What i1s new in FORM

J.A.M. Vermaseren

with contributions from M. Tentyukov

e Short introduction.

e Various commands for output reduction.
o GZIP.

e Eixternal channels.

e ParFORM.

e TFORM.

Short Introduction.

FORM has usually seen lots of additions when new calculations were
undertaken. These additions then became part of the official version
either during or shortly after the calculation was finished.

One problem is proper testing, and another is to make a proper ab-
straction of the needs of the calculations. This abstraction means that
commands should not be specific for a single problem, but everybody
should benefit from it. Because of this a period is needed for experimen-
tation.

Last year we (S.Moch,A.Vogt and JV) finished a big calculation which
involved lots of new facilities in FORM. Many made it already into version
3.1 and were reported on at earlier workshops. But the period after a big
calculation is very good for working at FORM and putting in facilities
that were overdue. Also the people in Karlsruhe had some needs and M.
Tentyukov as been building in features for running FORM together with
other programs and having them communicate with each other.

[expect that a number of the new features will lead to experimentation
by several groups. Some things may not work properly yet under your
conditions. Please send bug reports. All will benefit, and together we
will go into new directions in symbolic calculations.

Various commands for output Reduction.

Can we simplify lengthy Fortran outputs? This is a science by itself.
There are various approaches:

e F'ind another program that can do the job and feed it the expression.
This may not be easy due to the size of the expression.

e Split the expression in pieces and try again. This is not optimal, but
it may improve things very much already.

e Try to do this within FORM by looking for common subexpressions.
This is also far from ideal, but at least it is not limited by the size of
the expressions.

The first two methods can use the new external channels (see later).
There are various new functions that can help in the third method. They

have been developed for the GRACE effort (see talk by Fujimoto). We
show here one piece of an example.

#procedure squeeze2(bracket,dol,d,text,par)
#do isqueeze = 1,1
B, ‘bracket’;
.sort: ‘text’-1;
Keep Brackets;

MakeInteger xfact; K mmm NEW
#if (‘par’ > 0)
id ‘bracket’(x?) = ‘bracket’ (nterms_(x),x); *<-—-——==—————- NEW

id ‘bracket’(1,x?) = x;
id ‘bracket’(n?,x?) = ‘bracket’ (x);
#endif
B, ‘bracket’;
.sort: ‘text’-2;
Keep Brackets;

id ‘bracket’ (x?) = ‘bracket’(-termsinbracket_(0),x); *<-—---NEW
id ‘bracket’ (-1,x?) = dum_(x);
B ‘bracket’;

.sort: ‘text’-3;
Keep Brackets;
#$‘dol’a = $¢dol’;
if (match(‘bracket’(n?,x?)));
$‘dol’ = $°dol’+1;
id ‘bracket’(n?,x?) = ‘bracket’(n,$‘dol’ ,x);
endif;
B ‘bracket’;

.sort: ‘text’-4;
Keep Brackets;
#if ({‘$‘dol’’-‘$‘dol’a’} > 10000)
#$‘dol’ = $dol’a+10000;
#redefine isqueeze "O"
#endif
#do i = ‘$‘dol’a’+1,“$‘dol’’
id ‘bracket’(n?,‘i’,x?$t{‘i’-‘$‘dol’a’}) = ‘d’(‘i’);
#enddo
id ‘bracket’ (?7a,x?) = ‘bracket’ (x);
.sort: ‘text’-5;
‘OFFSTATS’
Hide;
.sort: ‘text’-6;
#do i = ‘$‘dol’a’+1,“$‘dol’’
L [b]l] = $t{‘1’-‘$‘dol’a’};
#call subpow
.sort: ‘text’-7-1i’;
#write <tmp.f> " ‘A’ (“i?) = %he",[bl(d’(‘1?))
#enddo
‘ONSTATS’
Unhide;
Drop [b];
#enddo
#endprocedure

This is output from a short expression. Just to show the principle.

xu(1l) = 1-xnla
xu(2) = 3-xnla
xu(3) = 3-2*xnla

xb(1) = e2ela2+2*e3ela2-2*e3el*e2el
xb(2) = b5xe2el-2*e3el

xb(3) = 2xe2ela2+e3ela2-2*e3el*e2el
xb(4) = e2el-e3el

xb(5) = 3xe2el-2x*e3el

xb(6) = amtq2-2*e3el

xb(7) = amel2a2+e2ela2+2*e2el*amel?
xb(8) = amel2+e2el

xv(1) = 2*xamel2a3+xb(1)*e2el+xb(2)*amel2a2+2*xb(3) *amel2+xb(7) *
& amtq2

xz(1) = amel2a2

xz(2) = xz(1)*amtq?2

xy(1) = 2*amel2+xb(2)

