔ ST-identity S(Γren) = 0

defines theory in algebraic renormalization

combines all identities of the form

0 = δSUSY〈Tφ1 . . . φn〉

DRED preserves SUSY if the ST-identity is already
satisfied on the regularized level, S(Γreg) = 0
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Supersymmetry and Mh-calculations

How much do we know?

Status: many SUSY identities checked in DRED:
1-Loop Ward identities [Capper,Jones,van Nieuvenhuizen’80]

β-functions [Martin, Vaughn ’93] [Jack, Jones, North ’96]

1-Loop S-matrix relation [Beenakker,Höpker,Zerwas’96]

1-Loop Slavnov-Taylor identities [Hollik,Kraus,DS’99] [Hollik,DS’01] [Fischer,Hollik,Roth,DS’03]

sufficient for one-loop SUSY processes,
⇒ multiplicative renormalization o.k.
⇒ no SUSY-restoring counterterms

but not all identities have been checked
e.g. two-loop Higgs mass calculations:
⇒ SUSY-restoring counterterms required?
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Supersymmetry and Mh-calculations

Quantum action principle as a tool

So far, all checks have been done by explicitly evaluating all Green
functions → very tedious, cannot be applied at 2-, 3-Loop
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Supersymmetry and Mh-calculations

Quantum action principle as a tool

Quantum action principle can be used

STI δSUSY〈Tφ1 . . . φn〉 = 0
valid in DRED ⇔ 〈Tφ1 . . . φn∆〉 = 0 ∆ = δSUSYL

Use of qu. action principle in DREG [Breitenlohner, Maison ’77]

⇒ e.g. DREG preserves all QCD Slavnov-Taylor identities at all
orders:

δgaugeL
DREG
QCD = 0 ⇒ δgauge〈Tφ1 . . . φn〉 = 0
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Supersymmetry and Mh-calculations

Quantum action principle as a tool

Quantum action principle can be used

STI δSUSY〈Tφ1 . . . φn〉 = 0
valid in DRED ⇔ 〈Tφ1 . . . φn∆〉 = 0 ∆ = δSUSYL

application here: SUSY of DRED:

δSUSYL
DRED = ∆ 6= 0 gives rise to Feynman rules [DS ’05]

DRED probably does not preserve all SUSY-identities

but using the quantum action principle we can check much more
complicated symmetry identities
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Supersymmetry and Mh-calculations

Higgs boson mass and quartic coupling

× ×

l

Higgs mass
Mh governed by quartic Higgs
self coupling λ

λ ∝ g2 in SUSY
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Supersymmetry and Mh-calculations

Quartic coupling and SUSY

h h

h h

λ

l

H̃

W̃

h

+
∝ g

h

h

h

H̃

H̃

. . .

finite

Slavnov-Taylor identity

expresses λ ∝ g2

can be evaluated for two-loop
Green functions

If it is satisfied by DRED ⇔
multiplicative renormalization
o.k.

Needs to be verified

0 ?
= δSUSY〈hhhH̃〉
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Supersymmetry and Mh-calculations

Quartic coupling and SUSY

h h

h h

λ

l

H̃

W̃

h

+
∝ g

h

h

h

H̃

H̃

. . .

finite

Obstacle:
Two-loop evaluation:

up to 5-point functions
very difficult

previously not feasible

0 ?
= δSUSY〈hhhH̃〉
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Supersymmetry and Mh-calculations

Quartic coupling and SUSY

h h

h h

λ

l

H̃

W̃

h

+
∝ g

h

h

h

H̃

H̃

. . .

finite

Obstacle:
Two-loop evaluation:

up to 5-point functions
very difficult

previously not feasible

Solution:
Use quantum action principle
in DRED

0 ?
= δSUSY〈hhhH̃〉 ≡ 〈∆hhhH̃〉
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Supersymmetry and Mh-calculations

Quartic coupling and SUSY

h h

h h

λ

l

H̃

W̃

h

+
∝ g

h

h

h

H̃

H̃

. . .

finite

Obstacle:
Two-loop evaluation:

up to 5-point functions
very difficult

previously not feasible

Solution:
Use quantum action principle
in DRED

δSUSY〈hhhH̃〉 = 〈∆hhhH̃〉

Check of STI much easier

0 ?
= δSUSY〈hhhH̃〉 ≡ 〈∆hhhH̃〉
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Supersymmetry and Mh-calculations

Quartic coupling and SUSY

h h

h h

λ

l

H̃

W̃

h

+
∝ g

h

h

h

H̃

H̃

. . .

finite

STI valid if

〈∆hhhH̃〉 = 0 ⇔

ε̄ H̃

q q̃g̃, H̃

q

hh

h +. . . =0

Explicit computation ⇒ STI valid in DRED at two-loop level [Hollik, DS ’05]
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Supersymmetry and Mh-calculations

Quartic coupling and SUSY

h h

h h

λ

l

H̃

W̃

h

+
∝ g

h

h

h

H̃

H̃

. . .

finite

STI valid if

〈∆hhhH̃〉 = 0 ⇔

ε̄ H̃

q q̃g̃, H̃

q

hh

h +. . . =0
True!

Explicit computation ⇒ STI valid in DRED at two-loop level [Hollik, DS ’05]
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Supersymmetry and Mh-calculations

Quartic coupling and SUSY

h h

h h

λ

l

H̃

W̃

h

+
∝ g

h

h

h

H̃

H̃

. . .

finite

Results:
Two-loop STI valid in DRED
(in Yukawa-approximation,
O(α2

t ,b, αt ,bαs))

for Mh-calculation at this order,
multiplicative renormalization
correct

Previous calculations sufficient

Explicit computation ⇒ STI valid in DRED at two-loop level [Hollik, DS ’05]

Dominik Stöckinger Regularization of SUSY



Supersymmetry and Mh-calculations

Summary: Properties of DREG and DRED

DREG: consistent SUSY-violation factorization
+ − +

DRED: consistent SUSY factorization
+ (+) (+)
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Conclusions

Summary

SUSY quantum effects important e.g. for LHC-predictions

Renormalizability proven in algebraic, regularization-independent
way

In practice, DREG and DRED can be used, both have advantages
and disadvantages

After recent improvements, DRED is in a good shape and is better
suited to SUSY calculations

Factorization ok in DRED
DRED formulated without inconsistency
SUSY of DRED established in important cases
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Conclusions

Summary & Outlook

Comparison of DREG and DRED:

Factorization: holds in DREG and DRED, slightly more
complicated in DRED due to different partons g, φ

→ streamlined prescription for hadron processes in DRED?

Consistency, quantum action principle: ok in DREG and DRED

SUSY: DREG breaks SUSY already in simplest cases, DRED
preserves SUSY in many cases up to 2-Loop, but not at all orders

→ further checks of e.g. RG-running at 3-Loops?
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