xy(2) = xb(1)+xb(5)*amel2+xb(8)*amtq?2

xy(3) = xb(1)*e2el+2*xb(3)*amel2

xy(4) = 2xxb(1)*e2el1+4*xb(3)*amel2-2*xb(4)*xu(2) *e3el*amtq2+xb(6)
& *xu(2)*amel2xamtq2+xu(2) *e2el*amtq2a?2

xy(5) = xb(1)*xu(3)+xb(5)*xu(3)*amel2+xb(8)*xu(3)*amtq?2

xy(6) = 2*xb(4)*xu(2)*e3el*amtq2-xb(6) *xu(2) *amel2*amtq2-xu (1) *
& amtq2*e2ela2-3+*xu(1)*e2el*amel2*amtq2-xu(2)*e2el*amtqa2

ztd = ztd*x(c24)

xre=+c4x* (xu(3)*xz(1))

xre=xre+c2x* (xy(5))

Xre= -xre

g1e0(0,0)=g1e0(0,0) +ztd*xre

xre=+c2*(xz (1))

xre=xre+xy(2)

g1e1(0,0)=gle1(0,0)+ztd*xre

xre=+c8x* (xz (1) *xy (1) +xy(3)-(2+xnla) *(xz(2)))

xre=xre+cd* (-(1+xnla)*(amtq2*e2ela2) - (5+3*xnla) * (e2el*amel2*amtq2
&))

Xre= -xre

g0e0(0,0)=g0e0(0,0)+ztd*xre

xre=+c8* (xz (1) *xy (1) - (1+2*xnla) * (xz(2)) - (1+3*xnla) * (e2el*amel2x
& amtq2) - (xnla) * (amtq2*e2ela2))

xre=xre+cdx* (xy(4))

g0e0(0,1)=g0e0(0,1)+ztd*xre

xre=+c8* (xu(1)*xz(2))

xre=xre+cd* (-xy(6))

Xre= -xre
g0e0(0,2)=g0e0(0,2)+ztd*xre
xre=+c8+* (xv(1)*xu(1))
g0e0(1,0)=g0e0(1,0)+ztd*xre
xre=+c8* (-xv (1) *xu(1))
g0e0(1,1)=g0e0(1,1)+ztd*xre
xre=+c8x (-xv (1) *xu(1))
g0e0(2,0)=g0e0(2,0)+ztd*xre

It should be noted that the weakest point in this all is the Fortran
compiler. It needs usually far more CPU time than the FORM program
that generates the code. And it also needs far more memory. Already
for routines that are not very long the compiler might crash by lack of
mMemory space.

GZIP.

The maximum size of expressions that can be handled by FORM is
determined by the available file space. When there is only a single ex-
pression the total file space needed during the calculation is one scratch
file for input or output and the sort file.

Often the sort file can be much larger than the completed output scratch
file. These files have already some form of data compression applied
to them, but this is a rather simple expression. It has the advantage
though that it allows FORM to select pieces of the expression like specific
brackets.

When GZIP is applied to these files one can obtain compression ratios
that are typically a factor 4, although this will depend very much on the
problem and the hardware. If there are mainly very lengthy coeflicients,
the ratio will be much less. If one works on a 64-bits computer and the
coefficients are short numbers, the ratio will be larger.

Currently the sort file can be treated with the gzip library. Each
‘patch’ is a gzipped stream and when the file-to-file sort takes place they
are simultaneously gunzipped slowly to feed the merging routine.

The drawback is that using gzip costs CPU time. Unfortunately this
isn’t gained back by the fact that now less writing to files and reading
from files is needed. Hence one should use this facility mainly when one
is really short of disk space.

Syntax:
On compress GZIP 6;

This selects compression level 6 which seems a nice compromise be-
tween speed and compression. The highest level is 9, but this is very
slow and doesn’t compress much better than level 6. Level 0 means no
COINPIession.

It would have been possible to use bzip, which compresses better. It
is however extremely slow. Maybe in the future a better algorithm will
be developed that takes more the structure of a FORM binary file into
account. The future may also see compression of the scratch files, but
that will lead to a reduction of the possible commands that can be used in
the next module as ‘keep brackets’ and the obtaining of bracket contents
will not be possible.

External Channels (by M.Tentykov).

This is used in Karlsruhe for a program that implements the Laporta
algorithm. They get often subexpressions that are sums of rational poly-
nomials in d. They want to pull them over a common denominator and
then simplify by dividing out the GCD. For this they use the program
FERMAT.

The whole is described in a very recent paper: ”Extension of the func-
tionality of the symbolic program FORM by external software” (M. Ten-
tyukov and J.V.) ¢s.5C/0604052.

Just an example that sends the expression withGCD to fermat and
picks up the answer. We do this 1000 times just to show the speed.

0ff statistics;

Format 250;

#define cmd "./fermat"

#define init "&d\nO\n&(M=\’ \’)\n&(t=0) \n&U\n&(J=d)\n"
Symbol d;

#external ‘cmd’

#toexternal "‘init’"

#do 1 = 1,19
#fromexternal "tmp"
#enddo

Local withGCD =(2*d"4+3*d"~3-22*d"2-13*d+30)/(d~3-11*d+10) ;
.sort
#do i1=1,1000
#toexternal "%E\n",withGCD
#fromexternal "tmp"
Local noGCD =
#fromexternal
Print;
.sort
Drop noGCD;
.sort
#enddo
.end

The tail of the output file is:

noGCD =
3 + 2xd;

.end
real OmO.799s
user Om0.160s
sys Om0.010s

It should be clear that there is much room for creativity here. Sometimes
most of the work is in building the filters/gateways that translate the
notations of the various programs or manage information of programs in
such a way that the others can work with it.

ParFORM.

ParFORM 1is a project of the university of Karlsruhe, funded by the
DFG. People who have worked at it in the past are J. Staudenmaier, A.
Retey, D. Fliegner, A. Onyshenko, M. Frank. Currently M. Tentyukov
and M. Steinhauser are in charge of it. As seen in the above section
the dexterity of M. Tentyukov with the FORM sources also gives us new
features. ParFORM is a version of FORM that uses several processors
or computers, connected by a network in a way that makes it look to the
user as a single much faster computer.

ParFORM keeps getting improved. Its main machine at the moment
is the SGI machine at Karlsruhe which has 32 Itanium 2 processors at
1300 MHz. It is used by P. Baikov for the running of 4-loop propagator
diagrams, using mostly groups of 8 processors, getting execution speeds
that are a factor 4-5 times better than on a single processor. The record
is a factor 6.

ParFORM also runs on several other computers. The problem with the
ports is that there is no rigorous standard for the MPI libraries. This
means that each port is much work. They are made on demand and
availability of time and resources.

TFORM.

This is a rather new project. Currently it is my pet project. The aim is
to make a multi-threaded version of FORM that can run on computers
with shared memory. In that case the data is divided in shared global
data and thread specific local data. This way much less data has to be
transfered. On the other hand: the routines have to be ‘thread-safe’.
Currently this is where the major source of errors is.

The program is currently being debugged and tuned. Already some
improvements have been made and mincer is already running with it.
The main machine for experimentation is a quad opteron machine with
4 opteron 850 processors at 2.4 GHz and 16 Gbytes of memory.

The running of TFORM is rather simple:
tform -w4d calcdia

would run the program calcdia.frm with 4 worker threads and one master
thread. The command

tform calcdia

would just run everything inside the master thread. No workers will even
be started. This is on average slightly slower (2-3%) than the sequential
version, although there have been cases for which it was actually slightly
faster.

The treatment of the threads follows the Pthread (POSIX threads)
standards which are widely available, defintely in unix systems. Hence
there are very few problems with ports.

There are some features that allow the user to tune the system a bit.
Terms are send to the workers in groups or ’buckets’. The optimal size
of the buckets depends on the problem.

Sometimes all nasty terms can be in one bucket making one worker
doing all the work. The master and the other workers have to wait for
this worker to finish. There is a loadbalancing system in which the master
can steal the unprocessed contents of the bucket of a thread that is still
busy at the end of the module. This can be switched off if necessary. A
second stage load balancing is being planned. This would be for when
there is a single bad term. In that case a worker can give branches of the
tree to other workers.

There will be a separate paper about version 3.2 of FORM that will
explain more of the technical details. Here I will show some results on
various computers. The computers that are being used are

e alfonso: a Dual Pentium IV at 1.7 GHz.

e norma: a Quad opteron system with 4 Opteron 850 processors at 2.4
GHz.

e qcmsgi: The machine at Karlsruhe with 32 itanium 2 processors at 1.3
GHz. We use a varying number of processors which we will indicate
by qecmsgi4 (for 4 processors) etc. Currently no examples available as
the machine was down past week......

e The use of hyperthreading processors gives only a relatively small
increase of the work that can be performed, which is mostly offset by
the extra overhead. Here TFORM would only be useful in crowding
out other programs. We will not consider them here.

The first example program we consider is from a suite of examples that
was constructed several years ago on the suggestion of D.Fliegner. They
concern the construction of so-called chromatic polynomials on a lattice.
The whole project from the viewpoint of FORM is to show how one can
successively improve the efficiency of a program. The whole paper and
the programs can be found in the FORM distribution site. The crucial
part of the program is

#do i = 0,‘N’"‘D’-1
Multiply F‘i’;
repeat id d(?7a,k?,?b)*d(?c,k?,?d) = d(?7a,?c,k,?b,?d);
Symmetrize d;
repeat id d(?a,k?,k?,?b) = d(?a,k,?b);

#do d = 1, ‘D’

id d(k‘i’,?a,k17kk0[x],?b,k27kk‘d’ [x],?c) = O;
#enddo
id,ifmatch->1,d(k‘i’ ,k?) = 1;
id,ifmatch->1,d(k‘i’,?b) = d(?b);

Multiply acc([q-1]1+1);
Label 1;
id d =1;
.sort: ‘i’;
#enddo

The complete program can be found in the FORM distribution site
once version 3.2 of FORM will be available.

We run the program for a 13x13 lattice. The improvement factor is the
improvement in the real time that it takes to run the program. When we
mention 0 workers we refer to the sequential version of FORM. For one
worker we refer to tform in which the master runs the whole program.
This shows part of the overhead. Then there is more overhead when
the workers are actually used, because now signals have to be sent and
information has to be copied to and from the workers.

Workers CPU-time real time CPU-master improvement

0 1871.57 1921.14
1 1908.60 1944.34
2 2021.47 1089.56 159.51 1.7632
3 2041.79 1115.65 192.73 1.7220
4 206747 1141.83 216.61 1.6825

Program p15 running on a Dual P4(1700).

We notice that running more than two workers gives a slight penalty
and makes the improvement go down a bit. But it is very well possible
to run with more threads than there are processors.

Workers CPU-time real time CPU-master improvement

0 710.15 710.69
2 738.12 386.17 50.17 1.8403
4 788.88 244.00 70.40 2.9127

Program p15 running on a Quad Opteron 850 (2.4 GHz).

The next example concerns some diagrams that are run with Mincer.
[selected 3 diagrams: dlc, d10c and d11c from a dataset for calculating
nonsinglet contributions to photon-quark scattering. These are all non-
planar diagrams. The first is moderately simple and we can calculate
the N=16 moment. The second diagram is moderately difficult and the
third diagram is the most difficult of the set. Of the last two diagrams
we calculate the N=10 moment.

Diagram Workers CPU-time real time CPUmaster improvement

dlc 0 2675.80 2676.18 - -
dlc 1 2729.62 2729.93 -

dlc 2 2804.31 1433.28 45.53 1.8672
dlc 3 2810.250 1438.95 66.43 1.8598
d10c 0 2649.63 2651.87 - -
d10c 2 2796.84 1440.82 747 1.8405
dllc 0 10344.22 10400.52 - -
dllc 2 10870.10 5693.18 333.01 1.8268

Mincer diagrams running on a Dual P4(1700).

Diagram Workers CPU-time real time CPUmaster improvement

dlc
dlc
dlc
dlc
dlc
d10c
d10c
d10c
dllc
dllc
dllc

0

DO O = DN O = Wi+~

4

754.05
807.78
827.36
833.22
835.19
851.12
928.02
945.15

3124.07
3408.98
3913.83

795.73
808.88
424 .80
291.09
228.79
852.09
471.77
262.03

3125.05
1720.59

984.07

15.67
21.67
26.72

30.21
38.29

107.18
136.36

0.9343
1.7790
2.0961
3.3031

1.8062
3.2519

1.8163
3.1756

Mincer diagrams running on a Quad Opteron 850 (2.4 GHz).

The major weakness is at the end of the module when all workers have to
collect the contents of their sort file, merge it and send the results to the
master thread which merges these streams into a single output file. The
resulting traffic jam can bring processing almost at a halt. Sometimes
it can make running on 4 processors slower than on a single one. What
to do about this is still being investigated as the situation of the disk on
the quad machine was far from ideal. Maybe a better (and bigger) disk
will improve things. Sometimes it seems to pay to force the sort files to
be written and just wait for that....

There remains the issue that is there is much writing activity, this
will slow things down. The example used was the pl5 program with a
15x15 lattice. In the program about 250 Gbytes of files had to be written
when 4 workers were used. In the sequential version this is less as the
buffers can be bigger. Hence 'only’ 139 Gbytes have to be written. The
result is that, even with 4 threads and much optimization concerning
synchronizing the file system, TFORM is only a little bit faster:

Workers CPU-time real time GBytes written
0 11614 14210 139
4 13974 10535 250
Program p15(15x15) running on a Quad Opteron 850 (2.4 GHz).

Conclusions.

As soon as the number of problems gets so low that I don’t see any, I
will make this version available. Most likely programs of other people will
run into problems. Please report those in as concise a way as possible in
such a form that I have a chance to reproduce them. Debugging multi-
threaded programs is rather complicated and hence one needs as much
information as possible.

